Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 189 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
189
Dung lượng
8,03 MB
Nội dung
Giáo án đại số 9 Năm học 2011- 2012 Ngày soạn: 12/8/2011 Ngày giảng: 15/8/2011 Ch ơng I : Căn bậc hai, căn bậc ba Tiết 1 Căn bậc hai A. Phần chuẩn bị. I.Mục tiêu. 1.Kiến thức: Hs nắm đợc định nghĩa, kí hiệu về căn bậc hai số học của số không âm. Biết đợc liên hệ của phép khai phơng với quan hệ thứ tự và dùng liên hệ này để so sánh các số. 2.Kĩ năng: biết vận dụng các kiến thức trên để làm bài tập có liên quan. 3.Thái độ: Thấy đợc ý nghĩa của phép khai phơng trong hình học. II.Chuẩn bị. 1. Giáo viên: Giáo án, bảng phụ, phiếu học tập ghi ?3, ?5. 2. Học sinh: Ôn lại kiến thức căn bậc hai đã học ơ lớp 7, sgk, dụng cụ học tập. B. Phần lên lớp. I. ổn định tổ chức. (1) Kiểm tra sĩ số II. Kiểm tra bài cũ. (7) 1) Câu hỏi. a. Em hãy nhắc lại căn bậc hai của một số không âm a? b. Tìm căn bậc hai số học của mỗi số sau. 9; 4 9 ; 0,25; 2 2) Đáp án: a. Căn bậc hai của một số a không âm là số x sao cho x 2 = a. b. Căn bậc hai của 9 là 3 và - 3. Căn bậc hai của 4 9 là 2 3 và - 2 3 . Căn bậc hai của 0,25 là 0,5 và - 0,5. Căn bậc hai của 2 là 2 và - 2 . Hs theo dõi nhận xét, gv nhận xét cho điểm. III. Dạy bài mới. (1) Ta đã rất quen thuộc với phép toán bình phơng vậy phép toán ngợc với phép toán bình phơng là phép tóan nào? Để trả lời câu hỏi đó ta sẽ nghiên cứu trong bài hôm nay. Hoạt động của giáo viên và hs Học sinh ghi GV Các số 3; 2 3 ; 0,5; 2 gọi là các căn bậc hai số học của 9; 4 9 ; 0,25; 2 1. Căn bậc hai số học. 10 ? Vậy căn bậc hai số học của một số dơng a là gì? Số 0 có đợc gọi là căn bậc hai số học của 0 không? *) Định nghĩa.(SGK - 5) ? Tìm căn bậc hai số học của 16 và 3? VD1: Căn bậc hai số học của 16 là 16 (= 4). Căn bậc hai số học của 3 là 3 1 Giáo án đại số 9 Năm học 2011- 2012 G Giới thiệu phần chú ý. *) Chú ý (SGK Tr 4). ? Từ chú ý trên ta có thể biểu diễn dới dạng công thức toán học nh thế nào? Ta viết = = 2 x 0 x a x a G Tìm căn bậc hai số học của mỗi số sau: a) 49 b) 64 c) 81 d) 1,21 ?2 a) 49 7= vì 7 0 và 7 2 = 49. b) 64 8= vì 8 0 và 8 2 = 64 c) 81 9= vì 9 0 và 9 2 = 81 ? Căn cứ vào lời giải mẫu các em hãy làm bài tập trên trong 2 sau đó trả lời. d) 1,21 1,1= vì 1,1 0 và 1,2 2 = 1,21 G Phép toán tìm căn bậc hai số học của một số không âm gọi là phép khai phơng. ? H Khi biết căn bậc hai số học của một số ta có xác định đợc căn bậc hai của một số hay không? Cho ví dụ Khi biết căn bậc hai số học của một số, ta có thể rễ dàng xác định đợc