1. Trang chủ
  2. » Giáo án - Bài giảng

De Toan HKI Lop 11_danh cho lop chuyen chon

3 187 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 61,65 KB

Nội dung

1 ĐỀ ÔN TẬP HỌC KỲ I MÔN TOÁN LỚP 11 Năm học 2011 -2012 Câu I: a. Chứng minh phương trình sau có nghiệm 2 tan 23 x =− : sin5osx - 10xc+= b. Giải phương trình 2 2os3 - 18os.os3cxcxcx= c. Tìm GTLN, GTNN của y 22 4sin2sinx(83cos1)os2os66yxxcxcx=−+−++ Câu II: a. Giải phương trình 222 431xxx−=− b. Giải hệ phương trình bằng phương pháp lượng giác hoá 3 222 (54)32() ()2() xyxyyxy xyxyxy  −+=+   ++=+   Câu III: 1. Hỏi có thể lập được bao nhiêu số tự nhiên có 6 chữ số sao cho tổng các chữ số của mỗi chữ số là lẻ. 2. Tìm số hạng hữu tỉ trong khai triển 7 3 (163)− Câu IV: Cho hình chóp S.ABCD có đáy là một tứ giác lồi. Gọi M, N lần lượt là trung điểm của SC và CD. Gọi ( α ) là mặt phẳng qua M, N và song song với đường thẳng AC. a. Tìm giao tuyến của mp( α ) với mp(ABCD) b. Tìm giao điểm của đường thẳng SB với mp( α ). c. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng( α ). Đề số 1 (Tháng 12 năm 2011) NĐ Q 0982473363 2 ĐỀ ÔN TẬP HỌC KỲ I MÔN TOÁN LỚP 11 Năm học 2011 -2012 Câu I: a. Chứng minh phương trình sau có nghiệm 31 tan 2 31 x + = − : (13)sin(13)osx 2xc++−= b. Giải phương trình 3 sin10 5.os2.sin x cxx= c. Giải phương trình 3sin2os2x - 5sin + (23)os33 1 2os3 xcxcx cx −−++ = + d. Tìm GTLN, GTNN của y 5 sin3cosyxx=+ Câu II: a. Giải phương trình ( ) ( ) 2 2 2 2 2 1 1 1 2 21 x x x x xx + + +=+ − b. Giải hệ phương trình bằng phương pháp lượng giác hoá 22 2()(14)3 1 xyxy xy  −+=   +=   Câu III: 1. Hỏi có thể lập được bao nhiêu số tự nhiên có 6 chữ số sao cho chữ số đứng sau nhỏ hơn chữ số đứng trước. 2. Tìm hệ số lớn trong khai triển đa thức 12 ()(21)Pxx=+ Câu IV: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt thuộc cạnh SB, SC sao cho 21 , 32 == SMSN SBSC . 1.Tìm giao tuyến của hai mặt phẳng ()AMN và ()SBD , từ đó suy ra giao điểm P của SD và mặt phẳng ()AMN . 2.Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng ()AMN và chứng minh BD song song với thiết diện đó. Đề số 2 (Tháng 12 năm 2011) NĐ Q 0982473363 . chóp khi cắt bởi mặt phẳng( α ). Đề số 1 (Tháng 12 năm 2 011) NĐ Q 0982473363 2 ĐỀ ÔN TẬP HỌC KỲ I MÔN TOÁN LỚP 11 Năm học 2 011 -2012 Câu I: a. Chứng minh phương trình sau có. được bao nhiêu số tự nhiên có 6 chữ số sao cho tổng các chữ số của mỗi chữ số là lẻ. 2. Tìm số hạng hữu tỉ trong khai triển 7 3 (163)− Câu IV: Cho hình chóp S.ABCD có đáy là một tứ giác. 1 ĐỀ ÔN TẬP HỌC KỲ I MÔN TOÁN LỚP 11 Năm học 2 011 -2012 Câu I: a. Chứng minh phương trình sau có nghiệm 2 tan 23 x =− : sin5osx -

Ngày đăng: 01/11/2014, 04:00

TỪ KHÓA LIÊN QUAN

w