Một số phương pháp tìm giá trị lớn nhất, nhỏ nhất pot

52 2.9K 9
Một số phương pháp tìm giá trị lớn nhất, nhỏ nhất pot

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

MỘT PHƯƠNG PHÁP TÌM GIÁ TRỊ NHỎ NHẤT VÀ GIẤ TRỊ LỚN NHẤT Trong bài viết này, tôi đề cập đến một dạng toán tìm giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của một biểu thức nhiều ẩn, trong đó các ẩn là nghiệm của những phương trình hoặc bất phương trình cho trước. Đối với dạng toán này, ta cần xác định và giải một bất phương trình một ẩn mà ẩn đó là biểu thức cần tìm GTLN, GTNN. Bài toán 1 : Tìm GTLN và GTNN của xy biết x và y là nghiệm của phương trình x 4 + y 4 - 3 = xy(1 - 2xy) Lời giải : Ta có x 4 + y 4 - 3 = xy(1 - 2xy) <=> xy + 3 = x 4 + y 4 + 2x 2 y 2 <=> xy + 3 = (x 2 + y 2 ) 2 (1). Do (x 2 - y 2 ) 2 ≥ 0 với mọi x, y, dễ dàng suy ra (x 2 + y 2 ) 2 ≥ 4(xy) 2 với mọi x, y (2). Từ (1) và (2) ta có : xy + 3 ≥ 4(xy) 2 <=> 4t 2 - t - 3 ≤ 0 (với t = xy) <=> (t - 1)(4t + 3) ≤ 0 Vậy : t = xy đạt GTLN bằng 1 <=> x = y = 1 ; t = xy đạt GTNN bằng Bài toán 2 : Cho x, y, z là các số dương thỏa mãn xyz ≥ x + y + z + 2. Tìm GTNN của x + y + z. Lời giải : áp dụng bất đẳng thức Cô-si cho ba số dương x, y, z ta có : Vậy t = x + y + z đạt GTNN bằng 6 khi và chỉ khi x = y = z = 2. Bài toán 3 : Cho các số thực x, y, z thỏa mãn x 2 + 2y 2 + 2x 2 z 2 + y 2 z 2 + 3x2y 2 z 2 = 9. Tìm GTLN và GTNN của A = xyz. Lời giải : x 2 + 2y 2 + 2x 2 z 2 + y 2 z 2 + 3x 2 y 2 z 2 = 9 <=> (x 2 + y 2 z 2 ) + 2(y 2 + x 2 z 2 ) + 3x 2 y 2 z 2 = 9 (1). áp dụng bất đẳng thức m 2 + n 2 ≥ 2|mn| với mọi m, n ta có : x 2 + y 2 z 2 ≥ 2|xyz| ; y 2 + x 2 z 2 ≥ 2|xyz| (2). Từ (1) và (2) suy ra : 2|xyz| + 4|xyz| + 3(xyz)2 ≤ 9 <=> 3A 2 + 6|A| - 9 ≤ 0 <=> A 2 + 2|A| - 3 ≤ 0 <=> (|A| - 1)(|A| + 3) ≤ 0 <=> |A| ≤ 1 <=> -1 ≤ A ≤ 1. Vậy : A đạt GTLN bằng 1 A đạt GTNN bằng -1 Bài toán 4 : Cho các số thực x, y, z thỏa mãn x 4 + y 4 + x 2 - 3 = 2y 2 (1 - x 2 ). Tìm GTLN và GTNN của x 2 + y 2 . Lời giải : Ta có x 4 + y 4 + x 2 - 3 = 2y 2 (1 - x 2 ) <=> (x 2 + y 2 ) 2 - 2(x 2 + y 2 ) - 3 = -3x 2 ≤ 0 => t 2 - 2t - 3 ≤ 0 (với t = x 2 + y2 ≥ 0) => (t + 1)(t - 3) ≤ 0 => t ≤ 3 Vậy t = x 2 + y 2 đạt GTLN bằng 3 khi và chỉ khi x = 0 ; Ta lại có x 4 + y 4 + x 2 - 3 = 2y 2 (1 - x 2 ) <=> (x 2 + y 2 ) 2 + x 2 + y 2 - 3 = 3y 2 ≥ 0 => t 2 + t - 3 ≥ 0 (với t = x 2 + y 2 ≥ 0) Vậy t = x 2 + y 2 đạt GTNN bằng khi và chỉ khi y = 0 ; Bài tập tương tự 1) Cho x, y, z thỏa mãn : 2xyz + xy + yz + zx ≤ 1. Tìm GTLN của xyz. Đáp số : 1/8(x = y = z = 1/2) 2) Cho ba số dương x, y, z thỏa mãn : (x + y + z) 3 + x 2 + y 2 + z 2 + 4 = 29xyz Tìm GTNN của xyz. Đáp số : 8 (x = y = z = 2). 