Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
629 KB
Nội dung
ĐỀ THI HAY NHẤT - HÌNH HỌC CÁC ĐỀ TỐT NGHIỆP TN – 2006 Cho hình chóp SABC có ABCD là hình vuông canh a , SA vuông góc với đáy, SB = a 3 1. Tính thể tích SABCD 2. Chứng minh trung điểm SC là tâm mặt cầu ngoại tiếp SABCD TN – 2007 Cho hình chóp SABC , ABC là tam giác vuông tại B. SA vuông góc với đáy. Biết SA = AB = CB =a Tính thể tích khối chóp SABC TN - 2008 Cho hình chóp tam giác đều SABC có cạnh bằng a, cạnh bên bằng 2a. Goi I là trung điểm của BC 1. Chứng minh SA vuông góc với BC 2. Tính thể tích khối chóp SABI theo a TN – 2008 lần 2 Cho hình chóp SABC có tam giác vuông tại B, SA vuông góc với (ABC) .Biết AB = a , BC = a 3 và SA = 3a 1. Tính thể tích SABC theo a 2. Gọi I là trung điểm của SC, tính BI TN – 2009 Cho hình chóp S.ABC có mặt bên SBC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết BAC = 120 0 , tính thể tích của khối chóp S.ABC theo a. CÁC ĐỀ ĐẠI HỌC KHỐI A -2006 Hình trụ có 2 đáy O và O’.bán kính = chiều cao = a A thuộc đtròn O, B thuộc đtròn O’ và AB = 2a Tính thể tích tứ diện OO’AB KHỐI D -2006 Hình chóp SABC, ABC là tam giác đều cạnh a, SA = 2a , SA vuông góc (ABC). Gọi M,N là hình chiếu vuông góc của A lên SB,SC Tính thể tích khối chóp ABCNM KHỐI A1 -2007 DB Cho lăng trụ đứng ABCA 1 B 1 C 1 có AB = a, AC = 2a, AA 1 2a 5= và o 120BAC = ∧ . Gọi M là trung điểm của cạnh CC 1 . Chứng minh MB⊥MA 1 và tính khoảng cách d từ điểm A tới mặt phẳng (A 1 BM). KHỐI A2 -2007 DB Cho hình chóp SABC có góc ( ) o 60ABC,SBC = ∧ , ABC và SBC là các tam giác đều cạnh a. Tính theo a khoảng cách từ đỉnh B đến mp(SAC). KHỐI B1 -2007 DB Cho hình chóp SABCD có đáy ABCD là hình vuông tâm O, SA vuông góc với hình chóp. Cho AB = a, SA = a 2 . Gọi H và K lần lượt là hình chiếu của A lên SB, SD. Chứng minh SC ⊥ (AHK) và tính thể tích hình chóp OAHK. KHỐI B2 -2007 DB Trong mặt phẳng (P) cho nửa đường tròn đường kính AB = 2R và điểm C thuộc nửa đường tròn đó sao cho AC = R. Trên đường thẳng vuông góc với (P) tại A lấy điểm S sao cho ( ) o 60SBC,SAB = ∧ . Gọi H, K lần lượt là hình chiếu của A trên SB, SC. Chứng minh ∆AHK vuông và tính V SABC ? KHỐI D1 -2007 DB Cho lăng trụ đứng ABCA 1 B 1 C 1 có đáy ABC là tam giác vuông aACAB == , AA 1 = a 2 . Gọi M, N lần lượt là trung điểm của đoạn AA 1 và BC 1 . Chứng minh MN là đường vuông góc chung của các đường thẳng AA 1 và BC 1 . Tính 11 BCMA V . KHỐI D2 -2007 DB Cho lăng trụ đứng ABCA 1 B 1 C 1 có tất cả các cạnh đều bằng a. M là trung điểm của đoạn AA 1 . Chứng minh BM ⊥ B 1 C và tính d(BM, B 1 C). CĐ 2008 Cho hình chóp SABCD có đáy ABCD là hình thang, hai góc BAD = ABC = 90, AB = BC = a , AD = 2a , SA vuông góc với đáy và SA = 2a , Gọi M,N lần lượt là trung điểm SA,SD 1. Chứng minh BCNM là hình chữ nhật 2. và tính thể tích khối chóp SBCNM theo a KHỐI D 2008 Cho lăng trụ đứng ABCA’B’C’ có đáy là tam giác vuông , AB = BC = a, cạnh bên AA’ = a 2 , gọi M là trung điểm của BC . 