j-g-gP&or vin*H PHuc
rnuoxc rgpr it- xoiv
ruAm Hec zoto- zott
on rHr ruAo sAr cnuytl un ,on #
:
UON THI : TOAN KIIOI
D
( rhd,i gian tdm tai', tio)n,;n
=* (l)
Cf,u I( Z.O aiOm ;,
Cho phuorr* ,r,ni, (x - 3X.r + r; _
a_u1rrr _f_ 3
l, Giai nhuyng trinh (t ) vcri m = *3
2, Tim m c16 phuorg i"i,rriij .o ngrriOn,
Ciu II( 2.0 eli6m ).
Tim m d6 phuong trinh c6 hai nghi.m x', x2tho6
rnfrn; xt * x2 * 2*,*, -2= ] .
CAu IV( 2.0tti6m ).
Trong mpt phing tga d6 D6cac vu6ng goc
oxy
.r' , fliff;'^;::;fii'4,;liol "a il,i duong *iq ran r,qr chua c6c duong
cao ha
Tinhdi€nd.;;; giitcABc rgringldL: r* 2v+t=ovd 3x+ y-r,=0
2 Cho duonp rr.,,"l rni ^:
-^,-:x ld,i,-*ff iJ;*JT,'J'*-T;|,;, ;{:; ;(,;;; -, =,
Yoi a' b' c td: so tn#Lu:-ry,n"+uf
g,ine:Ug:o6 + bc + ca = abc
.
Chung rninh ring: l b' +_2at * J rt * zb= {r
" h,
ciu vI( r.o tri6nr) qb - 7.-. - * ;i
= f
il[Vtt'i]T]-r$:'
thuc satr kh6ng php thu6c x : A:sin2
xtan2 x+ 4sin2 x- tan2 x +3cos2 x
Tim m ae u6t phuong tri'h sau dfng v6i
moi x: (m +1)x2 + 2rnx+ 2 > 0
Trang 2IL[{; "D
I ,,
t_ 07 rU
VA TIIANG DIBM
HTIONG nAm cHAn,r
0,5
0,5
Di
0,5
4,25
0,25 0,25
0,25
0,25
0,,25
0,25 0,25
0,25
0,25
4,25
l,E4t t : .l-7 - 2 -3 > 0 Phu<yn
trinh tro thAnh:r2 +4r+3=0
ft=-l
€l- (loai)I(L:
tl = -1
L-2,Ddt"t:{:_2*_3 > 0 Phucrn trinh tro thdnh: l2 +4t-m=0em-1.+4t
b i en tni en qua nam-ffi7ffi **
ygglBT ta c6 m> 0
l, Ta c6: Ei€u kiQn: x > 4
Bphuong trinh dd cho tuong dugrg v6i :
*x>5 bdt uong trinh
lu6q nghiQm dirn
*4<xsS, bdtphuong
<+ l0*.67<x<5
5 :lg{,1) vd (2) x > l0 _ $4
?, T1ptg) :gll@,rtrh tr6 rlrdrh j + rt 1 4
<+t-1+y=1-2x
Th
<+
c
T
L
V
x
x
ao pr
=l
-*3
2)taducrc: x, +2x_3=0
Pt c6 hai nshi€ lt, ": fni va cni ruri l,=6ln+ 12 > 0 a m2 _2
Theo bdi ra: r, * x, -2x,.", = * c> -2(m+ 3) _ 2(nf _3F
2 / L\"o J, 2
a4m2 +4m+l=0c> *=_!
2
p6i ctricu di€u kiQn (t), m= - I thod nrdn
I,Euong thing AC di qua A ua *.anffi
Ducrng thing AB di qua A vd nh{n ir(t;_Z)
l:0 ldm vdc to ph6p tuy6n n6n c6 pt: x _3y *
Toa d6 B ld nghidm cria h6: x*2y +l=0
x-3y-l=0 =+ B(-5;-2)
Trang 3'rea d$ c ld nghiQm cua he{:' + | -t_= 0
= c;
ltxl y-'2=0
Gqi BI{ ld duong cao hs tu B Ta c6 BH = d(B;AC) =]jq ;t -31= ,1
V5
AC= 2 6.
V4y S :!.AC.BH =14 (dvdt)
KL:
trdn c6 tdm I(-3;2), b'n kinh R = 4
TFI1: Gii sri ducrng thing qua E
kx - v - k + 5 : 0.(a) E€ duong thrng a lftidp
tuy€-n
""u icl trri'aia"'iig"la, d(l;a) = ft
_,, _ + = 4 (D k _ _
ffi = 4 <+ k = - VAy pftr : y : -7124.(x_ t) + S
Vfiy x - I : 0 ld tt tfr* Z .iraauonffi
KL
D4t 1= q *;l b "c =.v;] = z SU) ra x y, ,rO rUx *y * z:l
Theo Bunhia : 3(x2 +Zyr)=3(xt + y, + yt)>(* + y + y)2 + +2y'
J;' +2-' - {fr J3 +zy + y +zz + z +zg > Jl
x' +2y2 + y- J^+lz
Ddu bdng xAy ra khi u5 r1",1L111 u: 6 : l
.) , sin';r , sin2x
A=stn +4sin.-tr_ ""'," + jcos,
cos- ,r cos J
.d1
_ sin" x + 4sin' x.cos' r-sin2 x+3cosa x
=fr
COS J
x + (3sin2 x.cos' r + 3cosa x) + (sin, x.cos,
sina x+3cos2 x-sina x
2,EC BPT dring vdi mgi x thi dk li: m+l>0
L'= m2 -2(* + l) < 0
(rn > -l
ft-J: <m<t+",6
V$y l*.',6 <m<t+",6
0,25
0,15
0,25 0,25
0,25 0,25
{J,25
4,25
0,25
0,25