3) Tìm GTLN và GTNN của S = x 2 + y 2 biết x và y là nghiệm của phương trình : 5x 2 + 8xy + 5y 2 = 36 Đáp số : GTLN là 36 GTNN là 4 4) Cho x và y là các số thực thỏa mãn : Tìm GTLN của x 2 + y 2 . Đáp số : 1 (x = -1 ; y = 0). 5) Cho các số thực x, y, z thỏa mãn : x 2 + 4y 2 + z 2 = 4xy + 5x - 10y +2z - 5 Tìm GTLN và GTNN của x - 2y. Đáp số : GTLN là 4 (x = 2y + 4 ; y Є R ; z = 1) ; GTNN là 1 (x = 2y + 1 ; y Є R ; z = 1). 6) Tìm các số nguyên không âm x, y, z, t để M = x 2 + y 2 + 2z 2 + t 2 đạt GTNN, biết rằng : Đáp số : x = 5 ; y = 2 ; z = 4 ; t = 0. Khi đó M đạt giá trị nhỏ nhất là 61. MỘT HẰNG ĐẲNG THỨC THÚ VỊ Với mọi số thực a, b, c, ta có : (a + b)(a + c) = a 2 + (ab + bc + ca) = a(a + b + c) + bc (*). Với tôi, (*) là hằng đẳng thức rất thú vị. Trước hết, từ (*) ta có ngay : Hệ quả 1 : Nếu ab + bc + ca = 1 thì a 2 + 1 = (a + b)(a + c). Hệ quả 2 : Nếu a + b + c = 1 thì a + bc = (a + b)(a + c). Bây giờ, chúng ta đến với một vài ứng dụng của (*) và hai hệ quả trên. Bài toán 1 : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = 1. Hãy tính giá trị của biểu thức : Lời giải : Theo hệ quả 1 ta có a 2 + 1 = a 2 + (ab + bc + ca) = (a + b)(a + c) ; b 2 + 1 = b 2 + (ab + bc + ca) = (b + a)(b + c) ; c 2 + 1 = c 2 + (ab + bc + ca) = (c + a)(c + b). Suy ra Vì vậy A = a(b + c) + b(c + a) + c(a + b) = 2(ab + bc + ca) = 2. Vấn đề sẽ khó hơn khi ta hướng tới việc đánh giá các biểu thức. Bài toán 2 : Cho ba số dương a, b, c thỏa mãn (a +b)(a +c) = 1. Chứng minh rằng : Lời giải : a) Sử dụng bất đẳng thức Cô-si cho hai số dương a(a + b + c) ; bc : 1 = (a + b)( a + c) = a(a + b + c) + bc ≥ b) Sử dụng bất đẳng thức Cô-si cho ba số dương a 2 ; (ab + bc + ca)/2 ; (ab + bc + ca)/2 1 = (a + b)( a + c) = a 2 + (ab + bc + ca) = Bài toán 3 : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = 1. Chứng minh rằng : Lời giải : Theo hệ quả 1 ta có Sử dụng bất đẳng thức Cô-si cho hai số dương a 2 + ab ; a 2 + ac : Tương tự ta có Từ các kết quả trên ta suy ra : Bài toán sau đây nguyên là đề thi Châu á - Thái Bình Dương năm 2002 đã được viết lại cho đơn giản hơn (thay (1/x ; 1/y ; 1/z) bởi (a ; b ; c)). Bài toán 4 : Cho ba số dương a, b, c thỏa mãn a + b + c = 1. Chứng minh rằng : Lời giải : Theo hệ quả 2 và bất đẳng thức Bu-nhi-a-cốp-ski ta có Tương tự ta có Từ các kết quả trên ta suy ra : Để kết thúc, xin các bạn làm thêm một số bài tập : Bài tập 1 : Cho ba số dương a, b, c thỏa mãn a + b + c = 1. Hãy tính giá trị của biểu