1. Trang chủ
  2. » Khoa Học Tự Nhiên

vận dụng một số phép toán xác suất và tổ hợp vào giải bài tập các gen nằm trên các nst khác nhau trong đề thi đại học và cao đẳng

17 1,6K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 309,5 KB

Nội dung

LỜI MỞ ĐẦU: Hiện nay, trong chương trình sinh học 12 Trung học phổ thông có một số quy luật di truyền được sử dụng nhiều trong các kì thi Đại học và Cao đẳng: Quy luật phân li Quy luật p

Trang 1

A ĐẶT VẤN ĐỀ

I LỜI MỞ ĐẦU:

Hiện nay, trong chương trình sinh học 12 Trung học phổ thông có một số quy luật di truyền được sử dụng nhiều trong các kì thi Đại học và Cao đẳng:

Quy luật phân li

Quy luật phân li độc lập

Quy luật di truyền liên kết

Quy luật di truyền liên kết với giới tính

Quy luật tương tác gen không alen

Trong các quy luật trên, quy luật nào cũng có bài tập ở các cấp độ nhận thức khác nhau nhưng trong khuôn khổ sách giáo khoa chỉ hình thành được quy luật theo cách trình bày tiến trình nghiên cứu phát hiện quy luật Học sinh chỉ nắm quy luật bằng lý thuyết nên rất dễ dàng quên và cảm thấy nhàm chán khi học các quy luật Vì vậy khi củng cố các quy luật giáo viên phải dùng các bài tập mới có thể giúp học sinh khắc sâu được kiến thức và tạo sự hứng thú cho học sinh

II THỰC TRẠNG CỦA VẤN ĐỀ NGHIÊN CỨU:

Trong thực tiễn quá trình giảng dạy tại trường Trung học phổ thông Lê Lợi – Thọ Xuân – Thanh Hóa, tôi nhận thấy việc giải các bài toán sinh học đối với học sinh là một vấn đề còn có nhiều vướng mắc và khó khăn Mặt khác, thời gian để chữa bài tập sinh học ở trên lớp theo phân phối chương trình không nhiều (2 tiết/năm học) Lượng thời gian đó không đủ để giáo viên hướng dẫn học sinh cách giải bài tập vận dụng, củng cố lí thuyết

Mặt khác, các đầu sách tham khảo liên quan đến hướng dẫn giải bài tập di truyền còn hạn chế nên các em ít có điều kiện tiếp cận với phương pháp tự học cách giải bài tập qua sách tham khảo

Muốn làm được các bài toán sinh học phổ thông cần phải vận dụng nhiều phương pháp giải toán Nhưng muốn ứng dụng được các phép toán thì phải biết cách giải toán, phải hiểu được bản chất của vấn đề sinh học mới làm được Các phép toán ứng dụng trong sinh học phổ thông hiện nay có rất nhiều bài tập sử dụng xác suất thống kê Mặc dù trong môn toán ở trường phổ thông học sinh cũng được làm quen với các phép xác suất nhưng khả năng vận dụng của học sinh vào môn sinh học còn nhiều hạn chế Có nhiều học sinh còn sợ toán sinh đặc biệt là những bài toán liên quan đến xác suất thống kê

Hơn nữa hiện nay, Bộ Giáo dục và Đào tạo đang thực hiện thi trắc nghiệm môn sinh học trong các kì thi Học sinh muốn trả lời đúng, nhanh các câu hỏi trắc nghiệm thì phải biết cách giải nhanh các bài tập Nếu học sinh biết ứng dụng lí

Trang 2

thuyết xác suất thì sẽ góp phần rút ngắn thời gian thực hiện các thao tác để giải một

số bài tập

Trước thực trạng trên, tôi đã mạnh dạn cải tiến phương pháp giải bài tập phần một gen nằm trên một nhiễm sắc thể bằng cách vận dụng một số phép xác suất, phép tổ hợp vào quá trình giảng dạy Tôi mong muốn các em yêu thích bộ môn sinh học, tích cực chủ động vận dụng giải thành công những bài tập thuộc quy luật di truyền trong các đề thi Đại học và Cao đẳng, tài liệu tham khảo

Vì vậy tôi quyết định chọn đề tài “Vận dụng một số phép toán xác suất và

tổ hợp vào giải bài tập các gen nằm trên các NST khác nhau trong đề thi Đại học và Cao đẳng”

Tôi xin chân thành cảm ơn!