căn bậc hai của nó. VD: CBHSH của 36 là 6 nên 36 có các căn bậc hai là 6 và -6. G H Tìm các căn bậc hai số học của các số sau: 64; 81; 1,21. CBHSH của 64 là 8 nên 64 có các căn bậc hai là 8 và -8. CBHSH của 81 là 9 nên 81 có các căn bậc hai là 9 và - 9. CBHSH của 1,21 là 1,1 nên 1,21 có các căn bậc hai là 1,1 và - 1,1. G Ta đã biết với hai số a, b không âm, nếu a < b thì a b< 2) So sánh các căn bậc hai số học.( 14) G Ta có thể chứng minh đợc với hai số a, b không âm, nếu a b< thì a < b ? Từ hai kết quả trên hãy phát biểu thành một mệnh đề toán học? *) Định lý. với hai số a, b không âm ta có: a < b a b< G Cho học sinh nghiên cứu ví dụ 2 trong 2. ? So sánh: a) 4 và 15 ; b) 11 và 3 a) 16 > 15 nên 16 15> vậy 4> 15 . 2 Giáo án đại số 9 Năm học 2011- 2012 b) 11 > 9 nên 11 9> vậy 11 >3 IV. Củng cố: 10. GV tổ chức cho hs hoạt động theo nhóm Bài tập tìm số x không âm biết: a) x 1> b) x 3< c) x 15= d) x 2< Sau 2 các nhóm báo cáo kết quả a) 1 = 1 nên x 1> có nghĩa là x 1> . Với x 0, ta có x 1> x > 1 vậy x > 1. b) 3 = 9 , nên x 3< có nghĩa là x 9< với x 0, ta có x 9< x < 9 vậy 0 x < 9. c) Ta có x = 15 2 . vậy x = 225. d) Với x 0, ta có x 2< x < 2 vậy 0 x < 2 Bài 2/6. So sánh: a/ 2 và 3 b/ 6 và 41 c/ 7 và 47 Gv cho hs thảo luận nhóm theo bàn làm vào phiếu học tập, y/c 3 nhóm lên trình bày nhanh, gv thu bài của vài nhóm để kiểm tra. a/ Theo đ/lí về so sánh các căn bậc hai số học ta có: 2 = 4 , ta có 4 3> vậy 2 < 4 b/ 6 = 36 , ta có 36 41< vậy 6 < 41 c/ 7 = 49 , ta có 49 47> vậy 7 < 49 V. H ớng dẫn học ở nhà . (2) - Học theo sách giáo khoa và vở ghi về đ/n, kí hiệu, đ/li so sánh các căn bậc hai. - Xem lại các ví dụ và bài tập đã làm. - Làm các bài tập: 1,,3,4,5 (SGK Tr6,7). - Đọc phần có thể em cha biết để hiểu thêm về mối liên quan mật thiết giữa hình học và đại số. Hớng dẫn bài 3/6. Nghiệm của phơng trình x 2 =a (a 0) là các căn bậc hai của a. 3 Giáo án đại số 9 Năm học 2011- 2012 Ngày soạn: 14/8/2011 Ngày giảng: 17/11/2011 Tiết 2 Căn thức bậc hai và hằng đẳng thức 2 A A= A. Phần chuẩn bị. I. Mục tiêu. 1.Kiến thức: Biết cách tìm điều kiện xác định (hay điều kiện có nghĩa) của A và có kĩ năng thực hiện điều đó khi biểu thức A không phức tạp (bậc nhất, phân thức mà tử hoặc mẫu là bậc nhất còn mẫu hay tử còn lại là hằng số hoặc bậc nhất, bậc hai dạng a 2 + m hay (a 2 + m) khi m dơng. Biết cách chứng minh định lý 2 a a= và biết vận dụng hằng đẳng thức 2 A A= để rút gọn biểu thức. 2.Kĩ năng: bớc đầu rèn kí năng tìm ĐKXĐ (hay ĐK có nghĩa) của A và kĩ năng vận dụng hằng đẳng thức 2 A A= . 