1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Các chuyên đề ôn thi học sinh giỏi Toán lớp 9

28 5K 4

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 28
Dung lượng 866,5 KB

Nội dung

I Phương pháp đặt nhân tử chungAB + AC = A (B + C)IIPhương pháp dùng hằng đẳng thức1 10x 25 –x22 8x3 +12x2y +6xy2 +y33 x3 + 9x227x +27IIIPhương pháp nhóm hạng tử1 3x2 3xy5x+5y2 x2 + 4xy2 +43 3x2 +6xy +3y2 – 3z24 x2 2xy +y2 –z2+2zt –t2IV Phương pháp tách( Tách một hạng tử thành hai hay nhiều hạng tử thích hợp)

CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 PHẦN :ĐẠI SỐ CHUYÊN ĐÊ 1 PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I/ Phương pháp đặt nhân tử chung AB + AC = A (B + C) II/Phương pháp dùng hằng đẳng thức 1/ 10x -25 –x 2 2/ 8x 3 +12x 2 y +6xy 2 +y 3 3/ -x 3 + 9x 2 -27x +27 III/Phương pháp nhóm hạng tử 1/ 3x 2 - 3xy-5x+5y 2/ x 2 + 4x-y 2 +4 3/ 3x 2 +6xy +3y 2 – 3z 2 4/ x 2 -2xy +y 2 –z 2 +2zt –t 2 IV/ Phương pháp tách ( Tách một hạng tử thành hai hay nhiều hạng tử thích hợp) Vd: hân tích các đa thức sau thành nhân tử a/ 2x 2 – 7xy + 5y 2 = 2x 2 – 2xy – 5xy+5y 2 = ( 2x 2 -2xy) – (5xy- 5y 2 ) = 2x(x-y) -5y(x-y) = (x-y) . (2x – 5y) b/ 2x 2 3x – 27 = 2x 2 – 6x + 9x -27 = 2x(x-3) + 9 (x-3) = (x-3).(2x + 9) c/ x 2 –x -12 = x 2 + 3x -4x -12 = x(x+3) -4 (x + 3) = (x+3) .(x-4) d/ x 3 -7x + 6= x 3 – x 2 + x 2 –x -6x +6 = x 2 (x-1) + x (x-1) -6 (x-1) = (x-1) (x 2 +x -6) = ( x-1)[ x 2 +3x-2x-6] =(x-1)[x(x+3) -2(x +3)] = (x-1)(x+3)(x-2) Baì tập tự giải: Phân tích các đa thức sau thành nhân tử 1/ x 2 + 8x + 15 2/ x 2 + 7x +12 3/ x 3 + 2x -3 4/ 2x 2 + x -3 5/2x 2 – 5xy +3y 2 6/3x 2 – 5x +2 7/ xy(x-y)- xz(x+z) +yz(2x-y+z) 8/ x 3 + y 3 + z 3 -3xy V/ Phương pháp thêm bớt cùng một hạng tử Ví dụ:Phân tích các đa thức sau thành nhân tử 1/ a 4 + 4 = a 4 +4a 2 + 4 - 4a 2 = (a 2 +2) 2 – (2a) 2 =( a 2 +2a +2)( a 2 -2a +2) 2/ x 5 +x – 1 = x 5 + x 2 – x 2 +x – 1 = x 2 (x 3 + 1) –( x 2 -x + 1) = x 2 (x+ 1)( x 2 -x + 1) –( x 2 -x + 1) = ( x 2 -x + 1)[ x 2 (x+ 1)-1] = (x 2 -x + 1)(x 3 +x 2 -1) VI/ Phương pháp đổi biến (Đặt ẩn phụ) CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 Ví dụ:Phân tích đa thức sau thành nhân tử A = (x 2 + 2x +8) 2 +3x(x 2 + 2x +8) + 2x 2 Đặt y = x 2 + 2x +8; Ta có: y 2 +3xy+2x 