Trang 3

B GIẢI QUYẾT VẤN ĐỀ

I MỘT SỐ CÔNG THỨC TRONG TOÁN HỌC ĐƯỢC VẬN DỤNG ĐỂ GIẢI BÀI TẬP CÁC GEN NẰM TRÊN CÁC NST KHÁC NHAU

1 Tích xác suất:

Thực tiễn cho thấy lí thuyết xác suất không hề xa vời với bộ môn Sinh học

nó đã trở thành một công cụ vô cùng hữu hiệu giúp Menđen thành công trong phương pháp nghiên cứu di truyền đó là: Menđen đã khẳng định các cặp tính trạng

đã di truyền độc lập với nhau dựa trên cơ sở toán xác suất

a Cơ sở lí luận:

Khái niệm xác suất: Xác suất của một sự kiện là tỉ số giữa khả năng thuận lợi

để sự kiện đó xảy ra trên tổng số khả năng có thể

- Xác suất của biến cố A là một số không âm kí hiệu P(A)

- Trong lí thuyết xác suất, xác suất còn được gọi bằng tần suất, trong sinh học

tần suất có thể được hiểu là “tần số”, nghĩa là số lần xảy ra biến cố đó trong

một hiện tượng hay quá trình sinh học có thể được thống kê hay kiểm định được

b Cơ sở thực tiễn:

Theo lí thuyết xác suất 2 sự kiện A, B được gọi là độc lập nhau nếu P(AB) = P(A) P(B) Vì vậy di truyền học hiện đại hoàn toàn thống nhất với Menđen về phương pháp nghiên cứu, còn đối với giáo viên và học sinh đã vận dụng phương pháp nghiên cứu đó làm phương pháp giải các bài tập quy luật di truyền Menđen gồm 3 bước sau:

Bước 1: Xét riêng sự di truyền từng cặp tính trạng

Bước 2: Xét chung sự di truyền các cặp tính trạng

Sử dụng công thức P(AB) = PA PB thì tuân theo quy luật phân li độc lập

Bước 3 : Viết sơ đồ lai

2 Tổng xác suất:

a Cơ sở lí luận:

Khi gieo con xúc sắc 6 mặt thì khả năng xuất hiện một mặt là 1/6 Hỏi xác suất xuất hiện mặt có số chẵn là bao nhiêu?

Mặt có số chẵn của con xúc sắc có 3 loại (tức là mặt 2, 4, 6) Lúc này biến cố mong đợi chính là tổng xác suất 3 sự kiện A(2), B(4), C(6), nên biến cố tổng: P(AUBUC) = P(A) U P(B) U P(C)

Vì mỗi sự kiện đều có đồng khả năng xuất hiện một mặt là 1/6 => biến cố mong đợi là = 1/6 + 1/6 + 1/6 = 3/6 = 1/2

Trang 4

b Cơ sở thực tiễn

Phép cộng xác suất được ứng dụng để xác định tỉ lệ một loại kiểu hình, kiểu gen nào đó

3 Công thức nhị thức Niutơn

a Cơ sở lí luận:

(a + b)n = C0

nan + C1

nan -1b + … + Ck

nan -kbk + … Cn

nb =

b Cơ sở thực tiễn: Áp dụng công thức nhị thức Niutơn để tính xác suất biểu hiện

kiểu hình trong phép lai ở bài tập sinh học

- Trường hợp 1: Số cá thể sinh ra ở những loài đơn thai tức là mỗi lần sinh ra ở những loài đơn thai tức là mỗi lần sinh ra là một cá thể

Phương pháp thông thường khi giải bài toán dạng này người ta tính nhân từng xác suất trong dãy các sự kiện độc lập

- Trường hợp 2: Số cá thể sinh ra trong một hay nhiều lứa ở những loài đa thai hay nhiều cá thể ở thực vật

Sử dụng phương pháp tính bằng công thức nhị thức Niutơn

II MỘT SỐ PHƯƠNG PHÁP ĐỂ GIẢI CÁC BÀI TẬP CÁC GEN NẰM

TRÊN CÁC NST KHÁC NHAU

1 Xác định tần số xuất hiện các tổ hợp gen khác nhau về nguồn gốc NST

a Tổng quát: Phần này ta ứng dụng về nhân xác suất

Để giải các bài toán về nguồn gốc NST đối với loài sinh sản hữu tính, giáo viên cần phải giải thích cho học sinh hiểu được bản chất của cặp NST tương đồng: một có nguồn gốc từ bố, một có nguồn gốc từ mẹ

Trong giảm phân tạo giao tử thì:

- Mỗi NST trong cặp tương đồng phân li về một giao tử nên tạo 2 loại giao tử có

nguồn gốc khác nhau (bố hoặc mẹ).

