1. Trang chủ
  2. » Khoa Học Tự Nhiên

Bài tập Home work II

23 249 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 592,06 KB

Nội dung

Student’s name: DO THI KIM HUE Class: K52 Advanced Chemistry ********** Home work II Problem 7.1 a. SSA states that d[O]/dt = 0 => r 1 = r 2  r = 3 []dO dt  3 []dO dt  = r = 2r 1 =2k 1 [O 3 ][M] or 2 []dO dt  = 3k 1 [O 3 ][M] b. Cannot assume Quasi-Equilibrated Adsorption (No Langmuir isotherm) r =   2 d CO dt ; at steady state, so r 1 = r 2 , Site Balance: L =   SO + [S]           1 1 2 2 2 2 [] k N O S k CO S O S O N O [] k S k CO                  1 2 2 2 1 2 2 Lk k CO N O r k CO S O k N O k CO     c. Step 1 is a quasi equilibrated, but step 2 and 3 isn’t, so no Langmuir isotherm, then we use SSA to determine surface concentration. We also assume single-site adsorption and C 2 H 2(ad) is MARI. We assume: d[CH 2(ad) ]/dt = 0 → d[CH 2 ]/dt = 2k 1 [C 2 H 2 ][H 2 ] - k 2 [CH 2(ad) ][H 2 ] = 0 → [CH 2(ad) ] = 2k 1 [C 2 H 2 ] /k 2 → 2k 1 = k 2 (1) r = d[CH 4 ]/dt = k 2 [CH 2(ad) ][H 2 ] (2) Site balance for C 2 H 2(ad) is MARI: L = [C 2 H 2(ad) ] + [S] or 1 = θ C2H2 + θ v → [S] = L - [C 2 H 2(ad) ] (3) From eq. QE 1: K = [CH 2(ad )][H2]2 [C2H6][S] → [C 2 H 2(ad) ] =  C2H6][S] [H2]2 (4) Replace (3) into (4), we obtain: [C 2 H 2(ad) ] =  [C2H6] [H2]2 ( L - [C 2 H 2(ad) ]) → [C 2 H 2(ad) ] =  [C2H6] (1+[26/[2]2])  H2  2 (5) Replace (5) into (2), we have the rate: r = d[CH 4 ]/dt = k 2 [CH 2(ad) ][H 2 ] = k2 [C2H6]   26  2   +  H2  Problem 7.2   3 [ ] [ ] r k B S d A d B dt dt      12 [ ] [ ] K , K [ ][ ] [ ] A S B S A S A S    Site balance: L=[S] +[A-S] + [B-S] a) If [B-S] is the MARI, then L= [s] + [B-S] and                2 1 2 12 L S K A S S K K A S S 1 K K A L         r= k 3 K 2 [A-S]= [K 1 K 2 k 3 [A][S] =       3 1 2 12 Lk K K A 1 K K A b) If [A-S] is the MARI, then L= [s] + [A-S] and L= [S] + K 1 [A][S] ] =>       1 S 1 K A L   r= k 3 K 2 [A-S]= [K 1 K 2 k 3 [A][S] =       3 1 2 1 Lk K K A 1 K A the mathematical forms are identical. Problem 7.4 r = -       2 2 2 d H O d H d CO dt dt dt  r = k 3 [H 2 O*] = k 4 [O*][CO*] and K 1 =     co CO* P* L = [*] + [CO*] + [H 2 O] + [O*] (from site balance) Steady – state approximations: On H 2 O* : k 2 P H2O [*]= k 3 [H 2 O*] On O* : k 3 [H 2 O] = k 4 [O*][CO+]         2 3 2 22 34 H O* ( )P & O* H O* / CO* k HO k k k            3 2 1 CO H2O 2 34 L K P * P * * H O / CO* k k kk     the last term can be negligible, so   2 2 1 CO H O 3 L K P P 1 * k k             22 2 3 2 2 H O 32 3 1 CO H O . Lk P r k H O* * 1 K P k'P HO k k P k     Problem 7.5 a. A + S 1 1 k k    A S reversible RDS (For an ideal gas) B + S 2 K   B S A S + B S 3 K   C S + D S C S 4 K   C + S 5 K D S D S    A + B   C + D The rate of reaction r = k 1 P A [S] – k -1 [A S] From site balance: L = [S] + [A S] + [B S] + [C S] + [D S] Moreover     2 4 5 [ ] [ ] [] [] B C D B S K P S PS CS K PS DS K       and        3 C S D S AS K B S      K = CD AB PP PP = K 1 K 2 K 3 K 4 K 5 [A S] =   CD 5 4 3 2 B P P S K K K- K P So we can obtain: L = [S] CD 2 3 4 5 B 2 B C D 45 1 P P 11 K K K K P K P P P KK     Thus r =   1 C D 1A 2 3 4 5 B Lk P P Lk P K K K K P S      = 1 C D 1A 2 3 4 5 B CD 2 3 4 5 B 2 B C D 45 Lk P P Lk P K K K K P 1 P P 11 K K K K P K P P P KK          b. A + S 1 K   A S B + S 2 K   B S A S + B S 3 K   C S + D S C S 4 K   C + S 5 5 k k D S D S      Reversible RDS A + B   C + D The rate of the reaction: r = k 5 [D S] – k -5 P D [S] Using site balance: L = [A S] + [B S] + [C S] + [D S] + [S], we also have some relations:     2 1 4 [ ] [ ] [] [] B A D B S K P S A S K P S PS DS K       and       3 C S D S K A S B S    So [D S] =        3 1 2 3 4 A B C K K K K P P S P K A S B S CS    L =   C 1 2 3 4 A B 1 A 2 B 4C P K K K K P P 1 K P K P KP S        Thus r = 5 1 2 3 4 A B 5D C C 1 2 3 4 A B 1 A 2 B 4C Lk- K K K K P P – Lk P P P K K K K P P 1 K P K P KP      In this case, K = K 1 K 2 K 3 K 4 K 5 and K 1 = K A , K 2 = K B , 4 1 K = K C , 5 1 K = K D = 5 5 k k  , K 1 K 2 K 3 K 4 = 5 55 kK K Kk   Substituting on the rate equation, we get: r = 5 A B 5D C AB 1 A 2 B C Lk- KP P – Lk P P KK P P 1 K P K P P K P D CC      c. A 2 + 2S 1 1 k k    2A S reversible RDS 2[B + S 2 K   B S] 2[A S + B S 3 K   C S + D S] 2[ C S 4 K   C + S] A 2 + 2B   2C The rate equation is: r = k 1 P A2 [S] 2 – k -1 [A S] 2 , Applying site balance: L = [A S] + [B S] + [C S] + [S]   2 4 [ ] [ ] [] B C B S K P S PS CS K     and       3 C S S K A S B S     [A S] =        3 * * * C S S AS K B S  , K = K 1 K 2 2 K 3 2 K 4 2 or K 1/2 = K 1 1/2 K 2 K 3 K 4 Then, [A S] =   2 3 4 B K K K P C PS . And L =   2 2 3 4 4 1 CC B B PP S K P K K K P K       So we can calculate that: r =   2 2 22 11 2 3 4 B 2 2 2 3 4 4 22 K K K P 1 C A CC B B PS ZZ L k P L k LL PP KP K K K P K           with 2 Z L = site-pair probability and Z = coordination number Moreover, K 2 K 3 K 4 = K 1/2 /K 1 1/2 then: r = 2 2 ' 2 1 2 2 2 3 4 4 1 C A B CC B B P Lk P KP PP KP K K K P K           d. A 2 + 2S 1 K   2A S 2[B + S 2 K   B S] 2[A S + B S 3 K   C S + D S] 4 4 2 k k C S C S        reversible RDS A 2 + 2B 2C The rate equation is: r = k 4 [C S] – k -4 P C [S] Also we have: [A S] 2 =   2 2 1A K P S ; [B S] = K 2 P B [S], and       3 C S S K A S B S    [C S] =       2 11 22 3 1 2 3 [A ] K AB S B S K K K P P S S   From site balance: L = [S] + [A S] + [B S] + [C S] =     1/2 1/2 1/2 1/2 1 A2 2 B 1 2 3 A2 B 1 K P K P K K K P PS    Moreover, we also have: K = K 1 K 2 2 K 3 2 K 4 2 K 1 1/2 2 1 2 3 4 K K K K K  So 2 1/2 1/2 2 4 2 3 A B 4 C 1/2 1/2 1/2 1/2 1 A2 2 B 1 2 3 A2 B L k K K K P P L k P 22 1 K P K P K K K P P ZZ LL r       With K 1 = K A2 , K 2 = K B , 4 1 K = K C  K = K A K B 2 K 3 2 K 4 2 So   1/2 1/2 4 A2 B C 1/2 1/2 1/2 A2 A2 B B C A2 B L k K P P – P 2 1 K P K P KK P P Z r      Problem 7.6 a. The rate equation is: r = 2 4 2 26 3 [] C H H d C H Lk P dt   2 4 2 25 C H H 2 C H H P P k    Applying steady-state approximation on total surface carbon atoms, we obtain another equation for 25 CH  , dθ C(total) /dt = 0. Additionally, because steps 2 and 4 are very rapid:  2 6 2 5 2 4 2 C(total) 1 C H 1 C H 3 C H H d k P – Lk – Lk P 0 dt     2 6 2 4 2 5 1 C H 3 C H H2 1 C H H k P – Lk P Lk        2 5 2 4 25 1 C H 3 C H H2 C H 1 k P – Lk P Lk H        2 6 2 4 2 24 2 1 C H 3 C H 2 CH 1 H H H H k P Lk P K P Lk          = 2 6 2 2 4 2 1 C H 1 H 2 3 C H 1 K k P / Lk P – LK k / Lk   26 24 2 1 2 C H 23 CH 1 1 H k K P Kk 1 k Lk P             2 6 2 24 12 C H H 1 CH 2 3 1 kK P / P Lk 1 K k k         and 2 2 6 2 26 3 H 1 2 C H 1H 1 2 3 C H C2H6 2 3 2 3 11 Lk P k K P Lk P k K k P r k’P K k K k 1 1 kk                      but θ C2H4 can be rewritten to give:     2 6 2 25 1 C H H 3 C H 1 2 3 k P / P k L 1 k / K k        so that 26 1 C H 1 23 k P r k 1 Kk       b. C 2 H 6 + 2S 1 1 k k    C 2 H 5 S + H S C 2 H 5 S + H S 2 K   C 2 H 4 S + S + H 2 C 2 H 4 S + H 2 + S 3 k  2CH 3 S 4 3 2 4 2 2 2 K CH S H CH S    C 2 H 6 + H 2  2CH 4 The rate of reaction can be defined as: r =   26 d C H dt  = k 3 [C 2 H 4 S][S] 2 H P K 2 = [C 2 H 4 S][S] 2 H P / [C 2 H 5 S][H S] Steady-state approximation on all surface C atoms gives: k 1 26 CH P [S] 2 – k -1 [C 2 H 5 S][H S] – k 3 [C 2 H 4 S][S] 2 H P = 0 k 1 P C2H6 [S] 2 – k 3 [C 2 H 4 S][S] 2 H P = k -1 [C 2 H 5 S][H S] and [C 2 H 5 S] =        26 2 2 1 C H 3 2 4 11 k P S k [H ] H k C H S S P S k H S     [C 2 H 4 S] =           26 2 2 1 3 2 4 2 1 CH H k P S k C H S K H S S P k H S     26 2 1 2 C H 23 24 1 1H k K P Kk [C H ] 1 k kP S          2 6 2 12 C H H 1 24 23 1 kK ( )P / P k [C H ] Kk 1 k S      Now, site balance to get [S] is: L = [S] + [H S] +[C 2 H 5 S] + [C 2 H 4 S] + [CH 3 S] (a) is obtained only if [S]~ L, it means the surface is essentially free of all adsorbed species or θ H , θ C2H5 , θ C2H4 , θ CH3 << 1. This is a questionable assumption. Problem 7.7 Plotting ln rate vs. lnP i using a power rate law gives the following reaction orders: T(K) Reaction Order N 2 O O 2 N 2 623 0.08 -0.31 0 653 0.24 -0.12 0 673 0.31 -0.07 0 The simplest L-H model would be for unimolecular decomposition: (1) 2[N 2 O + * 2 NO K   N 2 O *] (2) 2[N 2 O* k  N 2 + O*] (3) 2O* 2 1/ O K   O 2 +2* 2N 2 O ==> 2N 2 + O 2 r m = 1 m dN N 2 dt = 1 m   2   = k[N 2 O*] From(1) : K N2O = [N 2 O  ]   2  [] , so [N 2 O*] = K N2O P N2O [*] From(3) : K O2 = [] 2   2 [] 2 , so [O*] = K O2 1/2 P O2 1/2 [*] Site balance gives: L=[*] +[N 2 O*] +[O*] thus L =[*] +  2    2  [*] +   2 1/2   2 1/2 [*] , and [*] =  (1 +   2    2  +   2 1/2   2 1/2 ) , consequently, r = k K N2O P N2O [*] =   2    2  1+   2    2  +   2 1/2   2 1/2 Arrhenius plots of the fitting parameters listed in Table 2 provide the following values : For K N2O :∆H ad o = -17 kcal mole -1 and ∆S ad o - 21 cal mole -1 K -1 (e.u.) For K O2 :∆H ad o = -25 kcal 1 and ∆S ad o - 35 e.u. For k : E RDS = 57 kcal mole -1 The enthalpy and entropy values for adsorption fulfill all the guidelines in Table 6.9, thus they are consistent. From either a linear extrapolation of the high-P portions of the two isotherms in Figure 1 or using the difference between the two at 100 Torr CO pressure, the irreversible uptake is 580 µmole CO g cat -1 . The dispersion of Cu is : D Cu = Cu s / Cu tot , and with CO ad /Cu s = 1, D Cu = 580 µmole Cu s g cat 1  0.0456 g Cu g cat 1   mole Cu 63.55 g Cu  (10 6 µmole mole = 0.81 Under differential reaction conditions, P O2 O and can be ignored; therefore, an easy way is to choose a known differential rate and correct for temperature , for example :  823   673  =  823  673 =  36200 cal /mole /(1.987cal /mole .K )(823K )  36200 cal /mole /(1.987cal /mole .K)(673K ) = 139 thus TOF 823K =  823    = (12.6 µmole /s.g) (13 atm 1)(0.0666 atm )(139) [1+ (13 atm 1)(0.0666 atm )](580 µmole Cu s/g) = 1.4 s - Problem 7.8 Step 2 defines the rate: r m = 1 m d N 2 dt = 1 m (- d N 2 dt ) = k[N 2 O*] Step 1 gives : K N2O = [N2O] PN2O [] , so [N 2 O*] = K N2O P N2O [*] Assuming all surface species are included, a site balance gives L =[*] +[N 2 O*] + [O*] To remove the unknown [O*], the SSA must be used: d [O ] dt = k[N 2 O*] + k -1 P O2 [*] 2 – k 1 [O*] 2 = 0 And [O*] =( k[N2O] + k 1 PO2 [] 2 k1 ) 1 2 . Student’s name: DO THI KIM HUE Class: K52 Advanced Chemistry ********** Home work II Problem 7.1 a. SSA states that d[O]/dt = 0 => r 1 = r 2  r = 3 [ ]dO dt  3 [ ]dO dt  = r =. atoms:  [N*] >> [*] and [N*] ~ L So 2 22 2 Z r k L ZLk L  In this case, over a La 2 O 3 catalyst at 923K, this reaction exhibited a reaction order on NO of about 1.2 with no O 2 . B 5D C C 1 2 3 4 A B 1 A 2 B 4C Lk- K K K K P P – Lk P P P K K K K P P 1 K P K P KP      In this case, K = K 1 K 2 K 3 K 4 K 5 and K 1 = K A , K 2 = K B , 4 1 K = K C , 5 1 K = K D

Ngày đăng: 12/08/2014, 10:59

TỪ KHÓA LIÊN QUAN

w