thức : Bài tập 2 : Cho ba số dương a, b, c thỏa mãn ab + bc + ca = 1. Chứng minh rằng : Bài tập 3 : Cho ba số dương a, b, c thỏa mãn a + b + c = 1. Chứng minh rằng : (a + bc)(b + ca)(c + ab) ≥ 64/81(ab + bc + ca) 2 . LÀM QUEN VỚI BẤT ĐẲNG THỨC TRÊ-BƯ-SEP Các bạn đã từng được làm quen với các bất đẳng thức Cô si, Bunhiacôpski nhưng không ít bạn còn chưa biết về bất đẳng thức Trê - bư - sép. Con đường đi đến bất đẳng thức này thật là giản dị, quá gần gũi với những kiến thức cơ bản của các bạn bậc THCS. Các bạn có thể thấy ngay : Nếu a 1 ≤ a 2 và b 1 ≤ b 2 thì (a 2 - a 1 ) (b 2 - b 1 ) ≥ 0. Khai triển vế trái của bất đẳng thức này ta có : a 1 b 1 + a 2 b 2 - a 1 b 2 - a 2 b 1 ≥ 0 => : a 1 b 1 + a 2 b 2 ≥ a 1 b 2 + a 2 b 1 . Nếu cộng thêm a 1 b 1 + a 2 b 2 vào cả hai vế ta được : 2 (a 1 b 1 + a 2 b 2 ) ≥ a 1 (b 1 + b 2 ) + a 2 (b 1 + b 2 ) => : 2 (a 1 b 1 + a 2 b 2 ) ≥ (a 1 + a 2 ) (b 1 + b 2 ) (*) Bất đẳng thức (*) chính là bất đẳng thức Trê - bư - sép với n = 2. Nếu thay đổi giả thiết, cho a 1 ≤ a 2 và b 1 ≥ b 2 thì tất cả các bất đẳng thức trên cùng đổi chiều và ta có : 2 (a 1 b 1 + a 2 b 2 ) ≤ (a 1 + a 2 ) (b 1 + b 2 ) (**) Các bất đẳng thức (*) và (**) đều trở thành đẳng thức khi và chỉ khi a 1 = a 2 hoặc b 1 = b 2 . Làm theo con đường đi tới (*) hoặc (**), các bạn có thể giải quyết nhiều bài toán rất thú vị. Bài toán 1 : Biết rằng x + y = 2. Chứng minh x 2003 + y 2003 ≤ x 2004 + y 2004 . Lời giải : Do vai trò bình đẳng của x và y nên có thể giả sử x ≤ y. Từ đó => : x 2003 ≤ y 2003 . Do đó (y 2003 - x 2003 ).(y - x) ≥ 0 => : x 2004 + y 2004 ≥ x.y 2003 + y.x 2003 Cộng thêm x 2004 + y 2004 vào hai vế ta có : 2.(x 2004 + y 2004 ) ≥ (x+y) (x 2003 + y 2003 ) = 2.(x 2003 + y 2003 ) => : x 2004 + y 2004 ≥ x 2003 + y 2003 (đpcm). Để ý rằng : Bất đẳng thức vừa chứng minh trở thành đẳng thức khi và chỉ khi x = y = 1 ; các bạn sẽ có lời giải của các bài toán sau : Bài toán 2 : Giải hệ phương trình : Nếu các bạn quan tâm tới các yếu tố trong tam giác thì vận dụng các bất đẳng thức (*) hoặc (**) sẽ dẫn đến nhiều bài toán mới. Bài toán 3 : Cho tam giác ABC có diện tích bằng 1. AH và BK là các đường cao của tam giác. Chứng minh : (BC + CA).(AH + BK) ≥ 8. Lời giải : Ta có AH x BC = BK x CA = 2. Do vai trò bình đẳng của BC và CA nên có thể giả sử rằng BC ≤ CA => 2/BC ≥ 2/CA => AH ≥ BK. Do đó (CA - BC).(BK - AH) ≤ 0 => : CA x BK + BC x AH ≤ BC x BK + CA x AH Cộng thêm CA x BK + BC x AH vào 2 vế ta có : 2.(CA x BK + BC x AH) ≤ (BC + CA) (AH + BK) => : (BC + CA).