2 = y 2 +xy+2xy+ 2x 2 = y(x+y) +2x(x+y) = (x+y)(y+2x) = (x+ x 2 + 2x +8)( x 2 + 2x +8 +2x) =(x 2 +3x+8)( x 2 +4x+8) BÀI TẬP TỔNG HỢP Phân tích các đa thức sau thành nhân tử 1/ A = x 3 +y 3 +z 3 -3xyz 2/ x 3 +7x -6 3/ 2x 3 –x 2 -4x +3 = 2x 3 – 2x 2 +x 2 -x-3x+3 = 2x 2 (x-1) +x(x-1) -3(x-1) =(x-1)(2x 2 +x-3) = (x-1)(x-1)(2x+3) = (x-1) 2 (2x+3) 2 2 2 2 2 1/ x 5x 6 2 / x 5x 6 3/ x 7x 12 4 / x 7x 12 5/ x x 12 − + + + − + + + + − 2 2 2 2 2 6 / x x 12 7 / x 9x 20 8/ x 9x 20 9 / x x 20 10 / x x 20 − − − + + + + − − − 2 2 2 2 2 2 2 2 2 2 21/ x xy 2y 22 / x xy 2y 23/ x 3xy 2y 24 / x xy 6y 25/ 2x 3xy 2y − − + − − − − − − − 2 2 2 2 26 / 6x xy y 27 / 2x 5xy y − − + + 2 2 2 2 2 2 2 2 2 2 11/ 2x 3x 2 12 / 3x x 2 13/ 4x 7x 2 14 / 4x 5x 6 15/ 4x 15x 9 16 / 3x 10x 3 17 / 6x 7x 2 18/ 5x 14x 3 19 / 5x 18x 8 20 / 6x 7x 3 − − + − − − + − + + + + + + + − − − + − 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 31/ x x xy 2y 2y 32 / x 2y 3xy x 2y 33/ x x xy 2y y 34 / x 4xy x 3y 3y 35/ x 4xy 2x 3y 6y 36 / 6x xy 7x 2y 7y 5 37 / 6a ab 2b a 4b 2 38/ 3x 22xy 4x 8y 7y 1 39 / 2x 5x 12y 12y 3 10 − − − + + − + − + − − + − − + + + + + + + − − + − − − + + − − − + + + + − + − − 2 2 xy 40 / 2a 5ab 3b 7b 2+ − − − 2 2 2 2 2 2 2 2 2 2 41/ 2x 7xy x 3y 3y 42 / 6x xy y 3x 2y 43/ 4x 4xy 3y 2x 3y 44 / 2x 3xy 4x 9y 6y 45/ 3x 5xy 2y 4x 4y − + + − − − + − − − − + − − − − − + + − Bài 6: Tìm x và y, biết: CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1/ x 2x 5 y 4y 0 2 / 4x y 20x 2y 26 0 3/ x 4y 13 6x 8y 0 4 / 4x 4x 6y 9y 2 0 5/ x y 6x 10y 34 0 6 / 25x 10x 9y 12y 5 0 7 / x 9y 10x 12y 29 8/ 9x 12x 4y 8y 8 0 9 / 4x 9y 20x 6y − + + − = + − − + = + + − − = + − + + = + + − + = − + − + = + + − − + + + + + = + + − + 2 2 26 0 10 / 3x 3y 6x 12y 15 0 = + + − + = CHUYÊN ĐỀ 2 GIẢI PHƯƠNG TRÌNH và BẤT PHƯƠNG TRÌNH I/ Phương trình bậc nhất một ẩn Dạng tổng quát: ax +b = 0 (a 0≠ ) . Phương trình có nghiệm là x = -b/a II/ Phương trình đưa về dạng ax+b=0 Giải phương trình: 1/ =−+ 2 1 83 xx 24 19 8 5 + +x 2/ 3(x-5) + 2x = 5x – 9 3/ 55 4 56 3 57 2 58 1 + + + = + + + xxxx II/ Phương trình chứa ẩn ở mẫu Cách giải * ĐKXĐ * Tìm MTC * Quy đồng khử mẫu và giải phương trình * Kết hợp với ĐKXĐ để chọn nghiệm Ví dụ: Giải phương trình: 1/ )3)(1( 2 )1(2)3(2 −+ = + + − xx x x x x x 2/ 1 2 3 2 3 1 2 2 + −− = − + + + xx xx x 3/ ) 1 1 1(3 1 1 1 1 + − −= + − − − + x x x x x x x 4/ 1 32 4 3 52 1 13 2 = −+ + + + − − − xx x x x x 14 2 116 68 41 3 /5 2 + = − + + − x x x x Giải CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 1/ )3)(1( 2 )1(2)3(2 −+ = + + − xx x x x x x (1) ĐKXĐ:    −≠ ≠ 1 3 x x ( )    = = ⇔    =− = ⇔ =−⇔ =−⇔ =−++⇔ =−++⇔ −+ = −+ − + +− + ⇔ )(3 0 03 02 0)3.(2 062 43 4)3.()1.( )3)(1.(2 2.2 )3).(1(2 )3.( )1)(3(2 )1.( 1 2 22 loaix x x x xx xx xxxxx xxxxx xx x xx xx xx xx Vậy tập nghiệm của phương trình là: S = {0 } IV/Phương trình tích Dạng tổng quát A(x).B(x)… = 0 Cách giải :A(x).B(x)… = 0      = = = ⇔ 0 0)( 0)( xB xA Ví dụ : Giải phương trình (5x+3)(2x-1) = (4x +2)(2x-1) ⇔ (5x+3)(2x-1) - (4x +2)(2x-1)=0 ⇔ (2x-1)[(5x+3)- (4x +2)] =0 ⇔ (2x-1 )[5x+3-4x -2] =0 ⇔ (2x-1)(x+1) = 0 ⇔    =+ =− 01 012 x x     −= = ⇔ 1 2 1 x x Vậy tập nghiệm của phương trình là S = { 2 1 ;-1} Bài tập Giải các phương trình sau 1/x(x+1)(x 2 +x+1)= 42 2/( x 2 -5x) 2 +10(x 2 -5x) +24 = 0 3/(x 2 +x+1).(x 2 +x+2) = 12 4/(x-1)(x-3)(x+5)(x+7)=2 V/Bất phương trình Giải các bất phương trình sau: CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 )1( 2 )12( 3 )23( /8 065/7 04/6 3 2 4 1 4 3 1/5 2 35 1 8 )2(3 4 13 /4 )1(4)25(2)14(3/3 28)2()2/(2 )1(253/1 22 2 2 22 +≤ + − − ≤+− ≥− − − + ≥ − −+ − ≥− − − − +≤+−+ −≥−−+ +−>− xx xx xx xx xxx x xxx xxx xxx xxx VI/ Phương trình chứa dấu giá trị tuyệt đối Giải phương trình: 1/ 2 1x − = 3 +5x (1) Nếu 2x-1 ≥ 0 ⇔ x ≥ 0,5 thì: 2 1x − = 2x-1 (1) ⇔ 2x-1 = 3 +5x ⇔ -3x = 4 ⇔ x = - 4 3 ( loại) Nếu 2x-1 <0 ⇔ x<0,5 thì: 2 1x − = 1-2x (1) ⇔ 1-2x = 3 +5x ⇔ - 2x- 5x = 3-1 ⇔ - 7x = 2 ⇔ x = - 7 2 (nhận) Vậy pt có nghiệm là : x= - 7 2 2/ x31− = 2 - x (2) 3/ 3321 =+++++ xxx (3) Bảng xét dấu: x -3 -2 - 1 x+1 - ↓ - ↓ - 0 + x+2 - ↓ - 0 + ↓ + x+3 - 0 + ↓ + ↓ + * Nếu x 3−≤ thì (3) ⇔ -(x+1)-(x+2)-(x+3) = 3 ⇔ -3x-6 = 3 ⇔ x =-3(nhận) * Nếu -3 2 −≤< x thì (3) ⇔ - (x+1) –(x+2)+(x+3) = 3 ⇔ -x =3 ⇔ x=-3(loại) CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 * Nếu -2 1−≤< x thì (3) ⇔ -(x+1)+x+2 x+3 =3 134 −=⇔=+⇔ xx (nhận) * Nếu x 1−> thì (3) ⇔ x+1+x+2+x+3 =3 133 −=⇔−=⇔ xx (loại) Vậy pt có nghiệm x=-1hoặc x=-3 BÀI TẬP: Giải các phương trình sau: 1/ 2112 +−=+ xx 2/ 12342 −=−+− xxx 3/ 8113 =−+− xx 4/ 01122 =−++−− xxx 5/ 36 5 2 1 9 4 9 3 + −= − − + x xx 222131/8 023214/7 351213/6 −+++=−++ =+−−−+ +=−+− xxxxx xxx xxx VII/ Phương trình vô tỉ 1/ Dạng 1: A = B . Cách giải:      = ≥ ≥ 2 0 0 BA B A 2/Dạng 2: A B C+ = hoặc : CBA =− Cách giải: Bình phương hai vế không âm của phương trình đưa về dạng (1) Ví dụ : Giải phương trình: 52 +x - 53 −x =2 ⇔ 52 +x = 2 + 53 −x (1) CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 ĐK: 3 5 3 5 2 5 053 052 ≥⇔        ≥ − ≥ ⇔    ≥− ≥+ x x x x x Bình phương hai vế của (1)ta được: 2x +5 = 4 +3x – 5+4 53 −x ⇔ 4 53 −x = -x +6    +−=− ≤ ⇔ 3612)53(16 6 2 xxx x    =+− ≤ ⇔ 011660 6 2 xx x      = = ≤ ⇔ )(58 2 6 loaix x x (nhận) Kết hợp với ĐK đầu bài x=2(thõa) Vậy tập nghiệm của phương trình là:S={2} 3/ Dạng 3: Đặt ẩn phụ: Giải Pt : 1/ x 2 + 1+x = 1 (HSG tỉnh Kiên Giang 06-07) 2/ 42 2 4 =−+ − x x (1) ĐK: x 2> Đặt : t = 2−x 0> (1) ⇔ 2020)2(044444 4 222 =⇔=−⇔=−⇔=+−⇔=+⇔=+ tttttttt t (nhận) Với t = 2 ta được 64222 =⇔=−⇔=− xxx (nhận) Vậy pt có nghiệm x = 6 3/ x 2 + 155 2 =+x (1) Đặt t = 55 2 ≥+x 55 2222 −=⇔+=⇔ txxt (1) ⇔ (t 2 -5) + t = 15 40)5)(4(020 2 =⇔=+−⇔=−+⇔ ttttt (Nhận) hoặc t=-5 (loại) Với t = 4 ta được 45 2 =+x x⇔ 2 +5 = 16     = −= ⇔=⇔ 11 11 11 2 x x x Vậy phương trình có nghiệm : x = - 11 hoặc x= 11 4/ 4x 2 +4x +1 - 2 14 +x +1 =0 5/ x 2 +x +12 1+x =3 BÀI TẬP ÁP DỤNG Giải phương trình 1/ 1215 2 −=++ xxx 2/ 748532 +=−++ xxx 3/ x 2 +x+6 182 =+x 4/ 242 −−+ xx + 267 −−+ xx =1 CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 5/ 2 21 33 +=− xx (1)(HSG tỉnh Kiên Giang 05-06) ( Đặt t = 01 3 ≥− x ⇔ t 2 = 1- x 3 ⇔ x 3 = 1- t 2 (1) 0 )(3 )(1 032212 22 =⇒    −= = ⇔=−+⇔+−=⇔ x loait nhânt tttt 6/ 2 2 11 2 = − + x x (1).(HSG Tỉnh Kiên Giang 07-08) ĐK:    <<− ≠ ⇔    >− ≠ 22 0 02 0 2 x x x x (1) ⇔ 2 2 1 2 1 x x − −= 7/ 22 434 xxxx −=+− 8/ 411 22 =−−+++ xxxx 9/ 323232 22 −+++=++−− xxxxxx 10/ 04 4 2 2 3 =−+ − x x x 11/2x 2 +2 033 =−x 12/ 2 2 1 2 3 3 3 3 = + ++ x x 13/ 2 1 232 + =+++ x xx (chuyên HMĐ 20/6/08) 04 4 /17 3 1 32 /16 3 53 14 5/15 5168143/14 2 2 3 2 =−+ − += − −+ = −+ − −− =−−++−++ x x x x x xx x x x xxxx 18/ 3x 2 +6x +20 = 82 2 ++ xx 19/ x 2 +x+12 361 =+x 20/ xxxxx 24)3)(1(231 −=+−+++− . ( Đưa về HĐT) CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 21/ 490: 471 ≤≤ =−++ xĐKXĐ xx Đặt u = xvx −+ 7;1 .ta có hệ phương trình . 9 8 4 22 =⇒    =+ =+ x vu vu Chuyên đề 3: Tìm GTNN-GTLN I/Tìm GTNN: 1/ y = 52 2 +− xx = xx ∀≥++ ,24)1( 2 Miny = 2 khi x = -1 2/ y = 1 64 2 +− xx 3/ y = 2+ 54 2 +− xx 4/ y = 3106 2 −++ xx 5/ y = 102 9 2 ++ x x 6/ y = 172 8 3 2 +− − x x 7/ y = 1 4 2 −+ x x 8/ y = 32 22 2 2 ++ ++ xx xx = 1- 32 1 2 ++ xx =1- 2)1( 1 2 ++x Miny = 1- 2 1 2 1 = Khi x=-1 9/ g(x,y) = 3(x-y) 2 + ( 2 ) 11 yx − 14/ y = 32 −− xx 15/ y= x 2 -6x +10 10/A= 2005 2004 2005 2004 2005 )2005(20052 2 2 2 2 ≥+ − = +− x x x xx Vậy minA= 2005 2004 khi x = 2004 11/ A = a c c b b a ++ với a,b,c 0 Và a+b+c 3 ≥ 12/ Y = 267221 −−++−−− xxxx 13/ Cho x,y,z là những số thực và thoã x 2 +y 2 +z 2 =1 Tìm GTNN của A = 2xy +yz +zx II/ Tìm GTLN CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 1/ y = 22 2 ++− xx 2/ y = 2- 144 2 +− xx 3/ y = -2x 2 +x-1 4/ y = 42 1 23 ++− + xxx x 5/ A = 33 4 xxxx ++− .Với 0 2≤≤ x 6/ B = 793 1793 2 2 ++ ++ xx xx ( khi x= -3/2) 7/ A= -(x-1) 2 + 2 31 +−x Đặt: t= 44)1(321 22 ≤+−−=++−=⇒− tttAx Vậy MaxA = 4 khi t=1 ⇒ 11 =−x ⇒ x = 0 hoặc x = 2 8/ y = 106 116 2 2 +− +− xx xx III/ Tìm GTNN và GTLN 1/ A = 2 9 x− 2/ B = xx − 3/ y = 1 2 ++ − x x 4/ M = 1 1 2 2 +− ++ xx xx Ta có (x+1) 2 3 1 1 1 1)1(3133302420 2 2 22222 ≥ +− ++ ⇔−−≥++⇔+−≥++⇔≥++⇔≥ xx xx xxxxxxxxxx Do đó: MinM = )1( 3 1 Mặt khát: 3 1 1 133302420)1( 2 2 2222 ≤ +− ++ ⇔++≥+−⇔≥+−⇔≥− xx xx xxxxxxx Hay Max M = 3 (2)Từ (1) và (2) 3 3 1 ≤≤⇒ M Chuyên đề 4: ĐỒ THỊ VÀ HÀM SỐ A/Lý thuyết 1/ Phương trình đường thẳng (d) đi qua A(x 0 , y 0 ) và song song hoặc trùng với đường thẳng y = ax y- y 0 = a(x- x 0 ) hay y = a(x- x 0 ) + y 0 2/ Phương trình đường thẳng (d) có hệ số góc k :y = kx +b Ví dụ: Lập phương trình đường thẳng (d) qua A(-1,-1) và có hệ số góc bằng 3 Đường thẳng (d) có hệ số góc bằng 3 có phương trình : y = 3x + b Vì A(-1,-1) thuộc (d) nên : -1 = 3.(-1) + b ⇔ b =2 Vậy phương trình đường thẳng (d) có dạng y = 3x +2. 3/ Phương trình đường thẳng qua 2 điểm A(x 0, y 0 ); B(x 1 ,y 1 ) có dạng: 01 0 01 0 xx xx yy yy − − = − − [...]... 5 − 3)2 = 5 − 3 65 + 2 98 4 = ( 41 + 24 ) 2 = 41 + 24 = 41 + 2 6 CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 4/ D = 49 − 2 600 = ( 25 − 24 ) 2 = 25 − 24 = 5 − 2 6 BÀI TẬP NÂNG CAO 1/ A = = 5 − 3 − 29 − 12 5 = 5 − 3− 2 5 +3 = 2/ B = 5 − 3 − 29 − 2 180 = 5 − 6−2 5 = 5 − ( 5 − 1) 2 = 66536 + 192 14168 3 / 20 + 2 96 4 / 110 + 2 1261 5 / 46 − 6 5 − 29 − 12 5 6 / 13 − 160 − 53 + 4 90 7 / 15 − 6 6 + 35 −...  CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 6  xy x + y = 5  4  yz = 7/  y+ z 3  xz 12 =  x + z 7  x( y − z ) = −4  8/  y ( z − x) = 9  z( x + y) = 1   x + 2 y + 3z = 7  9/  x − 3 y + 2 z = 5 x + y + z = 3  x + y = 1 y + z = 2  z + t = 3  11/ t + p = 4 p + q = 5  q + r = 6 r + x = 7  24  xyz x + y = 5  24  xyz = 10/  5 y+ z  xyz =4  x + z CÁC CHUYÊN ĐỀ ÔN THI. .. − 12 6 8 / 2 + 2 5 + 13 − 48 9/ 6 − 2 2 + 12 + 18 − 128 10 / 5 3 + 5 48 − 10 7 + 4 3 Chuyên đề 7: 5 − 3 − ( 20 − 9 ) 2 = Parabol và đường thẳng 1/ Cho (P) : y = 0,5.x2 và (d) : y = x +b a/ Với giá trị nào của b thì (d) cắt (P) tại hai điểm phân biệt 5 − 5 +1 = 1 = 1 5 − 3 − 20 + 9 CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 b/ Khi b = 4 tìm toạ độ A,B và tính khoảng cách AB 2/ Cho (P): y = 4x2 và... y = 1 y = 5 Vậy hệ phương trình có nghiệm  Bài tập Giải các hệ phương trình sau CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 3 x 2 − 2 x + 6 = 9 y  1/ 2 3 y − 2 y + 6 = 9 x  5 x 2 − 2 x + 3 = 6 y  2  2 2 / 2 2 x − 3 x = y − 2 5 y − 2 y + 3 = 6 x 4/ 4/  2  2 y − 3 y = x 2 − 2  2  2 x + 3 y = 12 3 / 2 2 y + 3 x = 12  (Chuyên HMĐ 20/6/2008) x 2 + 2 y + 1 = 0  5/  2  y − 2x... giá trị của a để Q dương 16/ Cho C = ( x + 3+ x x +9 3 x +1 1 ):( − ); x  0, x ≠ 9 9− x x−3 x x a/ Rút gọn C b/ Tìm x sau cho C  −1 17/ Cho P = ( 1 x −1 − a/ Tìm ĐKXĐ của P b/ Rút gọn P c/ Tìm x để P = 1 4 1 x ):( x +1 x −2 − x +2 x −1 ) CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 18/ Cho C = a +3 2 a −6 − 3− a 2 a +6 a/ Rút gọn C b/ Tìm a để C = 4 19/ A = ( x+2 x x +1 + x + 1 x + x +1 1− x ):( x... 11/ t + p = 4 p + q = 5  q + r = 6 r + x = 7  24  xyz x + y = 5  24  xyz = 10/  5 y+ z  xyz =4  x + z CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI CẤP THCS Phần I: ĐẠI SỐ CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 Giáo viên soạn: Dương Văn Phong Đơn vị công tác: Trường THCS Thị Trấn Thứ 11 ... nhau nếu: • Hai đường thẳng trùng nếu: a b c = ≠ a ' b' c ' a b c = = a ' b' c ' 5/ Khoảng cách h từ gốc toạ độ đến đường thẳng ax+by = c h= c a2 + b2 6/ Khoảng cách từ O đến A với : • A(0,yA) thì OA = y A • A(xA,0) thì OA = x A • A(xA,yA) thì OA = 2 2 xA + yA CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 7/ Khoảng cách giữa hai điểm A(x,y); B(x’,y’) trên mặt phẳng toạ độ: AB = 8/ Trung điểm M của đoạn... đường thẳng vuông góc với nhau 7/ Cho hai đường thẳng y= 3x +1(d1) và y = -x +2(d2) Viết phương trình đường thẳng (d3) biết: CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 a/ (d3) song song với (d1) và (d3) cắt (d2) tại điểm có hoành độ bằng 1 b/ (d3) vuông góc vời (d2) và (d3) cắt (d1) tại điểm có tung độ bằng 4 8/ Chứng minh rằng : y = 2x +4 , y = 3x + 5 , y = -2x cùng đi qua một điểm 9/ Cho A(3,4)... Cho PT : (m +1)x2 – 2( m-1)x +m -3 =0 a./ CMR PT luôn có hai nghiệm phân biệt với mọi m CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 b/ Gọi x1, x2 là nghiệm của PT Tìm m để x1.x2 ≥ 0, x1 = 2 x2 14/ Cho PT : 2x2 – 2mx +m2 -2 =0 Tìm m để PT có a/ Hai nghiệm dương phân biệt b/ Hai nghiệm phân biệt x1, x2 sao cho x13+x23= 5 2 c/ G/S PT có hai nghiệm không âm Tìm m để nghiệm dương đạt GTLN 15/ Cho PT: (m+3)x2... y = 6  y = 2x − 6  y = 2x − 6 x = 3 ⇔ ⇔ ⇔  3 x + y = 9 3 x + (2 x − 6) = 9 5 x = 15 y = 0 III/ Giải hệ phương trình bằng phương pháp đặt ẩn phụ Ví dụ : Giải hệ phương trình y  2x  x +1 + y +1 = 3  1/   x + 3 y = −1  x +1 y +1  x y ,v = Đặt u = Hệ phương trình trở thành x +1 y +1 CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 2u + v = 3 2u + v = 3 2u + v = 3 2u + v = 3 u = 2 ⇔ . CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 PHẦN :ĐẠI SỐ CHUYÊN ĐÊ 1 PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I/. 62412441)2441 (98 4265 2 +=+=+=+ CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 4/ D = 6252425)2425(6002 49 2 −=−=−=− BÀI TẬP NÂNG CAO 11155)15(5526535235 92 035 )92 0(351802 293 5512 293 5/1 2 2 ==+−=−−=−−=+−−= +−−=−−−=−−−=−−−=A 2/. CÁC CHUYÊN ĐỀ ÔN THI HỌC SINH GIỎI TOÁN LỚP 9 1/ y = 22 2 ++− xx 2/ y = 2- 144 2 +− xx 3/ y = -2x 2 +x-1 4/ y = 42 1 23 ++− + xxx x 5/ A = 33 4 xxxx ++− .Với 0 2≤≤ x 6/ B = 793 1 793 2 2 ++ ++ xx xx

Ngày đăng: 07/08/2014, 20:47

TỪ KHÓA LIÊN QUAN

w