Áp dụng chương trình MCNP5 để tính tonas hiệu suất của Detector HPGe GEM 15P4
Trang 1BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH
TRỊNH HOÀI VINH
ÁP DỤNG CHƯƠNG TRÌNH MCNP5 ĐỂ TÍNH TOÁN HIỆU SUẤT CỦA DETECTOR HPGe GEM 15P4
Chuyên ngành: Vật lý nguyên tử, hạt nhân và năng lượng cao
Mã số: 60.44.05
LUẬN VĂN THẠC SĨ VẬT LÝ
Người hướng dẫn khoa học: TS VÕ XUÂN ÂN
Thành phố Hồ Chí Minh – 2010
Trang 2LỜI CẢM ƠN
Trong quá trình thực hiện và hoàn thành luận văn này, tác giả đã nhận được sự quan tâm và giúp
đỡ rất lớn từ Thầy cô, đồng nghiệp và gia đình Tôi xin được bày tỏ lòng biết ơn chân thành của mình đến:
Thầy TS Võ Xuân Ân, người hướng dẫn khoa học, đã mang đến cho tôi những kiến thức và phương pháp nghiên cứu khoa học, truyền đạt tinh thần học hỏi và giúp tôi vượt qua những vướng mắc trong suốt quá trình thực hiện luận văn
Thầy TS Nguyễn Văn Hoa, Thầy PGS TS Lê Văn Hoàng, hai người Thầy đã gợi ý những phương hướng nghiên cứu, đóng góp ý kiến và động viên tôi từ những ngày đầu thực hiện luận văn Thầy TS Thái Khắc Định, người đã dành nhiều công sức cho dự án Phòng thí nghiệm Vật lý Hạt nhân mà một trong những kết quả là hệ phổ kế gamma phông thấp đã được sử dụng trong nghiên cứu này
Quý Thầy cô trong Bộ môn Vật lý Hạt nhân và Khoa Vật lý, Trường Đại học Sư phạm TP HCM
đã đóng góp những ý kiến thảo luận quý báu và luôn tạo mọi điều kiện thuận lợi về cơ sở vật chất để tôi có thể thực hiện các nghiên cứu phục vụ cho luận văn
Cuối cùng, xin cảm ơn gia đình đã hỗ trợ tôi về mọi mặt
Trang 3BẢNG CÁC CHỮ VIẾT TẮT
Chữ viết tắt Tiếng Việt Tiếng Anh
ACTL Thư viện số liệu ACTL ACTivation Library
CYLTRAN Chuong trình mô phỏng
Monte Carlo CYLTRAN
CYLTRAN
An electron/photon transport code
DE Thoát đôi Double Escape
DETEFF Chương trình mô phỏng
Monte Carlo DETEFF
DETector EFFiciency
EGS Chương trình mô phỏng
Monte Carlo EGS
Electron Gamma
A Monte Carlo simulation code of the coupled transport of electrons and photon
ENDF Thư viện số liệu ENDF Evaluated Nuclear Data File ENDL Thư viện số liệu ENDL Evaluated Nuclear Data Library FWHM Độ rộng đỉnh năng lượng
toàn phần tại một nữa chiều cao cực đại
Full Width at Half Maximum
Ge(Li) Detector germanium khuếch
tán lithium
Germanium(Lithium)
GEANT Chương trình mô phỏng
Monte Carlo GEANT
GEANT
A toolkit for the simulation of the passage of particles through matter GESPECOR Chương trình mô phỏng
Monte Carlo GESPECOR
Germanium SPEctroscopy CORrection Factors HPGe Detector germanium siêu tinh
khiết
High Purity Gemanium
MCNG Chương trình Monte Carlo
Trang 4MỞ ĐẦU
Với sự ra đời của detector germanium siêu tinh khiết (HPGe) và silicon (Si) trong suốt thập kỉ
1960, lĩnh vực đo phổ gamma đã được cách mạng hóa và trở thành công nghệ phát triển Trong nhiều lĩnh vực của khoa học hạt nhân ứng dụng, detector ghi bức xạ gamma được sử dụng để xác định hàm lượng của các hạt nhân phóng xạ phát gamma trong mẫu môi trường Những detector ghi bức xạ gamma đã đóng vai trò quan trọng trong các phòng thí nghiệm phân tích phóng xạ trên khắp thế giới nhờ vào kỹ thuật phân tích không phá mẫu và khả năng phân giải cao Việc sử dụng các detector bán dẫn siêu tinh khiết đã mang lại các kết quả chính xác hơn cho việc ghi nhận các bức xạ gamma ở các năng lượng khác nhau Ở Việt Nam, nhiều cơ sở như Viện Khoa học và Kỹ thuật hạt nhân Hà Nội, Viện Nghiên cứu Hạt nhân Đà Lạt, Trung tâm Hạt nhân TP HCM, Bộ môn Vật lý hạt nhân – Trường Đại học KHTN TP HCM đã trang bị các hệ phổ kế gamma loại này trong nghiên cứu và ứng dụng phân tích mẫu môi trường hoạt độ thấp
Muốn xác định cường độ chùm tia gamma, điều cần thiết là phải biết chính xác hiệu suất đỉnh năng lượng toàn phần ở cấu hình đo tương ứng Phương pháp truyền thống để chuẩn hiệu suất cho các detector gamma bán dẫn là xác định trực tiếp đáp ứng của detector đối với các bức xạ gamma ở những năng lượng khác nhau thông qua việc sử dụng các nguồn chuẩn đơn năng hoặc đa năng đã biết trước hoạt độ Hiệu suất có được ở những năng lượng này sau đó được ngoại suy cho toàn vùng năng lượng quan tâm để thu được một đường cong hiệu suất Đường cong hiệu suất này có thể được sử dụng để tính toán hoạt độ các nhân phóng xạ trong mẫu đo nếu nó phát ra tia gamma có năng lượng nằm trong khoảng mà đường cong hiệu suất bao quát Mặc dù cách làm này thường gặp trong thực tế và có vẻ đơn giản, nhưng để thu được những kết quả chính xác cần phải xem xét rất nhiều vấn đề phức tạp trong quy trình thực hiện Có thể kể đến ở đây là thời gian và chi phí khi tiến hành thực nghiệm; điều kiện của phòng thí nghiệm về nguồn chuẩn phóng xạ; những vấn đề về kích thước, matrix của mẫu và hình học đo; nhiễm bẩn phóng xạ; những sai số gặp phải khi xây dựng đường cong hiệu suất bằng việc làm khớp