(AH + BK) ≥ 8. Đẳng thức xảy ra khi và chỉ khi BC = CA hoặc BK = AH tương đương với BC = CA hay tam giác ABC là tam giác cân đỉnh C. Bài toán 4 : Cho tam giác ABC với BC = a, CA = b, AB = c và các đường cao tương ứng của các cạnh này có độ dài lần lượt là h a , h b , h c . Chứng minh : với S là diện tích tam giác ABC. Lời giải : Do vai trò bình đẳng của các cạnh trong tam giác nên có thể giả sử rằng a ≤ b ≤ c => : 2S/a ≥ 2S/b ≥ 2S/c => h a ≥ h b ≥ h c . Làm như lời giải bài toán 3 ta có : (a + b).(ha + hb) ≥ 8S => : 1/(h a + h b ) ≤ (a + b)/(8S) (1) Tương tự ta được : 1/(h b + h b ) ≤ (b + c)/(8S) (2) 1/(h c + h a ) ≤ (c + a)/(8S) (3) Cộng từng vế của (1), (2), (3) dẫn đến : Bất đẳng thức (4) trở thành đẳng thức khi và chỉ khi các bất đẳng thức (1), (2), (3) đồng thời trở thành đẳng thức tương đương với a = b = c hay tam giác ABC là tam giác đều. Bây giờ các bạn thử giải các bài tập sau đây : 1) Biết rằng x 2 + y 2 = 1. Tìm giá trị lớn nhất của F = (x 4 + y 4 ) / (x 6 + y 6 ) 2) Cho các số dương x, y, z thỏa mãn x + y + z = 1. Chứng minh : 3) Cho tam giác ABC có độ dài các cạnh lần lượt là a, b, c và độ dài các đường phân giác trong thuộc các cạnh này lần lượt là l a , l b , l c . Chứng minh : 4) Hãy dự đoán và chứng minh bất đẳng thức Trê - bư - sép với n = 3. Từ đó hãy sáng tạo ra các bài toán. Nếu bạn thấy thú vị với những khám phá của mình ở bài tập này, hãy gửi gấp bài viết về cho chuyên mục EUREKA của TTT2. PHƯƠNG PHÁP HOÁN VỊ VÒNG QUANH Phân tích thành nhân tử là một trong những kĩ năng cơ bản nhất của chương trình đại số bậc THCS. Kĩ năng này được sử dụng khi giải các bài toán : biến đổi đồng nhất các biểu thức toán học, giải phương trình, chứng minh bất đẳng thức và giải các bài toán cực trị Sách giáo khoa lớp 8 đã giới thiệu nhiều phương pháp phân tích thành nhân tử. Sau đây tôi xin nêu một phương pháp thường sử dụng, dựa vào việc kết hợp các phương pháp quen thuộc như đặt nhân tử chung, nhóm số hạng, hằng đẳng thức Phương pháp này dựa vào một số nhận xét sau đây : 1/ Giả sử phải phân tích biểu thức F(a, b, c) thành nhân tử, trong đó a, b, c có vai trò như nhau trong biểu thức đó. Nếu F(a, b, c) = 0 khi a = b thì F(a, b, c) sẽ chứa các nhân tử a - b, b - c và c - a. Bài toán 1 : Phân tích thành nhân tử : F(a, b, c) = a 2 (b - c) + b 2 (c - a) + c 2 (a - b). Nhận xét : Khi a = b ta có : F(a, b, c) = a 2 (a - c) + a 2 (c - a) = 0, do đó F(a, b, c) có chứa nhân tử a - b. Tương tự F(a, b, c) chứa các nhân tử b - c, c - a. Vì F(a, b, c) là biểu thức bậc ba, do đó F(a, b, c) = k.(a - b)(b - c)(c - a). Cho a = 1, b = 0, c = -1 ta có : 1 + 1 = k.1.1.(-2) => k = -1. Vậy : F(a, b, c) = -(a - b)(b - c)(c - a). Bài toán 2 : Phân tích thành nhân tử : F(a, b, c) = a 3 (b - c) + b 3 (c - a) + c 3 (a - b). Nhận xét : Tương tự như bài toán 1, ta thấy F(a, b, c) phải chứa các nhân tử a - b, b - c, c - a. Nhưng ở đây F(a, b, c) là biểu thức bậc bốn, trong khi đó (a - b)(b - c)(c - a) bậc ba, vì vậy F(a, b, c) phải có một thừa số bậc nhất của a, b, c. Do vai trò a, b, c như nhau nên thừa số này có dạng k(a + b + c). Do đó : F(a, b, c) = k(a - b)(b - c)(c - a)(a + b + c) Cho a = 0 ; b = 1 ; c = 2 => k = -1. Vậy : F(a, b, c) = -(a - b)(b - c)(c - a)(a + b + c). 2/ Trong một số bài toán, nếu F(a, b, c) là biểu thức đối xứng của a, b, c nhưng F(a, b, c) ≠ 0 khi a = b thì ta thử xem khi a = -b, F(a, b, c) có triệt tiêu không, nếu thỏa mãn thì F(a, b, c) chứa nhân tử a + b, và từ đó chứa các nhân tử b + c, c + a. Bài toán 3 : Chứng minh rằng : Nếu : 1/x + 1/y + 1/z = 1/(x + y + z) thì 1/x n + 1/y n + 1/z n = 1/(x n + y n + z n ) với mọi số nguyên lẻ n. Nhận xét : Từ giả thiết 1/x + 1/y + 1/z = 1/(x + y + z) => : (xy + xz + yz)(x + y + z) - xyz = 0 (*) Do đó ta thử phân tích biểu thức F(x, y, z) = (xy + xz + yz)(x + y + z) - xyz thành nhân tử. Chú ý rằng khi x = - y thì F(x, y, z) = - y 2 z + y 2 z = 0 nên F(x, y, z) chứa nhân tử x + y. Lập luận tương tự như bài toán 1, ta có F(x, y, z) = (x + y)(y + z)(x + z). Do đó (*) trở thành : (x + y)(y + z)(x + z) = 0 Tương đương với : x + y = 0 hoặc y + z = 0 hoặc z + x = 0 . Nếu x + y = 0 chẳng hạn thì x = - y và do n lẻ nên x n = (-y) n = -y n . Vậy : 1/x n + 1/y n + 1/z n = 1/(x n + y n + z n ) Tương tự cho các trường hợp còn lại, ta có đpcm. Có những khi ta phải linh hoạt hơn trong tình huống mà hai nguyên tắc trên không thỏa mãn : Bài toán 4 : Phân tích đa thức sau thành nhân tử : F(x, y, z) = x 3 + y 3 + z 3 - 3xyz. Nhận xét : Ta thấy rằng khi x = y hay x = -y thì F(x, y, z) ≠ 0. Nhưng nếu thay x = -(y + z) thì F(x, y, z) = 0 nên F(x, y, z) có nhân tử x + y + z. Chia F(x, y, z) cho x + y + z, ta được thương x 2 + y 2 + z 2 - xy - yz - zx và dư là 0. Do đó : F(x, y, z) = (x + y + z)(x 2 + y 2 + z 2 - xy - yz - zx). Ta có thể thêm bớt vào F(x, y, z) một lượng 3x 2 y + 3xy 2 để nhân được kết quả này. Các bạn hãy dùng các phương pháp và kết quả nêu trên để giải các bài tập sau đây. Bài toán 5 : Tính tổng : trong đó k = 1, 2, 3, 4. Bài toán 6 : Chứng minh rằng (a - b) 5 + (b - c) 5 + (c - a) 5 chia hết cho 5(a - b)(b - c)(c - a). TS. Lê Quốc Hán (ĐH Vinh) MỘT PHƯƠNG PHÁP TÌM NGHIỆM ĐỘC ĐÁO Bằng kiến