3.Thái độ: Rèn tính linh hoạt cẩn thận trong làm bài tập. II.Chuẩn bị. 1) Giáo viên: Giáo án, bảng phụ ghi ?1, ?3, phiếu học tập ghi bài 6/10 2) Học sinh: Ôn lại kiến thức cũ, sgk, dụng cụ học tập. B. Phần lên lớp . I. ổn định tổ chức. (1) Kiểm tra sĩ số. II.Kiểm tra bài cũ. (6) 1) Câu hỏi . 2 Hs lên làm bài tập. Hs 1: làm bài 4 a,b/7 Hs 2: làm bài3 a,d/6 2) Đáp án: Bài 4: a/ x =15 x = 15 2 . vậy x = 225 b/ 2 x = 14 x =7 x = 7 2 . vậy x=49 Bài 3: a/x 2 =2 x 1 = 2 và x 2 =- 2 vì x 2 1 = x 2 =2; x 2 2 =(- x 2 )=2 Dùng máy tính tính đợc: x 1 1,414 ; x 2 -1,414 d/x 2 =4,12 x 1 = 4,12 ; x 2 =- 4,12 vì x 1 2 = 4,12 2 =4,12 ; x 2 2 =(- 4,12 ) 2 =4,12 Dùng máy tính tính đợc: x 1 =2,029 ; x 2 =-2,029 Hs theo dõi, nhận xét. Gv nhận xét cho điểm. III. Dạy bài mới. (1) Trong bài học trớc ta đã đợc nghiên cứu về căn bậc hai số học của số không âm. vậy căn thức bậc hai là gì? và khi nào căn thức bậc hai xác định. Ta cùng đi tìm hiểu bài hôm nay. Hoạt động của giáo viên và hs Học sinh ghi 1. Căn thức bậc hai. (10) G Cho học sinh làm ?19(treo bảng phụ) Hình chữ nhật ABCD có đờng chéo AC = cm và cạnh BC = x (cm) thì cạnh AB = 2 25 x (cm) tại sao? ?1. 4 D A B C x 2 25 x 5 Giáo án đại số 9 Năm học 2011- 2012 Xét ABC vuông tại B, ta có AC 2 = AB 2 + BC 2 (định lý Pytago) AB 2 = 25 - x 2 . Do đó AB = 2 25 x G Ngời ta gọi 2 25 x là căn thức bậc hai của 25 - x 2 , còn 25 - x 2 là biểu thức lấy căn. ? Nếu ta gọi biểu thức 25 - x 2 là A thì ta có thể định nghĩa căn thức của A nh thế nào? *) Tổng quát. Với A là một biểu thức đại số, ngời ta gọi A là căn thức bậc hai của A, còn A đợc gọi là biểu thức lấy căn hay là biểu thức dới dấu căn. ? A xác định khi nào? A xác định (hay có nghĩa) khi A lấy giá trị không âm. ? a) 3x là căn thức bậc hai của biểu thức nào? a) 3x là căn thức bậc hai của 3x. b) 3x xác định khi nào? b) 3x xác định khi 3x 0 hay x 0 G Cho học sinh làm ?2. ?2. 5 2x xác định khi 5 - 2x 0 tức là x 2,5. G H Hoạt động nhóm làm bài tập sau với giá trị nào của a thì mỗi căn thức sau có nghĩa. a) a 3 ; b) 5a ; c) 4 a ;d) 3a 7+ a) a 3 có nghĩa khi a 3 0 a 0. b) 5a có nghĩa khi -5a 0 a < 0 c) 4 a có nghĩa khi 4 - a 0 a 4. d) 3a 7+ có nghĩa khi 3a + 7 0 a 7 3 G Cho học sinh nhận xét. 2. Hằng đẳng thức 2 A A= . (18) G Cho học sinh hoàn thiện ?3 trên bảng phụ. ?3. a -2 -1 0 2 3 a 2 4 1 0 4 9 2 a 2 1 0 2 3 5 Giáo án đại số 9 Năm học 2011- 2012 ? Qua bảng em có nhận xét gì về a và 2 a ? G Từ đó ta có định lý sau. *) Định lý. Với mọi số a, ta có 2 a = |a| ? ? ? H Hãy tính a) (|a|) 2 với a 0. b) (|a|) 2 với a < 0. Từ đó em rút ra kết luận gì? Khi nào xảy ra trờng hợp: Bình phơng 1 sổồi khai phơng kết quả đó thì lại đợc số ban đầu. Số đó là số không âm. Chứng minh Theo định nghĩa giá trị tuyệt đối ta có |a| 0. Nếu a 0 thì |a| = a, nên (|a|) 2 = a 2 Nếu a < 0 thì |a| = -a, nên (|a|) 2 = (-a) 2 = a 2 , vậy (|a|) 2 = a 2 với mọi a Hay 2 a = |a| ? H Vận dụng định lý hãy tính a) 2 12 ; b) 2 ( 7) a) 2 12 = |12| = 12 b) 2 ( 7) = |-7| = 7 G Vận dụng tính nhẩm nhanh: ( ) ( ) 2 2 0,1 ; 0,3 H G Nhẩm nhanh: 0,1 ; 0,3 Cta xét tiếp ví dụ sau: Hd phần a, hs tự làm phần b. +Ví dụ: Rút gọn: a. ( ) 2 2 1 Ta có: ( ) 2 2 1 2 1 2 1 = = (vì 2 1> ) Vậy ( ) 2 2 1 = 2 1 b. ( ) 2 2 5 Ta có: ( ) 2 2 5 2 5 5 2 = = ( vì 5 2> ) Vậy ( ) 2 2 5 = 5 2 G H TQ với A là biểu thức ta có 2 A A= Nếu A 0 thì 2 A = ? Nếu A<0 thì 2 A = ? A 0 thì 2 A = A =A A<0 thì 2 A = A =-A *Chú ý: A-biểu thức ta có: 2 A = A nghĩa là: 2 A =A nếu A 0 2 A =-A nếu A<0 6 Giáo án đại số 9 Năm học 2011- 2012 G Vận dụng rút gọn biểu thức sau: Ví dụ : rút gọn : a. ( ) ( ) 2 2 2 2 2x x x x = = b. 6 a với a<0 Có : 6 a ( ) 2 3 3 a a= = vì a<0 nên a 3 <0 do đó : 3 3 a a= . Vậy 6 a =-a 3 (a<0) IV. Củng cố: (7) G H G G H y/c hs làm bài 6/10 vào phiếu học tập. Hoạt động theo nhóm làm bài. Sau 3 y/c hs báo cáo kq. Thu phiếu vài nhóm để kiểm tra. Gọi 2 hs lên bảng làm. 2 hs lên làm phần a, d. Hs nhận xét, sửa sai (nếu có). .với giá trị nào của a thì mỗi căn sau có nghĩa. a. điều kiện 0 3 a do đó Vậy với a 0 thì 3 a có nghĩa. b. 5a có nghĩa khi -5a 0 tức là: a 0 c. a 4 d.a - 7 3 Bài 8/10: Rút gọn biểu thức: a. ( ) ( ) 2 2 3 2 3 2 3 2 3 = = > d. ( ) 2 3 2a với a<2 Ta có: ( ) 2 2 2 2a a a = = (vì a<2 2 0a < ) Vậy ( ) 2 3 2a =3(2 - a)=6 - 3a V. H ớng dẫn học ở nhà . 2 Học theo sách giáo khoa và vở ghi nắm chắc điều kiện xác định của căn và HĐT. Xem lại các ví dụ và bài tập đã làm. Làm các bài tập: 6cd, 7cd, 8bc, 9, 10, 11, 12, 13, 14/10+11 sgk. HD Bài 14: Để phân tích đa thức thành nhân tử ta sử dụng kết quả: 0a thì a= ( ) 2 a Chẳng hạn: x 2 - 3= ( ) ( ) 3 3x x+ vì 3= ( 3 ) 2 . Ngày soan: 19/8/2011 7 Giáo án đại số 9 Năm học 2011- 2012 Ngày giảng: 22/8/2011 Tiết 3 luyện tập A. Phần chuẩn bị. I. Mục tiêu: 1.Kiến thức: Rèn kỹ năng tìm đ/k của x để căn thức bậc hai có nghĩa, biết áp dụng hđt AA = 2 2.Kĩ năng: H đợc luyện về phép khai phơng để tính giá trị biểu thức số, phân tích đa thức thành nhân tử và giải phơng trình. 3.Thái độ: Cẩn thận trong tính toán. II. Chuẩn bị: 1. GV: - Bảng phụ ghi bài tập, bài giải mẫu, phiếu học tập. 2. HS: - Bảng nhóm,bút dạ, ôn các hằng đẳng thức,biểu diễn nghiệm trên trục số B. Phần lên lớp. I. ổn định tổ chức: (1) Kiểm tra sĩ số II.Kiểm tra bài cũ:(10') 1.Câu hỏi. HS1: tìm x để các căn thức có nghĩa 73 +x ; 2 4x ; 1 1 x HS2: rút gọn biểu thức 2 )32( ; 2 )113( ; 3 2 )2( a với a<2; 12 2 + xx HS3: tìm x biết 1216 2 =x : c/m 13324 = 2.Đáp án: HS1: 73 +x có nghĩa x - 3 7 3đ 2 4x có nghĩa xR 3đ 1 1 x có nghĩa x>1 4đ HS2: rút gọn biểu thức 32)32( 2 = 2đ 2 )113( = 311 2đ 3 2 )2( a =3(2-a) với a<2 2đ 12 2 + xx = 2 )1( x = 1x = HS 3: x=4 4đ 1313)13(324 2 === 6đ Hs theo dõi, nhận xét. Gv nhận xét cho điểm. III. Dạy bài mới ( Tổ chức luyện tập 31') 8 x-1 nếu x 1 2đ 1-x nếu x<1 2đ Giáo án đại số 9 Năm học 2011- 2012 G H G G H G G H G H G Hd chữa các bài tập 9, 10. Gọi 2 hs lên bảng trình bày lời giải bt 9ad và bài tập 10 a. 2 hs lên bảng trình bày bài tập. Gọi hs khác nhận xét bài làm của bạn. sửa sai (nếu có). Lu ý cho hs: ( ) ( ) 2 ; 0a a a= H/s giải tại lớp làm bài vào phiếu học tập. nêu thứ tự thực hiện các phép tính Đại diện nhóm lên trình bày, nhóm khác theo dõi, nhận xét. Yêu cầu hs HĐN làm vào bảng nhóm, thi đua giữa các nhóm. Hs làm vào bảng nhóm, nhóm nào làm xong trớc thì lên trình bày. Nhóm khác nhận xét. Gọi hs đứng tại chỗ trả lời nhanh bt 13a, b. Đứng tại chỗ trình bày nhanh. Hs hs làm nhanh bài tập 14 a Bài 9. Tìm x, biết: a. 2 7 7x x= = Vậy x1=7; x2=- 7 d. 2 9 12 3 12x x= = ta có: 3x =3x nếu x 0 3x =-3x nếu x<0 + 3x=12 x=4 + -3x=12 x=-4 Bài tập 10.Chứng minh. a. ( ) 2 3 1 4 2 3 = VT= 2 3 2 3 1 3 2 3 1 4 2 3 VP + = + = = Vậy: ( ) 2 3 1 4 2 3 = Bài tập 11 (sgk): Tính a, 49:19625.16 + =4.5 +14 : 2=22 b,36: 1318.3.2 2 =36:18-13=-11 c, 381 = d, 22 43 + =5 Bi 12. Tìm x để biểu thức có nghĩa a, )3)(2( = xx có nghĩa (x-2) (x+3)0 03 02 x x hoặc 03 02 x x x 3 hoặc x 2 Bi 13. Rút gọn biểu thức. a,2 aa 5 2 + =-2a +5a =3a với a<0 b, 24 39 aa + =6a2 Bi 14. Phân tích thành nhân tử a, 2 x -3= ( ) ( ) ( ) 2 2 3 3 3x x x = + IV. Củng cố: (2') 9 Giáo án đại số 9 Năm học 2011- 2012 Gv nhấn mạnh thêm cho hs: x 2 =a x= a và ( ) 2 a a= ( ) 0a 2 a a= V. H ớng dẫn về nhà (1) - Xem lại các bài tập đã chữa, làm tiếp các bài tập còn lại của các bài 11, 12, 13, 14, 15, 16/11+12 sgk. - HD bài 15: Làm theo 2 cách: C1: Đa về x 2 =5 x 1 , x 2 =? C2: Biến đổi thành x 2 - ( ) 2 5 đa về Pt tích. Ngày soạn: 21/8/2011 Ngày giảng: 24/8/2011 Tiết 4 Liên hệ giữa phép nhân và phép khai phơng A.Phn chun b: I.Mc tiờu: 1.Kin thc: Nm c ni dung v cỏch chng minh /lớ v liờn h gia phộp nhõn v phộp khai phng. 2.K nng: Cú k nng dựng cỏc quy tc khai phng mt tớch