dữ liệu thực nghiệm với đường cong lý thuyết cũng như sự cần thiết phải tiến hành rất nhiều hiệu chỉnh cho những thông tin thu được từ phổ gamma của mẫu đo Ngoài ra, phương pháp này cũng gặp một hạn chế rất lớn khi phải làm khớp từng phần các dữ liệu đo đạc gián đoạn Do hình dạng của hàm hiệu suất phức tạp và nguồn chuẩn thường có sai số nên cần phải tiến hành rất nhiều đo đạc trải dài trên vùng năng lượng quan tâm để có thể đảm bảo rằng sai số trong việc nội suy là nhỏ Do đó, nhiều phương pháp tính toán và sự hỗ trợ của những phương pháp cho việc chuẩn hiệu suất detector đã được
Trang 5quan tâm nghiên cứu trong nhiều thập niên trở lại đây, đặc biệt là từ khi có sự phát triển mạnh mẽ của công nghệ máy tính và những nhân tố liên quan Trong đó, những cách tiếp cận cho thấy triển vọng đều dựa trên phương pháp Monte Carlo
Kể từ những tính toán đầu tiên của Zerby và Moran [44] vào năm 1958 cho đến nay đã có hàng ngàn công trình sử dụng phương pháp Monte Carlo để chuẩn hiệu suất cho detector gamma [14], [15], [16], [17], [23], [38] Trong 10 – 15 năm trở lại đây, các tính toán Monte Carlo với chương trình MCNP đã cho thấy hiệu lực trong việc xác định hiệu suất của detector Ưu điểm chính của mô phỏng này là nó có thể cho kết quả chính xác đáp ứng hiệu suất của detector mà không cần nhiều đo đạc thực nghiệm Không chỉ khẳng định hiệu lực của phương pháp Monte Carlo trong việc tính toán hiệu suất, các nghiên cứu còn cho thấy nhiều ưu điểm khác của nó Một khi đã mô hình hóa chính xác detector, Monte Carlo có thể mô phỏng phổ gamma của các nhân phóng xạ ở nhiều matrix và cấu hình khác nhau [5]; tính toán các hệ số hiệu chỉnh các hiệu ứng trùng phùng, matrix và mật độ cho một loại mẫu bất kỳ [1], [22], [28], [41]; khảo sát các yếu tố liên quan đến đáp ứng của detector đối với bức xạ gamma tới [3], [7]; thiết kế hệ phổ kế triệt nền compton [40] Ngoài ra đây còn là một công cụ lý thuyết mạnh để đánh giá và theo dõi sự thay đổi của hệ phổ kế gamm theo thời gian [4], [6], [36] Chính nhờ
ưu điểm này mà phương pháp Monte Carlo đã được ứng dụng rộng rãi, đặc biệt các chương trình mô phỏng dựng sẵn như MCNP5 đã góp phần thúc đẩy việc sử dụng phương pháp mô phỏng trong lĩnh vực nghiên cứu vật lý hạt nhân
Từ những phân tích trên tôi đã chọn đề tài: “Áp dụng chương trình MCNP5 để tính toán hiệu suất của detector GEM 15P4”
Mục tiêu của luận văn là: (1) xây dựng bộ số liệu đầu vào về kích thước hình học và cấu trúc vật liệu của buồng chì và detector cũng như cấu trúc nguồn phóng xạ hướng tới mô hình hóa chi tiết hệ phổ kế; (2) mô phỏng phổ gamma của nguồn 60Co, đánh giá phổ gamma, so sánh với các giá trị thực nghiệm; (3) trên cơ sở xác định độ tin cậy của chương trình mô phỏng, thiết lập đường cong hiệu suất theo năng lượng đồng thời khảo sát sự thay đổi của hiệu suất theo khoảng cách giữa nguồn và detector; (4) tiến tới xây dựng một công thức giải tích cho hiệu suất là hàm của năng lượng và khoảng cách đối với cấu hình đo đồng trục của nguồn điểm
Đối tượng nghiên cứu của luận văn này là detector GEM 15P4 loại p được sản xuất bởi EG&G Ortec (Oak Ridge, Tennessee) đặt tại phòng thí nghiệm Vật lý hạt nhân, Trường Đại học Sư phạm TP HCM Nguồn phóng xạ dạng điểm model RSS-8EU do hãng Spectrum Techniques LLC sản suất
Trang 6Phương pháp nghiên cứu của luận văn là kết hợp đo đạc thực nghiệm và mô phỏng Monte Carlo với chương trình MCNP phiên bản 5 được xây dựng bởi Phòng thí nghiệm quốc gia Los Alamos, Hoa
kỳ Chương trình được sử dụng dưới sự cho phép của Cục An toàn Bức xạ và Hạt nhân Hiệu lực của
mô hình tính toán được kiểm tra bởi thực nghiệm tương ứng
Với nội dung đó, luận văn sẽ được trình bày thành bốn phần như sau:
+ Chương 1: TỔNG QUAN, giới thiệu một cách khái quát các vấn đề về tương tác của photon với vật chất, về detector và phương pháp mô phỏng Monte Carlo với chương trình MCNP5, những nghiên cứu trong và ngoài nước liên quan đến đề tài
+ Chương 2: MÔ HÌNH HÓA HỆ PHỔ KẾ GAMMA DETECTOR HPGe, trình bày các bước thực hiện bài toán mô phỏng, xây dựng input, tính toán lại bề dày lớp germanium bất hoạt, kiểm tra độ tin cậy của chương trình mô phỏng, mô phỏng phổ gamma của nguồn 60Co
+ Chương 3: MÔ PHỎNG ĐƯỜNG CONG HIỆU SUẤT ĐỈNH NĂNG LƯỢNG TOÀN PHẦN, thiết lập đường cong hiệu suất theo năng lượng và khoảng cách, xây dựng công thức giải tích cho hiệu suất là hàm của năng lượng và khoảng cách nguồn – detector