thức hình học lớp 6 ta có thể giải được các phương trình bậc hai một ẩn được không ? Câu trả lời là ở trường hợp tổng quát thì không được, nhưng trong rất nhiều trường hợp ta vẫn có thể tìm được nghiệm dương. Ví dụ : Tìm nghiệm dương của phương trình x 2 + 10x = 39. Lời giải : Ta có : x 2 + 10x = 39 tương đương x 2 + 2.5.x = 39 Từ biến đổi trên, ta hình dung x là cạnh của một hình vuông thì diện tích của hình vuông đó là x 2 . Kéo dài mỗi cạnh của hình vuông thêm 5 đơn vị (như hình vẽ), ta dễ thấy : [...]... chia cho … một chục (?) Bài toán 15 : Lúc đầu có hai mảnh bìa, một cậu bé tinh nghịch cứ cầm một mảnh bìa lên lại xé ra làm bốn mảnh Cậu ta mong rằng cứ làm như vậy đến một lúc nào đó sẽ được số mảnh bìa là một số chính phương Cậu ta có thực hiện được mong muốn đó không ? CHỨNG MINH MỘT SỐ LÀ SỐ CHÍNH PHƯƠNG Các bạn đã được giới thiệu các phương pháp chứng minh một số không phải là số chính phương trong... Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương Bài toán 2 : Chứng minh số : là số chính phương Lời giải : Ta có : Vậy : là số chính phương Phương pháp 2 : Dựa vào tính chất đặc biệt Ta có thể chứng minh một tính chất rất đặc biệt : “Nếu a, b là hai số tự nhiên nguyên tố cùng nhau và a.b là một số chính phương thì a và b đều là các số chính phương Bài... ; 4 ; 1 Do đó số n có chữ số tận cùng là 8 nên n không phải là số chính phương Chú ý : Nhiều khi số đã cho có chữ số tận cùng là một trong các số 0 ; 1 ; 4 ; 5 ; 6 ; 9 nhưng vẫn không phải là số chính phương Khi đó các bạn phải lưu ý thêm một chút nữa : Nếu số chính phương chia hết cho số nguyên tố p thì phải chia hết cho p2 Bài toán 2 : Chứng minh số 1234567890 không phải là số chính phương Lời giải... thì số đó không phải là số chính phương Lời giải : Ta thấy tổng các chữ số của số 2004 là 6 nên 2004 chia hết cho 3 mà không chia hết 9 nên số có tổng các chữ số là 2004 cũng chia hết cho 3 mà không chia hết cho 9, do đó số này không phải là số chính phương 2 Dùng tính chất của số dư Chẳng hạn các em gặp bài toán sau đây : Bài toán 4 : Chứng minh một số có tổng các chữ số là 2006 không phải là số chính... Sau đây là một số bài tập để các bạn thử vận dụng : 1 Tìm nghiệm tự nhiên của phương trình : x6 - x4 + 2x3 + 2x2 = y2 2 Cho ab ≥ 1 Chứng minh : 1/(1 + a2) + 1/(1 + b2) ≥ 2/(1 + ab) 3 Chứng minh rằng với mỗi số nguyên lẻ n thì (n86 - n4 + n2) chia hết cho 1152 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN Trong quá trình giảng dạy và làm toán, tôi đã hệ thống được một số phương pháp giải phương trình... chính phương