1. Tính theo a thể tích của khối lăng trụ ABCA’B’C’ 2. khoảng cách giữa AM , B’C KHỐI B 2008 Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh 2a, SA = a, SB = a 3 và ( SBC) vuông góc với đáy . Gọi M,N lần lượt là trung điểm AB, BC . 1. tính theo a thể tích khối chóp SBMDN và 2. tính cosin của góc giữa SM, DN KHỐI A 2008 Cho lăng trụ ABCA’B’C’ có độ dài cạnh bên 2a, đáy ABC là tam giác vuông tại A, AB = a, AC = a 3 và hình chiếu vuộng góc của A’ trên (ABC) là trung điểm cạnh BC . 1. Tính theo a thể tích của khối chóp A’ABC và 2. tính cosin của góc giữa AA’ , B’C’ KHỐI A 2009 Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB = AD = 2a; CD = a; góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 60 0 . Gọi I là trung điểm của cạnh AD. Biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD), tính thể tích khối chóp S.ABCD theo a. KHỐI B 2009 Cho hình lăng trụ tam giác ABC.A’B’C’ có BB’ = a, góc giữa đường thẳng BB’ và mặt phẳng (ABC) bằng 60 0 ; tam giác ABC vuông tại C và · BAC = 60 0 . Hình chiếu vuông góc của điểm B’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Tính thể tích khối tứ diện A’ABC theo a. KHỐI D 2009 Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, AB = a, AA’ = 2a, A’C = 3a. Gọi M là trung điểm của đoạn thẳng A’C’, I là giao điểm của AM và A’C. Tính theo a thể tích khối tứ diện IABC và khoảng cách từ điểm A đến mặt phẳng (IBC). KHỐI A 2010 Cho hình chóp SABCD , có đáy ABCD là hình vuông cạnh a, gọi M, N lần lượt là trung điểm của AB,AD , H là giao điểm của CN, DM .Biết SH vuông góc với (ABCD) và SH = a 3 .Tính thể tích SCDNM và khoảng cách giữa DM , SC KHỐI B 2010 Cho hình lăng trụ tam giác đều ABCA”B”C” có AB = a , góc giữa hai mặt phẳng (A’BC) và ( ABC) bằng 60 0 . Gọi G là trọng tâm tam giác A’BC . Tính thể tích khối lăng trụ đã cho và tính bán kính mặt cầu ngoại tiếp tứ diện GABC theo a KHỐI D 2010 Cho hình chóp SABC có đáy ABCD là hình vuông cạnh a , cạnh bên SA = a; hình chiếu vuông góc của đỉnh S trên (ABCD) là điểm H thuộc đoạn AC , AH = AC/4 .Goi Cm là đường cao của tam giác SAC . Chứng minh M là trung điểm SA và thể tích tứ diện SMBC theo a ĐÁP ÁN Khoi d 2006 Khoi b 2006 Khoi a 2006 Khoi a1 db 2007 Cách khác: + Ta có = + = 2 2 2 2 1 1 1 1 A M A C C M 9a = + − = 2 2 2 0 2 BC AB AC 2AB.AC.cos120 7a = + = 2 2 2 2 BM BC CM 12a = + = = + 2 2 2 2 2 2 1 1 1 A B A A AB 21a A M MB ⇒ MB vuông góc với 1 MA + Hình chóp MABA 1 và CABA 1 có chung đáy là tam giác ABA 1 và đường cao bằng nhau nên thể tích bằng nhau. ⇒ = = = = 3 MABA CABA 1 ABC 1 1 1 1 V V V AA .S a 15 3 3 ⇒ = = = 1 MBA 1 1 3V 6V a 5 d(a,(MBA )) S MB.MA 3 Khoi a2 db 2007 S A C B M N 60° 2. Gọi M là trung điểm của BC. thì SM ⊥ BC, AM ⊥ BC ⇒ ( ) o 60ABC ,SBCSMA == ∧ Suy ra ∆SMA đều có cạnh bằng 2 3a Do đó o SMA 60sin.AM.SM. 2 1 S = 16 3a3 2 3 . 4 a3 . 2 1 22 == Ta có SABC SBAM SAM 1 V 2V 2. .BM.S 3 = = 16 3a 16 3a .a. 3 1 32 = 3 = Gọi N là trung điểm của đoạn SA. Ta có CN ⊥ SA ⇒ a 13 CN 4 = (vì ∆SCN vuông tại N) ⇒ 2 SCA 1 1 a 3 a 13 a 39 S .AS.CN . . 2 2 2 4 16 = = = Ta có ( ) ( ) SAC ,Bd. 16 39a . 3 1 SAC ,Bd.S. 3 1 16 3a V 2 SCA 3 SABC === ⇒ ( ) 3 2 3 3a d B,SAC a 3 a 39 13 = = Khoi b1 db 2007 +BC vuông góc với (SAB) ⇒ BC vuông góc với AH mà AH vuông với SB ⇒ AH vuông góc với (SBC) ⇒ AH vuông góc SC (1) + Tương tự AK vuông góc SC (2) (1) và (2) ⇒ SC vuông góc với (AHK ) 2 2 2 2 SB AB SA 3a= + = ⇒ SB = a 3 AH.SB = SA.AB ⇒ AH= a 6 3 ⇒ SH= 2a 3 3 ⇒ SK= 2a 3 3 (do 2 tam giác SAB và SAD bằng nhau và cùng vuông tại A) Ta có HK song song với BD nên HK SH 2a 2 HK BD SB 3 = ⇒ = . Gọi AM là đường cao của tam giác cân AHK ta có 2 2 2 2 4a AM AH HM 9 = − = ⇒ AM= 2a 3 3 OAHK AHK 1 1 a 2 1 2a V OA.S . HK.AM 3 3 2 2 27 = = = Khoi b2 db 2007 * Chứng minh ∆AHK vuông Ta có: AS ⊥ CB AC ⊥ CB (∆ACB nội tiếp nửa đường tròn) ⇒ CB ⊥ (SAC) ⇒ CB ⊥ AK mà AK ⊥ SC ⇒ AK ⊥ (SCB) ⇒ AK ⊥ HK ⇒ ∆AHK vuông tại K * Tính V SABC theo R Kẻ CI ⊥ AB Do giả thiết ta có AC = R = OA = OC ⇒ ∆AOC đều ⇒ 2 R IOIA == Ta có SA ⊥ (ABC) nên (SAB) ⊥ (ABC) ⇒ CI ⊥ (SAB) Suy ra hình chiếu vuông góc của ∆SCB trên mặt phẳng (SAB) là ∆SIB Vì AB 4 3 BI = . Suy ra SA.R. 4 3 S 4 3 S SABSIB == (∗) Ta có: 22 SBC RSA.3R 2 1 SC.BC 2 1 S +== Theo định lý về diện tích hình chiếu ta có: 22 SBC o SBCSIB RSA 4 3R S 2 1 60cos.SS +=== (∗∗) Từ (∗), (∗∗) ta có: 2 R SA = Từ đó 12 6R ABCdt.SA 3 1 V 3 SABC =∆= Khoi d 2007 Khoi b 2007 Khoi a 2007 Khoi cd 2008 Khoi d 2008 Khoi b 2008 Khoi a 2008 Khoi cd 2009 Khoi d 2009 2 2 2 2 9 4 5 5AC a a a AC a= − = ⇒ = 2 2 2 2 5 4 2BC a a a BC a= − = ⇒ = H là hình chiếu của I xuống mặt ABC Ta có IH AC⊥ / / / 1 2 4 2 3 3 IA A M IH a IH IC AC AA = = ⇒ = ⇒ = 3 1 1 1 4 4 2 3 3 2 3 9 IABC ABC a a V S IH a a= = × × = (đvtt) Tam giác A’BC vuông tại B Nên S A’BC = 2 1 52 5 2 a a a= Xét 2 tam giác A’BC và IBC, Đáy / / 2 2 2 2 5 3 3 3 IBC A BC IC A C S S a= ⇒ = = Vậy d(A,IBC) 3 2 3 4 3 2 2 5 3 9 5 2 5 5 IABC IBC V a a a S a = = = = Khoi b 2009 BH= 2 a , 2 1 3 3 3 2 2 4 BH a a BN BN = ⇒ = = ; 3 ' 2 a B H = gọi CA= x, BA=2x, 3BC x= 2 2 2 2 2 2 CA BA BC BN+ = + 2 2 2 2 3 3 4 2 4 2 a x x x ⇔ + = + ÷ 2 2 9 52 a x⇔ = Ta có: 3 3 ' ' 2 2 a B H BB= = Khoi a 2009 Từ giả thiết bài tốn ta suy ra SI thẳng góc với mặt phẳng ABCD, gọi J là trung điểm của BC; E là hình chiếu của I xuống BC. 2a a 3a IJ 2 2 + = = S CIJ 2 IJ CH 1 3a 3a a 2 2 2 4 × = = = , CJ= BC a 5 2 2 = ⇒ S CIJ 2 2 3a 1 1 3a 3a 6a 3a 3 IE CJ IE SE ,SI 4 2 CJ 2 5 5 5 = = × ⇒ = = ⇒ = = , [ ] 3 1 1 3a 3 3a 15 V a 2a 2a 3 2 5 5 = + = ÷ A B D C I J E H N C A B M N H / A A C I M B H C / . ĐỀ THI HAY NHẤT - HÌNH HỌC CÁC ĐỀ TỐT NGHIỆP TN – 2006 Cho hình chóp SABC có ABCD là hình vuông canh a , SA vuông góc với đáy, SB = a 3 1 mặt bên SBC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Biết BAC = 120 0 , tính thể tích của khối chóp S.ABC theo a. CÁC ĐỀ ĐẠI HỌC KHỐI A -2006 Hình trụ có 2 đáy O và. DB Cho hình chóp SABC có góc ( ) o 60ABC,SBC = ∧ , ABC và SBC là các tam giác đều cạnh a. Tính theo a khoảng cách từ đỉnh B đến mp(SAC). KHỐI B1 -2007 DB Cho hình chóp SABCD có đáy ABCD là hình