+ Chương 4: KẾT LUẬN VÀ KIẾN NGHỊ, tổng kết và đánh giá các kết quả đạt được, đưa ra kiến nghị về những hướng nghiên cứu khác liên quan đến nội dung luận văn
Trang 7CHƯƠNG 1 TỔNG QUAN
1.1 DETECTOR GHI BỨC XẠ GAMMA
1.1.1 Tương tác của photon với vật chất
Mặc dù các tia gamma có thể tương tác với vật chất theo nhiều cơ chế khác nhau, nhưng trong ghi
đo bức xạ ba quá trình đóng vai trò quan trọng nhất là: hấp thụ quang điện, tán xạ Compton và tạo cặp [25] Thông qua ba quá trình này photon sẽ truyền một phần hoặc hoàn toàn năng lượng của mình cho các electron và nó bị tán xạ dưới một góc nào đó hoặc biến mất hoàn toàn một cách đột ngột Điều này hoàn toàn khác biệt với tương tác của các hạt mang điện, trong đó các hạt mang điện bị làm chậm dần dần qua các tương tác đồng thời liên tục với nhiều nguyên tử
1.1.1.1 Hấp thụ quang điện (Photoelectric absorption)
Trong quá trình hấp thụ quang điện, photon chịu một tương tác với nguyên tử và hoàn toàn biến mất, khi đó một electron quang điện bị bứt ra khỏi lớp vỏ liên kết của nó Tương tác loại này xảy ra với các electron nguyên tử và không thể xảy ra với electron tự do Đối với các photon với năng lượng đủ cao thì những electron quang điện thường có nguồn gốc từ lớp vỏ liên kết chặt chẽ nhất, tức lớp K của nguyên tử Electron quang điện sinh ra sẽ mang năng lượng được tính bởi công thức
Do đó, một hoặc nhiều photon tia X có thể được tạo ra Mặc dù trong hầu hết các trường hợp, những tia
X này lại bị hấp thụ ở các lớp vỏ liên kết yếu hơn gần đó thông qua hấp thụ quang điện, nhưng chúng cũng có khả năng thoát khỏi detector bức xạ và ảnh hưởng đến đáp ứng của detector Trong một số trường hợp tia X đặc trưng sẽ tương tác với các electron của chính nguyên tử đó và một electron Auger được phát ra
Trang 8Để làm ví dụ cho những tương tác phức tạp này, ta xét các photon tới với năng lượng trên 30 keV chịu hấp thụ quang điện trong khí xenon Khoảng 86% tương tác xảy ra thông qua sự hấp thụ ở lớp K trong nguyên tử xenon Trong số này, 87,5% tạo ra các tia X đặc trưng lớp K và 12,5% khử kích thích bằng việc phát các electron Auger 14% photon tới còn lại sẽ tham gia tương tác quang điện ở các lớp L hoặc M Kết quả của những tương tác này là các tia X đặc trưng với năng lượng thấp hơn nhiều hoặc các electron Auger với quãng chạy rất ngắn, ở gần đúng bậc một, bị hấp thụ lại ở gần nơi xảy ra tương tác đầu tiên
Hấp thụ quang điện là quá trình ưu tiên trong tương tác của các tia gamma (hoặc tia X) ở năng lượng khá thấp và đối với vật liệu hấp thụ có bậc số nguyên tử Z cao Không một biểu thức giải tích nào có thể tính toán được xác suất hấp thụ quang điện cho một nguyên tử theo năng lượng E và Z, nhưng có thể sử dụng công thức gần đúng sau
5 , 3
E
Z const
Trang 9Hình 1.1: Sự phụ thuộc năng lượng của các quá trình tương tác gamma khác nhau trong NaI
(Theo The Atomic Nuclear, R D Evans, 1955)
Đồ thị biểu diễn sự phụ thuộc của tiết diện hấp thụ quang điện cho NaI theo năng lượng (một vật liệu ghi tia gamma phổ biến) được cho trong hình 1.1 Ở vùng năng lượng thấp, có những mép hấp thụ xuất hiện ở năng lượng tương ứng với năng lượng liên kết của các electron ở các lớp khác nhau Những mép với năng lượng cao nhất sẽ ứng với các electron lớp K Ở phía trên ngay sát mép này, năng lượng
Trang 10photon chỉ đủ để chịu một hấp thụ quang điện trong đó một electron lớp K bị bức ra khỏi nguyên tử Ở phía dưới ngay sát mép này, không có đủ năng lượng để quá trình này xảy ra nên xác suất tương tác giảm nhanh đột ngột Tương tự, các mép hấp thụ ở năng lượng thấp hơn ứng với electron các lớp L, M,
… trong nguyên tử
Kết quả của hấp thụ quang điện là giải phóng các electron quang điện (mang hầu hết năng lượng của gamma) cùng với một hoặc một số electron năng lượng thấp hơn ứng với sự hấp thụ năng lượng liên kết của electron quang điện Nếu không có sự thất thoát ra khỏi detector thì tổng động năng của các electron được tạo ra phải bằng với năng lượng ban đầu của photon Vì thế hấp thụ quang điện là một quá trình lý tưởng cho việc đo đạc năng lượng của gamma Với chùm gamma đơn năng và những điều kiện lý tưởng, tổng động năng của các electron bằng với năng lượng gamma tới và phân bố vi phân của động năng electron sau một chuỗi các sự kiện hấp thụ quang điện sẽ có dạng một hàm delta đơn giản như hình bên dưới Một đỉnh đơn xuất hiện tại năng lượng ứng với năng lượng của gamma tới
Hình 1.2: Đỉnh năng lượng toàn phần trong phổ độ cao xung vi phân
1.1.1.2 Tán xạ Compton (Compton scattering)