- Các cặp NST có sự phân ly độc lập, tổ hợp tự do Nếu gọi n là số cặp NST khác nhau về cấu trúc của tế bào thì:

* Số giao tử khác nhau về nguồn gốc NST được tạo nên = 2 n

→ Số tổ hợp các loại giao tử qua thụ tinh = 2 n 2 n = 4 n

Trang 5

Vì mỗi giao tử chỉ mang n NST từ n cặp tương đồng, có thể nhận mỗi bên từ

bố hoặc mẹ ít nhất là 0 NST và nhiều nhất là n NST do chúng phân ly độc lập và tổ hợp tự do trong giảm phân nên:

* Số giao tử mang a NST của bố (hoặc mẹ): Là tổ hợp của a NST trong n NST có nguồn gốc từ bố (hoặc mẹ) C n a

→ Xác suất để một giao tử mang a NST từ bố (hoặc mẹ) = C n a / 2 n

- Số tổ hợp gen có a NST từ ông (bà) nội (giao tử mang a NST của bố) và b NST

từ ông (bà) ngoại (giao tử mang b NST của mẹ) = Cn a C n b

→ Xác suất của một tổ hợp gen có mang a NST từ ông (bà) nội và b NST từ ông (bà) ngoại = C n a C n b / 4 n

b Ví dụ

Bộ NST lưỡng bội của người 2n = 46

- Có bao nhiêu trường hợp giao tử có mang 5 NST từ bố?

- Xác suất một giao tử mang 5 NST từ mẹ là bao nhiêu?

- Khả năng một người mang 1 NST của ông nội và 21 NST từ bà ngoại là bao nhiêu?

Giải

* Số trường hợp giao tử có mang 5 NST từ bố:

= C n a = C 23 5

* Xác suất một giao tử mang 5 NST từ mẹ:

= C n a / 2 n = C 23 5 / 2 23

* Khả năng một người mang 1 NST của ông nội và 21 NST từ bà ngoại:

= C n a C n b / 4 n = C 23 1 C 23 21 / 4 23 = 11.(23) 2 / 4 23

2 Xác định số kiểu giao tử tạo ra trong giảm phân tạo giao tử

a Tổng quát: Phần này ứng dụng của tích xác suất

Xét n cặp NST, mỗi cặp NST có 2 NST có cấu trúc khác nhau.

* Trường hợp không có trao đổi đoạn

- Mỗi cặp NST tạo ra 2 loại giao tử nên có n cặp NST thì số loại giao tử là

2.2.2… 2 (có n) = 2 n

- Nếu có k cặp trong tổng số n cặp có cấu trúc giống nhau:

+ k cặp có cấu trúc giống nhau chỉ cho 1 loại giao tử

+ có n – k cặp có cấu trúc khác nhau cho số loại giao tử là 2 n – k

Vậy số loại giao tử là: 2 n – k

* Trường hợp xảy ra trao đổi đoạn ở một điểm, ở k trong tổng số n cặp NST

- Xét 1 cặp NST có xảy ra trao đổi đoạn ở một điểm sẽ tạo ra 4 loại giao tử vậy k

cặp NST có xảy ra trao đổi đoạn ở một điểm cho số loại giao tử là: 4 k

- Còn n – k cặp không có trao đổi đoạn sẽ tạo ra số loại giao tử là: 2 n – k

Trang 6

Vậy số loại giao tử tạo ra là: 4k 2n – k = 22.k.

* Trường hợp xảy ra trao đổi đoạn tại 2 điểm không cùng lúc, ở k trong tổng số

n cặp NST tương đồng

- Xét 1 cặp NST trao đổi tại 2 điểm không cùng lúc: có tế bào xảy ra trao đổi đoạn tại điểm 1; có tế bào xảy ra trao đổi đoạn tại điểm 2 cũng ở cặp NST đó cho 6 loại giao tử: 2 loại giao tử không có trao đổi đoạn, 2 loại giao tử có trao đổi đoạn tại điểm 1, 2 loại giao tử có trao đổi đoạn tại điểm 2 vậy có k cặp có trao đổi đoạn tại 2

điểm cho số loại giao tử là: 6 k

- Còn n – k cặp không có trao đổi đoạn sẽ tạo ra số loại giao tử là: 2 n – k

Vậy số loại giao tử tạo ra là: 6k 2n – k = 2n 3k.

* Trường hợp có trao đổi đoạn kép, ở k trong tổng số n cặp NST tương đồng

- Xét 1 cặp NST trao đổi đoạn kép: có tế bào xảy ra trao đổi đoạn tại điểm 1; có tế bào xảy ra trao đổi đoạn tại điểm 2 và có tế bào xảy ra trao đổi đoạn kép cũng ở cặp NST đó cho 8 loại giao tử: 2 loại giao tử không có trao đổi đoạn, 2 loại giao tử có trao đổi đoạn tại điểm 1, 2 loại giao tử có trao đổi đoạn tại điểm 2 và 2 loại giao tử

trao đổi đoạn kép vậy có k cặp có trao đổi đoạn kép cho số loại giao tử là: 8 k

- Còn n – k cặp không có trao đổi đoạn sẽ tạo ra số loại giao tử là: 2 n – k

Vậy số loại giao tử tạo ra là: 8k 2n – k = 2n + 2.k.

b Ví dụ:

Ở ruồi giấm có 2n = 8 Các cặp NST có cấu trúc khác nhau, tính số kiểu giao

tử trong các trường hợp sau:

- Có trao đổi chéo tại 1 điểm ở 2 cặp

- Có trao đổi chéo tại 2 điểm không cùng lúc ở 1 cặp

- Có trao đổi chéo kép tại 1 cặp

Giải:

- Có trao đổi chéo tại 1 điểm ở 2 cặp: 4 1 4 1 2 4 – 2 = 64.

- Có trao đổi chéo tại 2 điểm không cùng lúc ở 1 cặp: 6 1 2 4 – 1 = 48.

- Có trao đổi chéo kép tại 1 cặp: 8 1 2 4 – 1 = 64.

3 Tính số kiểu tổ hợp – kiểu gen và các tỉ lệ phân li ở đời con

a Kiểu tổ hợp: Phần này ứng dụng tích xác suất

Chú ý: Khi biết số kiểu tổ hợp  biết số loại giao tử đực, giao tử cái  biết

số cặp gen dị hợp trong kiểu gen của cha hoặc mẹ

Số kiểu tổ hợp = số giao tử đực x số giao tử cái

Trang 7

b Số loại và tỉ lệ phân li về kiểu gen, kiểu hình:

Tỉ lệ kiểu gen chung của nhiều cặp gen bằng các tỉ lệ kiểu gen riêng rẽ của mỗi cặp tính trạng nhân với nhau.

Số kiểu hình tính trạng chung bằng số kiểu hình riêng của mỗi cặp tính trạng nhân với nhau.

Ví dụ 1:

(Đề thi ĐH năm 2010) Cho biết mỗi gen quy định một tính trạng, các gen phân li

độc lập, gen trội là trội hoàn toàn và không có đột biến xảy ra Tính theo lí thuyết, phép lai AaBbDdEe × AaBbDdEe cho đời con có kiểu hình mang 2 tính trạng trội

và 2 tính trạng lặn chiếm tỉ lệ

A 2569 B 12827 C 649 D 1289

Giải:

Tính tỉ lệ của một KH có 2 tính trạng trội và 2 tính trạng lặn là 43 x43 x 41 x 14

Số kiểu hình nói trên là: C42 = 6

→ kiểu hình mang 2 tính trạng trội và 2 tính trạng lặn chiếm tỉ lệ:

6 x 43 x43 x 41 x 14 = 12827 chọn đáp án B

Ví dụ 2:

(Đề thi ĐH năm 2009) Trong trường hợp giảm phân và thụ tinh bình thường, một

gen quy định một tính trạng và gen trội là trội hoàn toàn Tính theo lí thuyết, phép lai AaBbDdHh × AaBbDdHh sẽ cho kiểu hình mang 3 tính trạng trội và 1 tính trạng lặn ở đời con chiếm tỉ lệ

A 27/256 B 81/256 C 9/64 D 27/64

Giải:

Tính tỉ lệ của một KH có 3 tính trạng trội và 1 tính trạng lặn là

4

3

x

4

3

x

4

3

x

4 1

Số kiểu hình nói trên là: C43 = 4

→ kiểu hình mang 2 tính trạng trội và 2 tính trạng lặn chiếm tỉ lệ:

4 x 43 x43 x 43 x 14 = 6427 chọn đáp án D.

Ví dụ 3:

(Đề thi ĐH năm 2008) Trong trường hợp các gen phân li độc lập, tác động riêng rẽ

và các gen trội là trội hoàn toàn, phép lai: AaBbCcDd × AaBbCcDd cho tỉ lệ kiểu hình A-bbC-D- ở đời con là

A 3/256 B 1/16 C 81/256 D 27/256

Giải:

Xét từng KH riêng ta có: A- = 43 ; bb = 14 ; C- = 43 ; D- = 43

Trang 8

Tỉ lệ kiểu hình A-bbC-D- ở đời con là: 43 x14 x 43 x 43 = 25627 chọn D.

Ví dụ 4:

(Đề thi ĐH năm 2007)Trong trường hợp mỗi gen qui định một tính trạng và tính

trạng trội là trội hoàn toàn, cơ thể có kiểu gen AaBbDd tự thụ phấn sẽ thu được đời con có số kiểu gen và kiểu hình tối đa là

A 4 kiểu hình ; 9 kiểu gen B 4 kiểu hình ; 12 kiểu gen

C 8 kiểu hình ; 12 kiểu gen D 8 kiểu hình ; 27 kiểu gen

Giải:

- Xét số KH riêng và số KG riêng ở từng phép lai riêng: phép lai với cặp tính trạng thứ nhất: có 2 KH và 3 KG; phép lai với cặp tính trạng thứ hai: có 2 KH và 3 KG; phép lai với cặp tính trạng thứ ba: có 2 KH và 3 KG

→ Số KH chung là: 2 x 2 x 2 = 8; số KG chung là: 3 x 3 x 3 = 27 chọn đáp án D

4

Xác định tổng số kiểu gen, số kiểu gen đồng hợp, kiểu gen dị hợp trong trường hợp nhiều cặp gen phân ly độc lập, mỗi gen có 2 hoặc nhiều alen.

Tổng quát:

Để xác định tổng số kiểu gen, số kiểu gen đồng hợp, kiểu gen dị hợp trong trường hợp nhiều cặp gen phân ly độc lập, mỗi gen có 2 hoặc nhiều alen, giáo viên cần phải cho học sinh thấy rõ:

4.1 Với mỗi gen:

Phân tích và chứng minh số số kiểu gen đồng hợp, kiểu gen dị hợp, số kiểu gen của mỗi gen, chỉ ra mối quan hệ giữa 3 yếu tố đó với nhau và với số alen của mỗi gen: Số alen của mỗi gen có thể lớn hơn hoặc bằng 2 nhưng trong kiểu gen luôn có mặt chỉ 2 trong số các alen đó

a Đối với trường hợp gen nằm trên NST thường

- Nếu gọi số alen của gen là r thì số dị hợp là: C r 2 = r( r2 1) .

- Số kiểu gen đồng hợp luôn bằng số alen = r

- Số kiểu gen = số kiểu gen đồng hợp + số kiểu gen dị hợp là:

r + ( 1)

2

r r 

= ( 1)

2

r r 

(Lưu ý: có thể tính nhanh 1 + 2 + 3 +… +r)

b Đối với trường hợp gen nằm trên NST giới tính

b 1 Với trường hợp gen nằm trên NST giới tính X và không có alen tương ứng

trên Y.

Với gen có r alen: số loại giao tử X là r:

Trang 9

- Ở cơ thể XX cách tính giống như ở trên là:

+ Số kiểu gen đồng hợp luôn bằng số alen = r

+ Số kiểu gen = số kiểu gen đồng hợp + số kiểu gen dị hợp là:

r + ( 1)

2

r r 

= ( 1)

2

r r 

- Ở cơ thể XY: có r kiểu gen

Vậy tóm lại:

Số kiểu gen đồng hợp là: r Tổng số kiểu gen là: r + ( 1)

2

r r 

= r( r2 3)

Số kiểu gen dị hợp là: Số kiểu gen – số kiêu gen đồng hợp = ( 1)

2

r r 

b 2 Với trường hợp gen nằm trên X có alen tương ứng trên Y

Gọi r là số alen của một gen

- Ở cơ thể XX cách tính giống như ở trên là:

+ Số kiểu gen đồng hợp luôn bằng số alen = r

+ Số kiểu gen = số kiểu gen đồng hợp + số kiểu gen dị hợp là:

r + ( 1)

2

r r 

= ( 1)

2

r r 

- Ở cơ thể XY: có r giao tử X và có r giao tử Y nên số kiểu gen (kiểu tổ hợp)là r 2

Vậy tóm lại:

Số kiểu gen đồng hợp là: r Tổng số kiểu gen là: r 2 + ( 1)

2

r r 

= r(3r21)

Số kiểu gen dị hợp là: Số kiểu gen – số kiêu gen đồng hợp = r(3r21)- r

b 3 Với trường hợp gen nằm trên Y không có alen tương ứng trên X

Gọi r là số alen của một gen

- Ở cơ thể XX: số kiểu gen là 1

- Ở cơ thể XY: số kiểu gen là: r

Vậy tóm lại:

Số kiểu gen đồng hợp là: 1 (XX) Tổng số kiểu gen là: r + 1

Số kiểu gen dị hợp là: Số kiểu gen – số kiêu gen đồng hợp = r

4.2 Với nhiều gen:

Do các gen phân li độc lập nên kết quả chung = tích các kết quả riêng.

Ví dụ 1:

Trang 10

(Đề thi ĐH năm 2008) Ở người, gen quy định màu mắt có 2 alen (A và a), gen quy

định dạng tóc có 2 alen (B và b), gen quy định nhóm máu có 3 alen (IA, IB và IO) Cho biết các gen nằm trên các cặp nhiễm sắc thể thường khác nhau Số kiểu gen tối

đa có thể được tạo ra từ 3 gen nói trên ở trong quần thể người là

A 24 B 64 C 10 D 54

Giải

Dựa vào công thức tổng quát và do các cặp gen phân li độc lập nên kết quả chung bằng tích các kết quả riêng, ta có:

- Xét cặp gen quy định màu mắt: Số KG tối đa là 2(221)= 3

- Xét gen quy định nhóm máu: Số KG tối đa là 3(321)= 6

- Xét gen quy định dạng tóc: Số KG tối đa là 2(222) = 3

Số KG tối đa có thể tạo ra từ 3 locut là 3 x 3 x 6 = 54 chọn đáp án D

Ví dụ 2:

(Đề thi ĐH năm 2010) Ở một quần thể ngẫu phối, xét hai gen: gen thứ nhất có 3

alen, nằm trên đoạn không tương đồng của nhiễm sắc thể giới tính X; gen thứ hai

có 5 alen, nằm trên nhiễm sắc thể thường Trong trường hợp không xảy ra đột biến,

số loại kiểu gen tối đa về cả hai gen trên có thể được tạo ra trong quần thể này là

A 90 B 15 C 45 D 135

Giải

- Xét gen thứ nhất: Số KG tối đa là 3(323) = 9

- Xét gen thứ hai: Số KG tối đa là 5(521) = 15

Số loại kiểu gen tối đa về cả hai gen trên là 9 x 15 = 135 chọn D

Ví dụ 3:

(Đề thi ĐH năm 2010) Trong quần thể của một loài động vật lưỡng bội, xét một

lôcut có ba alen nằm trên vùng tương đồng của nhiễm sắc thể giới tính X và Y Biết rằng không xảy ra đột biến, theo lí thuyết, số loại kiểu gen tối đa về lôcut trên trong quần thể là

A 9 B 15 C 12 D 6

Giải

Áp dụng công thức r(3r21) Ở đây r = 3 ta có 3(3x231) = 15 chọn đáp án B

Ví dụ 4:

Xét 5 locut gen phân ly độc lập trên NST thường, mỗi locut có hai alen

Tính số kiểu gen khác nhau trong quần thể thuộc các trường hợp sau đây:

a) Số kiểu gen đồng hợp 1 cặp gen

b) Số kiểu gen đồng hợp 2 cặp gen

Ngày đăng: 14/11/2014, 16:37

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w