v nhõn cỏc cn thc bc hai trong tớnh toỏn v bin i biu thc. 3.Thỏi : Cn thn, linh hot trong hot ng nhúm. II.Chun b: Gv: Sgk, G/a, dung dy hc. Hs: Chun b bi c, bng nhúm. B. Phần lên lớp. I. ổn định tổ chức. (1) Kiểm tra sĩ số. II. Bi c: (o) III. Bi mi: (1) ti t tr c thụng qua ng th c 2 ( )a a= ( 0)a ta th y c mlh gi a phộp khai ph ng v phộp bỡnh ph ng. v y gi a phộp khai ph ng v phộp nhõn cú mlh n o? Chỳng ta tỡm hi u b i hụm nay. Hot ng ca Gv v Hs Ghi bng ? H ? Tớnh v so sỏnh: 16.25 v 16 25 16.25 = 2 400 20 20= = 16 25 = 4.5 = 20 vy 16.25 = 16 25 Nxột gỡ v s cn bc hai ca 1 tớch v tớch cỏc cn bc hai. bng nhau 1.nh lớ : (15) G ? H G Tquỏt ta cú : .a b a b= Hóy chng minh /lớ Suy ngh cỏch c/m. gi ý: *nh lớ: vi a, b 0 ta cú: .a b a b= CM 10 [...]... )( a b ) = a + b ( a + b )( a b ) = a a a b +a b b a ( a )2 ( b ) 2 a(a b) = a ab a + ab a( a b) = = a Ngoài cách này em nào còn có cách c2 : a+ b a b khác nhanh hơn Đối với bài toán rút gọn có nhiều cách, các em có thể chọn cách nào nhanh và Rụ hiểu Bài tập 54 các em làm tơng tự nh bài = G G G 31 Giáo án đại số 9 Năm học 2011- 2012 53 G G G ? G G II Phân tích thành nhân tử Cho học sinh hoạt động... Sau 3 y/c 1 nhúm em bng nhúm Bi 25/16 Tỡm x, bit: b 4x = 5 lờn trỡnh by Nhúm khỏc nhn xột 4x = 5 Gv un nn v cht li theo 2 cỏch G 2 5 4 9 ( x 1) = 21 x= 1,25 9(x-1)=212 x-1=441:9 x-1=49 x=50 Hd nhanh phn a So sỏnh trc tip bng kt qu phn b: so sỏnh a + b v a + b ta a v so sỏnh a+b v ( a + b )2 Bi 26/16 ng ti ch trỡnh by theo hd ca gv a.so sỏnh: 25 + 9 v 25 + 9 cht: õy l cỏch so sỏnh 2 s bng 25 +... 2 c 3 ab a < 0, b 0 2 4 3 = ab 2 2 4 ab 9 + 12a + 4a 2 b2 H G ( ab ) 2 2 = ab 2 3 ab 2 3 = = 3 ab 2 ab 2 a 1,5, b < 0 2 9 + 12a + 4a 3 + 2 a 3 + 2a 3 + 2a Hs ng ti ch tr li = = ữ = 2 b b b b nhanh bi 36/20 Bi 36/20 Mi khng nh sau dỳng hay sai? Vỡ ng ti ch tr li y/c hs v nh ghi c th sao? t m li gii vo v bi a.0,01= 0, 0001 vỡ 0, 0001 = ( 0, 01) 2 = 0, 01 tp b S vỡ khụng tn ti 0, 25 c vỡ 39 . thì lên trình bày. Nhóm khác nhận xét. Gọi hs đứng tại chỗ trả lời nhanh bt 13a, b. Đứng tại chỗ trình bày nhanh. Hs hs làm nhanh bài tập 14 a Bài 9. Tìm x, biết: a. 2 7 7x x= = Vậy x1=7; x2=- 7 d b) 2 ( 7) a) 2 12 = |12| = 12 b) 2 ( 7) = |-7| = 7 G Vận dụng tính nhẩm nhanh: ( ) ( ) 2 2 0,1 ; 0,3 H G Nhẩm nhanh: 0,1 ; 0,3 Cta xét tiếp ví dụ sau: Hd phần a, hs tự làm phần b. +Ví dụ:. liên hệ của phép khai phơng với quan hệ thứ tự và dùng liên hệ này để so sánh các số. 2.Kĩ năng: biết vận dụng các kiến thức trên để làm bài tập có liên quan. 3.Thái độ: Thấy đợc ý nghĩa của