Quá trình tán xạ Compton xảy ra giữa photon tới và một electron trong môi trường hấp thụ Đối với năng lượng gamma của các nguồn đồng vị phóng xạ thì đây là cơ chế tương tác chiếm ưu thế Trong tán xạ Compton, photon tới bị đổi hướng dưới một góc so với hướng ban đầu và truyền một phần năng lượng của nó cho electron (giả sử ban đầu đứng yên), electron sau đó gọi là electron giật lùi Bởi vì photon có thể bị tán xạ dưới một góc bất kỳ nên năng lượng truyền cho electron có thể thay đổi từ 0 tới một giá trị cực đại nào đó
Có thể rút ra công thức liên hệ giữa năng lượng truyền cho electron và góc tán xạ bằng việc sử dụng đồng thời định luật bảo toàn năng lượng và xung lượng Sử dụng các ký hiệu trong sơ đồ bên dưới
Trang 11Hình 1.3: Mô hình tán xạ Compton
ta có thể chứng minh rằng
)cos1(
/(1
)cos1)(
/(
2 0
2 0 '
c m h h h h
Ở đây có thể xét hai trường hợp giới hạn là
+ Góc tán xạ 0, khi đó các phương trình trên cho thấy '
Hình 1.4: Nền Compton trong phổ độ cao xung vi phân
Trang 12Khoảng giữa mép Compton và năng lượng gamma tới được xác định bởi công thức
2 0/21)(
c m h
h E
2
cos1)cos1(1
1
2
2 2
2 2
2 0
h
và r0 là bán kính electron cổ điển Phân bố mô tả trong hình 1.5 cho thấy xu hướng tán xạ ở góc nhỏ khi năng lượng gamma cao
Hình 1.5: Số photon tán xạ Compton vào một đơn vị góc khối ở góc tán xạ θ
Các phân tích ở trên dựa trên giả thiết cho rằng, tán xạ Compton xảy ra với các electron tự do Trong vật liệu detector thực, năng lượng liên kết của electron trước khi tham gia quá trình tán xạ sẽ ảnh hưởng đáng kể lên hình dạng của nền Compton liên tục Những ảnh hưởng này sẽ đặc biệt đáng lưu ý đối với gamma năng lượng thấp Ở một góc cố định, xung lượng xác định của các electron quỹ đạo cũng tạo ra một phân bố hẹp về năng lượng (mở rộng Doppler) của các gamma tán xạ, và năng lượng gamma tán xạ không đơn trị như dự đoán của phương trình
1.1.1.3 Tạo cặp (Pair production)
Nếu năng lượng gamma lớn hơn hai lần năng lượng nghỉ của một electron (1,022 MeV), có thể xảy ra quá trình tạo cặp Xác suất của tương tác này rất thấp cho tới khi năng lượng gamma đạt tới giá
Trang 13trị vài MeV và quá trình tạo cặp chủ yếu xuất hiện ở năng lượng cao và chỉ xảy ra trong trường Coulomb của hạt nhân Trong tương tác này, photon sẽ biến mất và một cặp electron – positron xuất hiện Năng lượng dư chuyển thành động năng của electron và positron
2 0
2m c h
E
E e e (1.8) Động năng tổng cộng của các hạt tích điện (electron và positron) được tạo bởi gamma tới cũng có dạng hàm delta đơn giản
Hình 1.6: Đỉnh tạo cặp trong phổ độ cao xung vi phân
Tạo cặp là một quá trình phức tạp bởi positron là hạt không bền và chỉ đi được vài milimet Khi bị làm chậm trong môi trường hấp thụ đến năng lượng cỡ năng lượng nhiệt của electron, positron sẽ hủy với một electron và một cặp photon 0,511 MeV xuất hiện Có ba khả năng xảy ra
+ Cả 2 photon đều bị hấp thụ Năng lượng của tia gamma bị mất là: ( h – 1,022 + 1,022) = h
MeV Như vậy tia gamma mất hoàn toàn năng lượng nên ta có sự đóng góp vào số đếm toàn phần + Chỉ có 1 photon hủy bị hấp thụ, 1 photon thoát ra ngoài nên năng lượng tia gamma mất trong vùng nhạy là: h – 1,022 + 0,511 = h – 0,511 MeV Các xung này đóng góp số đếm vào phổ biên độ xung tạo thành đỉnh thoát cặp thứ nhất (đỉnh thoát đơn, SE)
+ Khi cả 2 photon hủy đều thoát khỏi tinh thể, năng lượng tia gamma mất trong vùng nhạy của detector là: h – 1,022 MeV Các xung này đóng góp số đếm vào phổ biên độ xung tạo thành đỉnh thoát cặp thứ hai (đỉnh thoát đôi, DE)
Tuy nhiên, các xác suất SE và DE này thường rất thấp Do đó với nguồn cường độ mạnh hoặc đo thời gian dài mới khảo sát được các đỉnh này
Trang 14Thời gian của quá trình hủy electron và positron rất ngắn, vì thế bức xạ hủy xuất hiện gần như cùng lúc với tương tác tạo cặp ban đầu Bức xạ hủy này gây ảnh hưởng đáng kể lên đáp ứng của các detector gamma
Không có công thức riêng lẻ nào tính được xác suất tạo cặp cho mỗi hạt nhân, nhưng một cách gần đúng độ lớn của nó thay đổi theo bình phương của Z Khi năng lượng gamma càng cao thì quá trình tạo cặp càng trở nên quan trọng
Hình 1.7: Vùng ưu tiên cho ba loại tương tác chính của gamma với vật chất (Theo The Atomic
1.1.2 Những tiến bộ trong lĩnh vực chế tạo detector
Đối với mỗi vùng năng lượng của bức xạ điện từ, khi các công cụ thực nghiệm được phát triển thì phép đo phổ cũng được cải tiến theo [13] Ban đầu các detector chỉ xác định sự tồn tại của bức xạ điện từ; sau đó chúng có thể xác định cường độ bức xạ, nhưng thiếu thông tin về năng lượng bức xạ Hiện nay các detector tia X và tia gamma có thể đo đạc được cường độ của bức xạ như là hàm của năng