trong TTT2 số 9 Bài viết này, tôi muốn giới thiệu với các bạn bài toán chứng minh một số là số chính phương Phương pháp 1 : Dựa vào định nghĩa Ta biết rằng, số chính phương là bình phương của một số tự nhiên Dựa vào định nghĩa này, ta có thể định hướng giải quyết các bài toán Bài toán 1 : Chứng minh : Với mọi số tự nhiên n thì an = n(n + 1)(n + 2)(n + 3) + 1 là số chính phương Lời giải : Ta... nhất (ƯCLN) và bội chung nhỏ nhất (BCNN), các bạn sẽ gặp dạng toán tìm hai số nguyên dương khi biết một số yếu tố trong đó có các dữ kiện về ƯCLN và BCNN Phương pháp chung để giải : 1/ Dựa vào định nghĩa ƯCLN để biểu diễn hai số phải tìm, liên hệ với các yếu tố đã cho để tìm hai số 2/ Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó... + 1 là các số tự nhiên nguyên tố cùng nhau, thỏa mãn (*) nên chúng đều là các số chính phương Cuối cùng xin gửi tới các bạn một số bài toán thú vị về số chính phương : 1) Chứng minh các số sau đây là số chính phương : 2) Cho các số nguyên dương a, b, c đôi một nguyên tố cùng nhau, thỏa mãn : 1/a + 1/b = 1/c Hãy cho biết a + b có là số chính phương hay không ? 3) Chứng minh rằng, với mọi số tự nhiên... giải : 1/ Tìm hai số a, b biết 7a = 11b và (a, b) = 45 2/ Tìm hai số biết tổng của chúng bằng 448, ƯCLN của chúng bằng 16 và chúng có các chữ số hàng đơn vị giống nhau 3/ Cho hai số tự nhiên a và b Tìm tất cả các số tự nhiên c sao cho trong ba số, tích của hai số luôn chia hết cho số còn lại MỘT SỐ DẠNG TOÁN SỬ DỤNG PHÉP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ Sau khi xem xong tạp chí Toán Tuổi thơ 2 số 5 (tháng... chữ số tận cùng Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9 Từ đó các em có thể giải được bài toán kiểu sau đây : Bài toán 1 : Chứng minh số : n = 20042 + 20032 + 20022 - 20012 không phải là số chính phương Lời giải : Dễ dàng thấy chữ số tận cùng của các số 20042 ; 20032 ; 20022 ; 20012 . MỘT PHƯƠNG PHÁP TÌM GIÁ TRỊ NHỎ NHẤT VÀ GIẤ TRỊ LỚN NHẤT Trong bài viết này, tôi đề cập đến một dạng toán tìm giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của một biểu thức. Trong một số trường hợp như vậy, ta có thể tìm cách đánh giá giữa các ẩn hoặc giữa ẩn với một số, từ đó xác định nghiệm của hệ. Phương pháp này gọi là phương pháp đánh giá các ẩn”. 1. Đánh giá. mỗi số nguyên lẻ n thì (n 86 - n4 + n2) chia hết cho 1152. MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN Trong quá trình giảng dạy và làm toán, tôi đã hệ thống được một số phương pháp

Ngày đăng: 06/08/2014, 02:20

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan