1. Trang chủ
  2. » Giáo án - Bài giảng

Giao an day them toan 9

90 452 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 90
Dung lượng 6,08 MB

Nội dung

Bài 1: Ôn tập về căn bậc hai Hằng đẳng thức 2 A A= . Luyện tập về Hệ thức lợng trong tam giác vuông (T 1 ) Soạn: 29/9/2008 Dạy: 4/10/2008 A. Mục tiêu: - HS nắm đợc định nghĩa và kí hiệu về căn bậc hai số học của một số không âm. - Biết đợc mối liên hệ của phép khai phơng với quan hệ thứ tự trong tập R và dùng quan hệ này để so sánh các số. - Thành thạo tìm căn bậc hai của một số không âm bằng máy tính bỏ túi, trình bày khoa học chính xác. B. Chuẩn bị: GV: Bảng phụ ghi sẵn câu hỏi và bài tập định nghĩa, định lí, máy tính. HS: Ôn tập khái niệm về căn bậc hai (đại số 7); máy tính bỏ túi. C. Tiến trình dạy - học: 1. Tổ chức lớp: 9A 1 9A 2 2. Nội dung: Phần I: Ôn tập về Căn bậc hai Hằng đẳng thức 2 A A= I. Nhắc lại: 1. Định nghĩa căn bậc hai số học: ( ) 2 2 0x x a x a a = = = với ( ) 0a 2. Hằng đẳng thức 2 A A A A = = II. Bài tập: 1. Bài 1: Tìm những khẳng định đúng trong các khẳng định sau: a, Căn bậc hai của 0, 81 là 0,9. b, Căn bậc hai của 0, 81 là 0,9. c, 0,81 = 0,9. d, Căn bậc hai số học của 0, 81 là 0,9. e, Số âm không có căn bậc hai. f, 0,81 =- 0,9. nếu A 0 nếu A < 0 Vậy các khẳng định đúng là: b, d, e. 2. Bài 2: Rút gọn biểu thúc sau: a, ( ) ( ) 2 2 3 1 3 1 3 2 + + = 3 1 3 1 3 2 + + 3 1 3 1 3 2= + 3 2 2= b, ( ) 2 9 4 5 5 1 + + = 5 4 5 4 5 1 + + + = ( ) 2 2 5 2. 5.2 2 5 1 + + + = ( ) 2 5 2 5 1 + + = 5 2 5 1 + + = 5 2 + 5 1+ =2 5 1 c, 25 49 2 16+ d, 2 5 5 x x + = ( ) ( ) 5 . 5 5 x x x + + = 5x e, 2 x - 4 + 16 8x x + = ( ) 2 x - 4 + 4 x = x - 4 + 4 x = x - 4 + 4 - x x - 4 + x - 4 = 0 2x - 8 3. Bài 3: Giải phơng trình vô tỉ: a, ( ) 2 2 5x = 2 5x = 2 5 2 5 x x = = 7 3 x x = = Vậy phơng trình có 2 nghiệm x 1 = 7; x 2 = -3 b, 2 6 9 10x x + = ( ) 2 3 10x = 3 10x = 3 10 3 10 x x = = 13 7 x x = = Vậy phơng trình có 2 nghiệm x 1 = 13; x 2 = -7 Phần II: Luyện tập về Hệ thức lợng trong tam giác vuông I. Lí thuyết : Hệ thức lợng trong tam giác vuông Cho ABC vuông tại A đờng cao AH với các kí hiệu qui ớc nh hình vẽ 1. 2 . 'b a b= 2 . 'c a c = 2. 2 '. 'h b c = 3. . .a h b c = 4. 