Trang 15lượng, tức là xác định được phổ phân bố độ cao xung theo năng lượng Williams (1976) đã tổng kết lịch sử các phương pháp đo đạc cho những vùng năng lượng khác nhau của bức xạ điện từ, theo đó vùng năng lượng được khảo sát sau cùng là vùng năng lượng cao, ứng với tia X và tia gamma
Năm 1895, Roentgen bắt đầu khảo sát tia X phát ra từ ống phóng điện chứa khí Đối với tia X, các thiết bị ghi nhận đầu tiên là kính ảnh, buồng ion hóa chứa khí Sử dụng các phương pháp của quang phổ học có thể đo được bước sóng tia X, nhưng phương pháp này không đạt được nhiều thành công ngoại trừ việc xác định được bức sóng tia X có bậc 0,1 nm Tuy nhiên Bragg phát hiện ra rằng, có thể
sử dụng các mặt phẳng trong tinh thể tự nhiên có độ tinh khiết cao để nhiễu xạ bức sóng trong vùng này Phương pháp nhiễu xạ Bragg đã cho thấy phổ tia X có chứa một phần liên tục và cả cấu trúc vạch gián đoạn
Việc nghiên cứu tia gamma cũng được bắt đầu trong thời gian này Năm 1896 Becquerel khám phá ra phóng xạ tự nhiên khi tình cờ phát hiện những bức xạ phát ra ở gần một kính ảnh Năm 1900 Villard đã nhận thấy rằng các bức xạ phát ra từ các chất phóng xạ tự nhiên còn chứa một thành phần khác có khả năng đâm xuyên mạnh và không bị lệch trong từ trường, gọi là tia gamma
Sau những quan sát đầu tiên với kính ảnh thì lĩnh vực ghi đo tia X và tia gamma đã được phát triển cùng với sự cải tiến của các ống đếm chứa khí có từ năm 1908 (Rutherford và Geiger 1908) Các ống đếm có khả năng đo cường độ của chùm bức xạ nhưng không xác định được năng lượng của nó Năm 1948, Hofstadter chế tạo ra detector nhấp nháy NaI(Tl) có khả năng đo được phổ gamma trong một dải năng lượng rộng Với kích thước lớn, các tinh thể nhấp nháy có thể hấp thụ các tia gamma năng lượng lên tới 1 MeV Các detector loại này có đặc trưng là hiệu suất và độ phân giải tương đối cao (FWHM cỡ 45 keV tại vạch 662 keV của đồng vị 137Cs), tinh thể nhấp nháy có tính chất
lý hóa tương đối ổn định trong quá trình sử dụng Ngày nay, detector nhấp nháy vẫn được sử dụng phổ biến vì chúng đơn giản trong bảo quản và vận hành
Vào những năm 1960, một loại phổ kế gamma khác được bổ sung dựa trên hiện tượng nhiễu xạ Bragg, gọi là phổ kế nhiễu xạ hay phổ kế tinh thể Loại phổ kế này có độ phân giải rất cao (FWHM cỡ
1 eV tại vạch 100 keV) ở vùng năng lượng thấp Nó có nhược điểm là hiệu suất ghi thấp nên chỉ được dùng để đo những nguồn cường độ lớn và chuẩn hóa các hệ phổ kế gamma khác trong suốt một thời gian dài của kỷ nguyên detector nhấp nháy
Bất chấp những thành công của các detector nhấp nháy, vẫn luôn tồn tại câu hỏi liệu có thể tạo ra một buồng ion hóa từ vật liệu mật độ cao Câu hỏi này đã dẫn tới sự ra đời của detector bán dẫn Ge(Li) vào khoảng năm 1962 (Pell 1960, Freck và Wakefield 1962, Webb và Williams 1963, Tavendale và
Trang 16Ewan 1963) Với những thành công bước đầu, nhiều loại vật liệu bán dẫn khác đã được nghiên cứu để chế tạo detector bức xạ gamma cũng như các hạt tích điện khác Để tập hợp điện tích thứ cấp hiệu quả, các detector loại này phải được chế tạo dạng đơn tinh thể từ vật liệu bán dẫn có độ tinh khiết cao Do những khó khăn trong việc chế tạo các đơn tinh thể nên chỉ có một số ít vật liệu được sử dụng như silicon và germanium Các detector Ge có thể làm việc trong một dải năng lượng rộng hơn so với detector Si Detector Ge(Li) có độ phân giải cao (FWHM cỡ 5 keV tại vạch 1332 keV của 60Co) và tốt hơn 10 lần so với detector nhấp nháy NaI(Tl) Việc nâng cao độ phân giải có một ý nghĩa quan trọng trong lịch sử chế tạo phổ kế gamma ở cả 2 mặt nghiên cứu và ứng dụng Tuy nhiên nhược điểm lớn nhất của các detector bán dẫn là việc giữ lạnh, nói chung là ở nhiệt độ nitrogen lỏng
Vào những năm 1980, người ta chế tạo thành công các detector bán dẫn với nhiều ưu điểm hơn so với thế hệ detector bán dẫn trước đây Loại này cho phép bảo quản ở nhiệt độ phòng giữa các lần sử dụng, nâng cao đáng kể độ chính xác trong các phép phân tích với hiệu suất ghi và độ phân giải tốt hơn (FWHM dưới 2 keV tại đỉnh 1332 keV của đồng vị 60Co) so với detector Ge(Li) cùng kích thước Với việc chế tạo thành công các detector bán dẫn silicon và germanium, các nhà chế tạo đã hướng tới việc phát triển những detector tương tự với vật liệu Z cao hơn Mayer (1966) đã đề nghị xem xét một vài vật liệu gồm hai nguyên tố Sau đó, Sakai (1982) nghiên cứu lại vấn đề này với vật liệu như GaAs, CdTe và HgI2, đặc biệt ông chú ý tới khả năng hoạt động ở nhiệt độ phòng của các detector bán dẫn loại này Tuy nhiên các detector này không mang lại nhiều hiệu quả vì kích thước nhỏ, độ phân giải hạn chế và hiệu quả thương mại hạn chế
1.1.3 Detector germanium siêu tinh khiết
Detector germanium là loại detector ghi nhận tia gamma có độ phân giải cao nhất hiện nay, chúng được sử dụng rộng rãi cho cả nghiên cứu cơ bản lẫn vật lý ứng dụng Năng lượng của tia gamma hoặc beta có thể được đo với độ phân giải lên tới 0,1% Có hai loại detector bán dẫn germanium là: detector germanium “khuếch tán lithium” ký hiệu Ge(Li) và detector gemanium siêu tinh khiết ký hiệu (High Pure Germanium detector) Cả hai loại detector này đều có độ nhạy và độ phân giải tốt nhưng detector Ge(Li) có một khuyết điểm là nó không ổn định trong môi trường nhiệt độ phòng bởi vì lớp lithium được “khuếch tán” vào trong vùng nhạy sẽ rò rỉ ra khỏi detector Sự phát triển của detector có vùng nhạy bằng chất bán dẫn “không khuếch tán Li” với độ tinh khiết cao sẽ giải quyết được vấn đề này Các detector germanium về bản chất là các diode bán dẫn có cấu trúc P-I-N ở đó vùng I là vùng nhạy đối với bức xạ ion hoá, đặc biệt đối với tia X và gamma Khi phân cực ngược, sẽ xuất hiện một điện trường ngang qua vùng I này (khi đó còn gọi là vùng nghèo) Khi photon tương tác với vùng
Trang 17nghèo này của detector, các điện tích (bao gồm lỗ trống và electron) được tạo ra và được điện trường này quét về hai cực P và N tương ứng Điện tích này tỷ lệ với năng lượng tia tới để lại trong detector và được biến đổi thành xung điện bởi tiền khuếch đại nhạy điện tích Năng lượng cần thiết để tạo ra một cặp electron – lỗ trống trong germanium có giá trị trung bình vào khoảng 3 eV Ví dụ khi một photon mang năng lượng 1 MeV vào trong detector sẽ tạo ra khoảng 38105 cặp electron – lỗ trống Chúng ta
có thể tập hợp gần như tất cả những điện tích này trong detector germanium nếu như các tạp chất trong germanium được loại bỏ đến một mức độ nào đó Tuy nhiên sự sai biệt thống kê của 38105 cặp là quá nhỏ cho nên nó có thể bị nhiễu loạn từ các cặp electron – lỗ trống kích thích nhiệt ngẫu nhiên Để khắc phục và giảm thiểu được điều này người ta phải làm lạnh tinh thể germanium và chất làm lạnh được sử dụng chủ yếu là nitơ lỏng với nhiệt độ làm lạnh là 77 K Bề mặt tinh thể Ge của detector phải được bảo
vệ tránh bị ẩm ướt hay nhiễm bẩn
Tuy tín hiệu được tạo ra là do sự ion hoá của các electron có động năng, năng lượng của tia gamma có thể được đo bằng detector germanium bởi vì năng lượng của một photon có thể được chuyển sang cho các electron Các tia gamma năng lượng thấp có thể bị hấp thụ hoàn toàn bởi hiệu ứng quang điện tạo ra một electron mang hầu hết năng lượng của photon tới Đối với các photon có năng lượng từ khoảng 100 keV đến dưới 1 MeV, hiệu ứng Compton chiếm vai trò chủ đạo, vì vậy để chuyển toàn bộ năng lượng photon cho các electron đòi hỏi phải có một hay nhiều hơn các tán xạ Compton và được kết thúc bằng sự hấp thụ quang điện Sự tạo thành các cặp electron – positron đóng một vai trò quan trọng
ở các mức năng lượng trên 2
ecm
2 (1,022 MeV)
1.1.4 Dạng hàm đáp ứng của detector đối với bức xạ gamma đơn năng
Khi đi qua môi trường của detector, tia gamma tới tương tác với detector sẽ được ghi nhận thông
qua các hiệu ứng trực tiếp (hiệu ứng quang điện) hoặc gián tiếp như tán xạ Compton, tạo cặp hoặc thoát khỏi detector Tùy theo hình học và cấu trúc cụ thể của detector cũng như bố trí vật liệu xung quanh detector mà ảnh hưởng tán xạ sơ cấp và thứ cấp lên phổ sẽ thay đổi khác nhau Một cách tổng quát phổ gamma đo được là kết quả của sự ảnh hưởng của hệ detector lên phổ tới, làm phân bố lại dạng của phổ tới, bao gồm đỉnh toàn phần do hiệu ứng quang điện, các đỉnh thoát đơn, thoát đôi từ hiệu ứng tạo cặp, nền liên tục và các đỉnh tán xạ ngược từ hiệu ứng tán xạ Compton nhiều lần trong môi trường detector
và các vật liệu xung quanh [25] Phổ gamma điển hình - dạng hàm đáp ứng của detector đối với nguồn
60
Co được trình bày trong hình 1.8
Trang 18Hình 1.8: Dạng hàm đáp ứng của detector đối với nguồn 60 Co
1.1.5 Hiệu suất
1.1.5.1 Định nghĩa về hiệu suất
Thuật ngữ “hiệu suất” được sử dụng trong rất nhiều tài liệu với nhiều ý nghĩa khác nhau Trong vật lý thực nghiệm, hiệu suất thường được định nghĩa như là tỉ lệ giữa đáp ứng của dụng cụ và giá trị của đại lượng vật lý được đo đạc Trong lĩnh vực phổ kế gamma, đại lượng vật lý ở đây là tốc độ phát gamma ở một năng lượng xác định và đáp ứng của dụng cụ là tốc độ đếm toàn phần hoặc tốc độ đếm đỉnh Một cách tương ứng, ta sẽ phân biệt hai khái niệm hiệu suất toàn phần và hiệu suất đỉnh
1.1.5.2 Các loại hiệu suất
Dựa vào các đặc điểm nói trên, có hai loại hiệu suất được định nghĩa [13], [21]
- Hiệu suất toàn phần (total efficiency) t: đó là xác suất của một photon phát ra từ nguồn để lại bất
cứ năng lượng nào khác không trong thể tích vùng hoạt của detector
- Hiệu suất đỉnh (peak efficiency) p: được xác định bằng xác suất của một photon phát ra từ nguồn để lại toàn bộ năng lượng của nó trong thể tích vùng hoạt của detector
Hiệu suất đỉnh và hiệu suất toàn phần được liên hệ với nhau qua tỉ số đỉnh / toàn phần, gọi là tỉ số P/T
t
p T P
Do xác suất của mỗi cơ chế tương tác phụ thuộc vào năng lượng của photon tới nên hiệu suất đỉnh
và tỉ số P/T cũng phụ thuộc vào năng lượng
Trang 19Trong đo đạc thực nghiệm trên hệ phổ kế gamma, khái niệm “hiệu suất” được hiểu là hiệu suất
đỉnh năng lượng toàn phần (full energy peak efficiency) được định nghĩa là tỉ số giữa tốc độ đếm đỉnh ở
năng lượng E (số đếm đỉnh chia cho thời gian đo) và tốc độ phát gamma từ nguồn cũng ở năng lượng E tương ứng Đối với một hệ phổ kế gamma cụ thể, bố trí hình học đo xác định và tại vạch năng lượng quan tâm thì hiệu suất detector có giá trị xác định Do đó, hiệu suất là một trong những thông số quan trọng dùng để nghiên cứu các đặc trưng của detector, nguồn phóng xạ và hình học đo Trong thực nghiệm, hiệu suất detector được tính theo công thức sau [9]
2 / 1
2 ln
T t m
pe
yAke t
là thời gian phân rã từ thời điểm chứng nhận đến thời điểm đo và T1/2 là chu kỳ bán rã Sai số tương đối
của hiệu suất thực nghiệm U e được tính theo công thức
2 2 2
a y p
Trong đó: U p , U y , U a là sai số tương đối của số đếm đóng góp trong quang đỉnh của phổ gamma
thực nghiệm (N pe ), cường độ phát xạ của tia gamma (y) và hoạt độ nguồn đo (A) tương ứng
Trong tính toán MCNP, hiệu suất của detector được xác định bằng công thức [16]
s
pe c N
N
Trong đó: c,N , s N pc lần lượt là hiệu suất tính toán, số photon phát ra từ nguồn theo mọi hướng
và số photon đóng góp vào quang đỉnh của phổ gamma mô phỏng Sai số tương đối của hiệu suất tính toán được xác định theo công thức
pc c
N
1.1.5.3 Các yếu tố ảnh hưởng đến hiệu suất ghi của detector
Các yếu tố ảnh hưởng đến hiệu suất detector bao gồm:
+ Phần bức xạ đi trực tiếp từ vật liệu phóng xạ vào detector
+ Phần bức xạ sẽ tán xạ ngược vào detector sau khi phát ra từ vật liệu phóng xạ nhưng không đi đến detector
Trang 20+ Phần bức xạ bị hấp thụ bởi lớp bao bọc detector
+ Phần bức xạ đi khỏi detector
+ Góc nhìn của nguồn đối với detector
+ Vấn đề hạn chế của hàm đáp ứng thời gian của detector làm trùng phùng số đếm các gamma nối tầng trong nguồn phân rã đa năng dẫn đến sự thêm hoặc mất số đếm ở đỉnh năng lượng toàn phần 1.1.6 Detector GEM 15P4 tại Trường Đại học Sư Phạm TP HCM
Năm 2007 phòng thí nghiệm Vật lý hạt nhân Trường Đại học Sư phạm TP HCM đã được trang
bị một hệ phổ kế gamma dùng detector GEM 15P4 với các thông số danh định:
+ Hiệu suất tương đối 15% so với detector nhấp nháy NaI(Tl) kích thước 3 inch x 3 inch
+ Độ phân giải năng lượng tại đỉnh 1,332 MeV của đồng vị 60Co là 1,80 keV
+ Tỷ số P/C 46:1 tại đỉnh 1,332 MeV của đồng vị 60Co
+ Dải năng lượng cho phép 5 keV - 4 MeV
+ Phần mềm thu nhận và xử lý phổ Maestro 32
1.2 PHƯƠNG PHÁP MÔ PHỎNG MONTE CARLO
1.2.1 Giới thiệu chung
Phương trình vận chuyển bức xạ qua vật chất chỉ có thể giải được cho một số cấu hình nhất định Tuy nhiên ngày nay quá trình tương tác của photon và electron đã được khảo sát rất chi tiết cũng như
dữ liệu tiết diện luôn có sẵn Từ đây ý tưởng sử dụng phương pháp mô phỏng Monte Carlo cho việc giải quyết các bài toán vận chuyển bức xạ được hình thành Phương pháp Monte Carlo là phương pháp giải số cho bài toán mô phỏng sự tương tác của những vật thể này với những vật thể khác hay là với môi trường dựa trên các mối quan hệ vật thể – vật thể và vật thể – môi trường đơn giản Phương pháp Monte Carlo cố gắng mô hình hoá tự nhiên thông qua sự mô phỏng trực tiếp các lý thuyết động lực học cần thiết dựa theo yêu cầu của hệ Lời giải được xác định bằng cách lấy mẫu ngẫu nhiên của các quan
hệ hay là các tương tác vi mô cho đến khi hội tụ về kết quả Do vậy cách thực hiện lời giải bao gồm các hành động hay phép tính được lặp đi lặp lại
Phương pháp này được sử dụng để mô tả lý thuyết các quá trình thống kê và đặc biệt hữu ích trong các bài toán phức tạp không thể mô tả bằng các phương pháp tất định Việc mô phỏng thường được thực hiện trên máy tính bởi vì số phép thử phải rất lớn để có thể mô tả chính xác hiện tượng Trong quá trình mô phỏng một photon hoặc electron được xem như “hạt” Mỗi hạt sẽ được theo dõi từ vị trí ban đầu của nó trong nguồn phóng xạ, qua các lớp vật liệu trung gian và vào thể tích nhạy của detector Photon sẽ tương tác thông qua các hiệu ứng hấp thụ quang điện, tán xạ Compton và tạo