2 2 2 1 1 1 h b c = + II. Bài tập: 1. Bài tập 1: +) Xét ABC vuông tại A Ta có: BC 2 = AB 2 + AC 2 ( đ/l Pytago) y 2 = 7 2 + 9 2 = 130 y = 130 +) áp dụng hệ thức liên hệ giữa cạnh và đờng cao ta có: AB . AC = BC . AH ( đ/lí 3) AH = 130 63 130 97 BC ACAB == x = 130 63 2. Bài tập 2: GT ABC ( à A = 90 0 ) AH BC, AH = 16 ; BH = 25 KL a) Tính AB , AC , BC , CH b) AB = 12 ;BH = 6 Tính AH , AC , BC , CH Giải : a) +) Xét AHB ( à H = 90 0 ) Ta có: 2 2 2 AB = AH + BH (Định lí Pytago) 2 2 2 AB = 16 + 25 2 AB = 256 + 625 = 881 AB = 881 29,68 +) áp dụng hệ thức liên hệ giữa cạnh và đờng cao trong ABC vuông tại A ta có : 2 AB = BC.BH BC = == 25 881 BH AB 2 35,24 Lại có : CH = BC - BH = 35,24 - 25 CH = 10,24 Mà AC 2 = BC . CH =35,24 . 10,24 = 360,8576 AC = 360,8576 18,99 b) Xét AHB ( à H = 90 0 ) Ta có: 2 2 2 AB = AH + BH (Đ/lí Pytago) 2 2 2 AH = AB - BH 2 2 2 AH = 12 - 6 = 144 - 36 = 108 2 AH = 108 AH = 108 10,39 Theo hệ thức liên hệ giữa cạnh và đờng cao trong tam giác vuông ta có : AB 2 = BC.BH (Đ/lí 1) BC = == 6 12 BH AB 22 24 Có HC = BC - BH = 24 - 6 = 18 Mà 2 AC = CH.BC ( Đ/L 1) AC 2 = 18.24 = 432 AC = 432 20,78 HDHT : - Tiếp tục ôn tập về định nghĩa, tính chất của căn thức bậc hai; các phép biến đổi căn thức bậc hai - Ôn tập định lí Pytago và các hệ thức lợng trong tam giác vuông. Bài 2: Các phép biến đổi biểu thức chứa căn thức bậc hai. (T 1 ) Luyện tập về Hệ thức lợng trong tam giác vuông (T 2 ) Soạn: 3/10/2008 Dạy: 11/10/2008 A. Mục tiêu: - Luyện tập cho học sinh các phép tính, các phép biến đổi về căn bậc hai. - Thành thạo tìm căn bậc hai của một số không âm bằng máy tính bỏ túi, trình bày khoa học chính xác. - Vận dụng các phép biến đổi CBH vào thực hiện rút gọn biểu thức B. Chuẩn bị: GV: Bảng phụ ghi sẵn câu hỏi và bài tập, máy tính. HS: Ôn tập các phép tính, các phép biến đổi về căn bậc hai; máy tính bỏ túi. C. Tiến trình dạy - học: 1. Tổ chức lớp: 9A 1 9A 2 2. Nội dung: Phần I Các phép biến đổi biểu thức chứa căn thức bậc hai. 1. Bài1: H y chọn đáp án đúng? Nếu sai h y sửa lại cho đúng?ã ã Câu Khẳng định Đ S Sửa 1 Căn bậc hai số học của 25 là 5 S 25 5= 2 4925 = xx khi x = 8 Đ 3 = +13 2 13 Đ 4 yxyx .24 2 = với x < 0 và y > 0 S 2 4 2 .x y x y= với x < 0 và y > 0 5 2 35 32 5 = S 5 5. 3 5 3 6 2 3 2 3. 3 = = 6 36 64 36 64 100 10+ = + = = S 36 64 6 8 14+ = + = 2. Bài 2: Rút gọn biểu thức. a, xxx 16259 + (với 0x ) b, 5004552 + c, ( ) 6632.232712 ++ d, 13 1 13 1 + + Giải: Ta có: a, xxx 16259 + (với 0x ) b, 5004552 + = 2 2 2 3 5 4x x x+ = 2 2 2 5 3 .5 10 .5+ = 3 5 4x x x+ = 2 5 3 5 10 5+ = 4 x = 5 5 c, ( ) 6632.232712 ++ d, 13 1 13 1 + + = 12.2 3 27.2 3 3 2.2 3 6 6+ + = ( ) ( ) ( ) ( ) 1. 3 1 1. 3 1 3 1 . 3 1 + + + = 2 36 2 81 6 6 6 6+ + = ( ) 2 2 3 1 3 1 3 1 + + = 2.6 2.9 12 18 30 + = + = = 2 3 3 2 = 3. Bài 3: So sánh 1 2007 2006 và 1 2008 2007 Giải: Ta có: 1 2007 2006 = ( ) ( ) ( ) 1. 2007 2006 2007 2006 . 2007 2006 + + = 2007 2006+ 1 2008 2007 = ( ) ( ) ( ) 1. 2008 2007 2008 2007 . 2008 2007 + + = 2008 2007+ Mà 2007 2006+ < 2008 2007+ 1 2007 2006 < 1 2008 2007 Phần II : Luyện tập về Hệ thức lợng trong tam giác vuông 1. Bài tập 1: GT 5 6 AB AC = AH = 30 cm KL Tính HB , HC Giải: - Xét ABH và CAH Có ã ã 0 90AHB AHC= = ã ã ABH CAH= (cùng phụ với góc ã BAH ) ABH CAH (g.g) AB AH CA CH = 5 30 6 CH = 30.6 36 5 CH = = m +) Mặt khác BH.CH = AH 2 ( Đ/L 2) BH = 25 36 30 CH AH 22 == ( cm ) Vậy BH = 25 cm ; HC = 36 (cm ) HDHT : Tiếp tục ôn tập về định nghĩa, tính chất của căn thức bậc hai; các phép biến đổi căn thức bậc hai và các hệ thức lợng trong tam giác vuông. Bài 3: Các phép biến đổi biểu thức chứa căn thức bậc hai. (T 2 ) Luyện tập về Hệ thức giữa cạnh và góc trong tam giác vuông (T 1 ) Soạn: 10/10/2008 Dạy: 18+19/10/2008 A. Mục tiêu: - Luyện tập cho học sinh các phép tính, các phép biến đổi về căn bậc hai. - Thành thạo tìm căn bậc hai của một số không âm bằng máy tính bỏ túi, trình bày khoa học chính xác. - Vận dụng các phép biến đổi CBH vào thực hiện rút gọn biểu thức - Rèn luyện cho học sinh cách giải tam giác vuông kĩ năng tính toán và vận dụng các công thức linh hoạt chính xác. 5 6 AB AC = S B. Chuẩn bị: GV: Bảng phụ ghi sẵn câu hỏi và bài tập, máy tính. HS: Ôn tập các phép tính, các phép biến đổi về căn bậc hai; máy tính bỏ túi. C.Tiến trình dạy - học: 1. Tổ chức lớp: 9A 1 9A 2 2. Nội dung: Phần I Các phép biến đổi biểu thức chứa căn thức bậc hai. 1. Bài 1: Rút gọn biểu thức: a, ( ) 2 50 3 450 4 200 : 10+ c, 2 2 3 1 3 1 + b, ( ) ( ) ( ) 2 2 2 . 5 2 3 2 5 d, 5 5 5 5 5 5 5 5 + + + e, a a a a a a a a + + + ( với a > 0; a 1) Giải: a, ( ) 2 50 3 450 4 200 : 10+ c, 2 2 3 1 3 1 + + = 2 50 3 450 4 200 10 10 10 + = ( ) ( ) ( ) ( ) 2. 3 1 2. 3 1 3 1 . 3 1 + + + = 2 5 3 45 4 20+ = ( ) 2 2 3 2 2 3 2 3 1 + + = 2 2 2 5 3 3 .5 4 2 .5+ = 4 3 3 1 = 2 5 9 5 8 5+ = 3 5 = 4 3 2 3 2 = b, ( ) ( ) ( ) 2 2 2 . 5 2 3 2 5 d, 5 5 5 5 5 5 5 5 + + + = 10 2 10 18 30 2 25 + + = ( ) ( ) ( ) ( ) ( ) ( ) 5 5 . 5 5 5 5 . 5 5 5 5 . 5 5 + + + + = 20 2 33 = ( ) 2 2 25 10 5 5 25 10 5 5 5 5 + + + + = 60 3 20 = 2. Bài 2: Tìm x biết: a) 3 5x = b) 2 1 7x = Giải: a) 3 5x = 3 b) 2 1 7x = Điều kiện x 3 0 x 3 Điều kiện 2x 1 0 x 1 2 ( ) 2 2 3 5x = ( ) 2 2 2 1 7x = 3 25x = 2 1 49x = 28x = (tmđ/k) 2 50x = 25x = (tmđ/k) Phần II : Luyện tập về Hệ thức lợng trong tam giác vuông Bài tập: Cho ABC ABC vuông ở A có AB = 6cm, AC = 8cm. Từ A kẻ đờng cao AH xuống cạnh BC a) Tính BC, AH b) Tính à C c) Kẻ đờng phân giác AP của ã BAC ( P BC ). Từ P kẻ PE và PF lần lợt vuông góc với AB và AC. Hỏi tứ giác AEPF là hình gì ? Giải: a) Xét ABC vuông tại A Ta có: 2 2 2 BC =AB + AC ( đ/l Pytogo) 2 2 2 BC = 6 + 8 = 36 + 64 = 100 BC = 10cm +) Vì AH BC (gt) AB.AC = AH.BC . 6.8 AH = 4,8 10 AB AC BC = = b) Ta có: 6 sinC = 0,6 10 AB BC = à C 37 0 c) Xét tứ giác AEPF có: ã BAC = ã AEP = ã 0 90AFP = (1) Mà APE vuông cân tại E AE = EP (2) Từ (1); (2) Tứ giác AEPF là hình vuông HDHT : Tiếp tục ôn tập về căn thức bậc hai; các phép biến đổi căn thức bậc hai và các kiến thức có liên quan tới hệ thức giữa cạnh và góc trong tam giác vuông, cách giải tam giác vuông. Bài tập về nhà: Rút gọn biểu thức: (4đ) a, 9 25 16x x x + (với 0x ) b, 5004552 + c, ( ) 2 2 3 - 25 3 + 3 d, 1 1 2 2 3 2 2 3 + Bài 4: Luyện tập rút gọn biểu thức chứa căn thức bậc hai (T 1 ) Luyện tập về Hệ thức giữa cạnh và góc trong tam giác vuông (T 2 ) Soạn: 16/10/2008 Dạy: 25+26/10/2008 A. Mục tiêu: - Luyện tập cho học sinh các phép tính, các phép biến đổi về căn bậc hai. - Thành thạo biến đổi rút gọn biểu thức chức căn thức bậc hai trình bày bài khoa học. - Vận dụng các phép biến đổi CBH vào thực hiện rút gọn biểu thức cũng nh kĩ năng vẽ hình tính toán và trình bày lời giải hình học. B. Chuẩn bị: GV: Bảng phụ ghi sẵn câu hỏi và bài tập, máy tính. HS: Ôn tập các phép tính, các phép biến đổi về căn bậc hai; máy tính bỏ túi. C. Tiến trình dạy - học: 1. Tổ chức lớp: 9A 1 9A 2 2. Nội dung : Phần I: Luyện tập rút gọn biểu thức chứa căn thức bậc hai (T 1 ) 1. Bài 1: H y điền chữ đúng (Đ) hoặc sai (S) vào ô trồng để đã ợc khẳng định đúng. (3đ) Câu Khẳng định Đ S 1 Căn bậc hai số học của 64 là 8 2 25 9 8x x = khi x = 8 3 = +13 2 13 4 yxyx .24 2 = với x > 0 và y > 0 5 2 35 32 5 = 6 25 16 25 16 9 3 = = = 2. Bài 2: Giải phơng trình: a) 2 6 9 10x x+ + = b) 12 18 8 27x x+ = + Giải: a) 2 6 9 10x x+ + = b) 12 18 8 27x x+ = + ( ) 2 3 10x = 12 8 27 18x x = 3 10x = 2 2 2 2 2 .3 2 .2 3 .3 3 .2x x = 3 10 3 10 x x = = 2 3 2 2 3 3 3 2x x = 13 7 x x = = ( ) ( ) 2 3 2 3. 3 2x = 3 2 x = 3. Bài 3: Rút gọn biểu thức: a, A = a a a a a a a a + + + ( với a > 0; a 1) = ( ) ( ) ( ) ( ) 2 2 . a a a a a a a a + + + = ( ) 2 2 2 2 2 2a a a a a a a a a a + + + + = 2 2 2 2a a a a + = ( ) ( ) 2 . 1 . 1 a a a a + = ( ) ( ) 2 1 1 a a + Vậy A = ( ) ( ) 2 1 1 a a + b, B = 1 . 1 1 1 a a a a a a + + ữ ữ ữ ữ + ( với a > 0; a 1) Ta có: B = ( ) ( ) . 1 . 1 1 . 1 1 1 a a a a a a + ữ ữ + ữ ữ + = ( ) ( ) 1 . 1a a+ = ( ) 2 1 a = 1 - a Vậy B = 1 - a 4. Bài 4: ( Đề thi vào THPT năm học 2006 - 2007) Cho biểu thức: 3 1 4 4 4 2 2 a a a P a a a + = + + ( với a > 0; a 4) a, Rút gọn biểu thức P b, Tính giá trị biểu thức P khi a = 9 Giải: a, Ta có: 3 1 4 4 4 2 2 a a a P a a a + = + + ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 . 2 1 . 2 4 4 2 . 2 a a a a a a a + + = + ( ) ( ) 3 2 6 2 2 4 4 2 . 2 a a a a a a a a a + + + + + + = + [...]... bằng phơng pháp thế, và một số bài toán có liên quan đến hệ phơng trình bậc nhất hai ẩn đã chữa Tuần 19 Bài 13: luyện tập giải hệ phơng trình bằng phơng pháp thế Một số bài toán liên quan đến giải hệ phơng trình Soạn: 5/1/20 09 Dạy: 9/ 1/20 09 A Mục tiêu: - Luyện tập cho học sinh thành thạo giải hệ phơng trình bằng phơng pháp thế và một số bài toán có liên quan đến việc giải hệ phơng trìnhbậc nhất hai ẩn... 99 4 3ax ( b + 1) y = 93 bx + 4ay = 3 a) Tìm giá trị của a và b để hệ phơng trình có nghiệm là ( x; y ) = ( 1; -5) b) Tìm các giá trị của a; b để hai đờng thẳng ( d1) : ( 3a 1) x + 2by = 56 và (d2) : 1 ax ( 3b 2 ) y = 3 cắt nhau tại 1 điểm M ( 2; -5) 2 Giải: 3ax ( b + 1) y = 93 bx + 4ay = 3 a) Vì hệ phơng trình có nghiệm là ( x; y ) = ( 1; -5) 3a.1 ( b + 1) ( 5 ) = 93 3a + 5b + 5 = 93 ... B, D thẳng hàng b)OO// CD Giải: a) - Xét ABC có OA = OB = OC = R = ABC vuông tại B ã ABC = 90 0 - Xét ABD có OA = OB = OD = r = 1 AC 2 1 AD 2 ABD vuông tại B ã ABD = 90 0 ã Mà CBD = ã ABC + ã ABD 0 ã ã CBD = 90 + 90 0 CBD = 1800 b) Vậy 3 điểm C, B, D thẳng hàng Vì 3 điểm C, B, D thẳng hàng (cmt) Mà ã ABC = 90 0 ( cmt) AB BC AB CD (1) Mặt khác 2 đờng tròn (O; R) và(O, r) cắt nhau tại A và B OO... 6+4 2 ( 3 2 2 2 ) 2 8 2 = 8 2 98 Phần II: ( 7 4 3 ) ( 7 + 4 3 ) 72 4 3 = ( 3 2 2 ) ( 3 + 2 2 ) 49 48 = 1 = 1 ( ) 2 Ôn tập chơng II ( hình học ) Bài 73: (SBT-1 39) GT : ( O ) và ( O ') tiếp xúc ngoài tại A d là tiếp tuyến chung trong của 2 đờng tròn CD là tiếp tuyến chung ngoài của ( O ) và ( O ') (D ( O ') , C ( O ) ) cắt d tại M ã KL : a) Tính số đo CAD ã b) OMO ' = 90 0 c) CD là tiếp tuyến của dờng... Soạn: 25/11/2008 Dạy: 29+ 30/11/2008 A Mục tiêu: - Luyện tập cho học sinh vận dụng điều kiện để 2 đờng thẳng song song , cắt nhau, trùng nhau, vuông góc với nhau làm bài tập liên quan về vị trí tơng đối của 2 đờng thẳng, tính chất của tiếp tuyến, cách chứng minh 1 đờng thẳng là tiếp tuyến của đờng tròn - Rèn luyện kĩ năng vận dụng lí thuyết vào giải các bài tập có liên quan nhanh, chính xác, vẽ hình,... dụng lí thuyết vào giải các bài tập có liên quan nhanh, chính xác, vẽ hình, trình bày lời giải khoa học B Chuẩn bị: GV: Bảng phụ ghi sẵn câu hỏi và bài tập, máy tính , thớc kẻ, com pa HS: Ôn tập về các phép biến đổi căn thức bậc hai, tính chất của hai tiếp tuyến cắt Bài 10: nhau, thớc kẻ, com pa C Tiến trình dạy - học: 1 Tổ chức lớp: 2 Nội dung: 9A1 Phần I: 9A2 Ôn tập về biến đổi căn thức bậc hai 1 Bài... DK CD (K ) Giải: KL AH = BK CH CD H (gt) +) Xét tứ giác CHKD có CH // DK DK CD K (gt) Tứ giác CHKD là hình thang vuông +) Kẻ OM CD MC = MD (1) (AH // BK cùng CD) +) Xét hình thang vuông CHKD có OA = OB = R và OM // AH // BK (Cùng CD) MO là đờng trung bình của hình thang CHKD OH = OK (2) Từ (1) và (2) suy ra OA OH = OB OK AH = BK (đpcm) 2 Bài tập: GT Cho (O; R) và(O,r) cắt nhau tại...= = ( 4 a +8 4 ( )( a +2 ( a 2 a +2 )( a +2 Vậy P = ) a 2 ) = ) 4 a 2 4 a 2 b, Thay a = 9 vào biểu thức P ta đợc: P= 4 4 = =4 9 2 3 2 Vậy khi a = 9 thì P = 4 Luyện tập về Hệ thức giữa cạnh và góc trong tam giác vuông (T 2) 1 Bài 1: Tính giá trị biểu thức: P = sin 2 + tg 2 cos cot g 2 khi = 300 Thay = 300 vào biểu... + 9 = 8m 8 2 4m + 12m + 9 = 8m + 8 4m 2 + 4m + 17 = 0 2 4m + 20m + 1 = 0 HDHT: +) Tiếp tục ôn tập về điều kiện để đồ thị của hàm số bậc nhất đi qua 1 điểm, điều kiện để 2 đờng thẳng song song, cắt nhau, trùng nhau, cách vẽ đồ thị hàm số bậc nhất y = ax + b +) Ôn tập về định nghĩa và tính chất tiếp tuyến của đờng tròn và liên hệ giữa R; r; d với vị trí tơng đối của 2 đờng tròn Tuần 15 Bài 9: ... biến số; cách xác định giao điểm của đồ thị hàm số với các trục toạ độ và vẽ đồ thị của hàm số trên trình bày bài khoa học - Vận dụng và rèn kĩ năng vẽ hình và trình bày lời giải hình học B Chuẩn bị: GV: Bảng phụ ghi sẵn câu hỏi và bài tập, máy tính , thớc kẻ, com pa HS: Ôn tập về định nghĩa, tính chất của hàm số bậc nhất, thớc kẻ, com pa C Tiến trình dạy - học: 1 Tổ chức lớp: 9A1 9A2 2 Nội dung: Phần . bậc hai của 0, 81 là 0 ,9. b, Căn bậc hai của 0, 81 là 0 ,9. c, 0,81 = 0 ,9. d, Căn bậc hai số học của 0, 81 là 0 ,9. e, Số âm không có căn bậc hai. f, 0,81 =- 0 ,9. nếu A 0 nếu A <. = 360,8576 18 ,99 b) Xét AHB ( à H = 90 0 ) Ta có: 2 2 2 AB = AH + BH (Đ/lí Pytago) 2 2 2 AH = AB - BH 2 2 2 AH = 12 - 6 = 144 - 36 = 108 2 AH = 108 AH = 108 10, 39 Theo hệ. (T 1 ) Soạn: 29/ 9/2008 Dạy: 4/10/2008 A. Mục tiêu: - HS nắm đợc định nghĩa và kí hiệu về căn bậc hai số học của một số không âm. - Biết đợc mối liên hệ của phép khai phơng với quan hệ thứ tự

Ngày đăng: 02/11/2014, 19:00

HÌNH ẢNH LIÊN QUAN

2  đồ thị hàm số  y = (2k +1)x + k - 2  vuông góc với đờng thẳng  y = 1 - Giao an day them toan 9
2 đồ thị hàm số y = (2k +1)x + k - 2 vuông góc với đờng thẳng y = 1 (Trang 25)
Đồ thị hàm số  y x = 2   (P) là một Parabol có bề lõm quay xuống dới và đi qua các điểm  có toạ độ O (0; 0);  A  ( )1;1 ; A’  ( − 1;1 ) ;  B  ( )2; 4 ; B’  ( − 2; 4 )  ; C  ( )3;9 ; C’  ( − 3;9 ) - Giao an day them toan 9
th ị hàm số y x = 2 (P) là một Parabol có bề lõm quay xuống dới và đi qua các điểm có toạ độ O (0; 0); A ( )1;1 ; A’ ( − 1;1 ) ; B ( )2; 4 ; B’ ( − 2; 4 ) ; C ( )3;9 ; C’ ( − 3;9 ) (Trang 63)
Đồ thị hàm số  y x = 2   (P) là một Parabol có bề lõm quay xuống dới và đi qua các điểm  có toạ độ O (0; 0);  B’  ( )1;1 ; B ( − 1;1 ) ;  A  ( )2; 4 ; A’  ( − 2; 4 )  ; - Giao an day them toan 9
th ị hàm số y x = 2 (P) là một Parabol có bề lõm quay xuống dới và đi qua các điểm có toạ độ O (0; 0); B’ ( )1;1 ; B ( − 1;1 ) ; A ( )2; 4 ; A’ ( − 2; 4 ) ; (Trang 63)
Đồ thị hàm số   2 - Giao an day them toan 9
th ị hàm số 2 (Trang 64)
2  đồ thị hàm số  y = (m - 3)x  + m + 2   vuông góc với đờng thẳng  y= 2x -3 - Giao an day them toan 9
2 đồ thị hàm số y = (m - 3)x + m + 2 vuông góc với đờng thẳng y= 2x -3 (Trang 67)

TỪ KHÓA LIÊN QUAN

w