Trang 21cặp, từ các tương tác này, electron, positron và các photon thứ cấp (bức xạ hãm, bức xạ huỳnh quang, lượng tử hủy cặp) được tạo ra Các số giữa 0 và 1 được lựa chọn một cách ngẫu nhiên để xác định loại tương tác và vị trí xảy ra tương tác dựa trên các định luật vật lý và xác suất của các quá trình liên quan Tại mỗi điểm tương tác, kết quả tương tác sẽ được xác định bằng xác suất của mỗi loại tương tác có thể
và góc tán xạ Quá trình này được lặp lại cho đến khi hạt nguồn và tất cả các hạt thứ cấp đã để lại toàn
bộ năng lượng của nó hoặc thoát ra khỏi thể tích detector Nếu tất cả năng lượng này được để lại trong detector, một số đếm sẽ được đưa vào phổ gamma tại năng lượng xấp xỉ của nó Quá trình này được lặp lại cho đến số ngẫu nhiên được giới hạn trước Bằng cách theo dõi tất cả các sự kiện xảy ra, ta có thể thu được một phổ phân bố của bức xạ tới
1.2.2 Đặc trưng của phương pháp Monte Carlo
Tính đúng đắn phương pháp Monte Carlo phụ thuộc vào một số yếu tố như: luật số lớn, định lý giới hạn trung tâm và số ngẫu nhiên [2]
1.2.2.1 Định lý giới hạn trung tâm
Định lý giới hạn trung tâm mô tả cách ước lượng Monte Carlo tiến đến giá trị thực Theo lý
thuyết, ước lượng Monte Carlo luôn phân bố chuẩn quanh giá trị thực của bài toán khi N lớn Độ lệch
chuẩn của việc tính toán Monte Carlo khi đó được cho bởi căn bậc hai của phương sai chia cho N Kết quả này là quan trọng cho việc đánh giá độ chính xác của tiến trình Monte Carlo
1)(11
(1.14)
Với f(n i) là hàm được lấy tích phân và ni là tập hợp n số ngẫu nhiên có phân bố đều trong giới hạn
x = a và x = b Vế trái của phương trình (1.14) là ước lượng Monte Carlo của tích phân còn vế phải là
tích phân thực của hàm giữa a và b Định lý này đặc biệt quan trọng do nó xác định các kết quả tính toán Monte Carlo như những ước lượng phù hợp Do đó hai tính toán Monte Carlo lý tưởng cần tạo ra cùng một ước lượng (trong sai số thống kê)
1.2.2.3 Số ngẫu nhiên
Để tạo được một dãy số ngẫu nhiên, nhiều phương pháp khác nhau đã được áp dụng Ở đây, xin trình bày một phương pháp được dùng phổ biến nhất đó là phương pháp đồng dư tuyến tính Phương
Trang 22pháp này đã được sử dụng trong nhiều ngôn ngữ lập trình, chẳng hạn như C, Fortran Đồng thời nó cũng là phương pháp chính được sử dụng trong chương trình MCNP5 và DETEFF
Dùng phương pháp Monte Carlo điều quan trọng nhất là phải tạo ra các số ngẫu nhiên phân bố đều trên khoảng (0, 1) và có mật độ xác suất bằng 1 Một thuật toán tạo số ngẫu nhiên được gọi là phương pháp đồng dư tuyến tính như sau
M
x 0 là số nguyên lẻ số gieo ban đầu
c ax
có thể được đặt bởi người dùng trong quá trình tính toán, x nlà số ngẫu nhiên ở lần gieo thứ n
Thuật toán tạo số ngẫu nhiên này có ưu điểm là đơn giản, dễ sử dụng, tính toán nhanh và dãy số ngẫu nhiên do nó tạo ra là khá tốt Chu kì của phương pháp đồng dư tuyến tính (chiều dài của dãy số cho đến khi số đầu tiên bị lặp lại) M điều này có nghĩa là trong trường hợp tốt nhất thì x n sẽ lấy tất
cả các giá trị có trong đoạn
Chương trình Monte Carlo vận chuyển hạt đầu tiên là MCS được viết năm 1963 Tiếp theo MCS
là MCN được viết năm 1965 MCN có thể giải bài toán các neutron tương tác với vật chất hình học 3 chiều và sử dụng các số liệu vật lý được lưu trong các thư viện riêng rẽ, phát triển cao
MCN được hợp nhất với MCG (chương trình Monte Carlo gamma xử lý các photon năng lượng cao) năm 1973 để tạo ra MCNG – chương trình ghép cặp neutron – gamma Năm 1973, MCNG được hợp nhất với MCP (chương trình Monte Carlo photon với xử lý vật lý chi tiết đến năng lượng 1 keV)
để mô phỏng chính xác các tương tác Neutron – Photon và trở thành MCNP từ đó Mặc dù đầu tiên MCNP có nghĩa là Monte Carlo neutron – photon song hiện nay nó có nghĩa là Monte Carlo N Particle
Ở đây, hạt N có thể là neutron, photon và electron
Trang 23MCNP3 được viết lại hoàn toàn và công bố năm 1983 MCNP3 là phiên bản đầu tiên được phân phối quốc tế MCNP4 được công bố năm 1990 Nó thích ứng với việc mô phỏng hạt N đa tác vụ hoạt động trên các cấu trúc máy tính song song MCNP4 đã bổ sung vận chuyển electron
MCNP4A được công bố năm 1993 với các nét nổi bật là phân tích thống kê được nâng cao, đa tác
vụ làm việc với nhiều bộ xử lý để chạy song song trên hệ cấu trúc máy tính song song
MCNP4B, được công bố năm 1997, đã đưa vào các toán tử vi phân nhiễu loạn, vật lý photon được nâng cao
MCNP4C được công bố năm 2000, mô tả những nét nổi bật của xử lý cộng hưởng không phân giải, các nâng cao vật lý electron
MCNP4C2 có các đặc trưng mới là vật lý quang hạt nhân và một vài cải tiến khác, được công bố năm 2001
MCNP5 có bổ sung thêm hiệu ứng giản nở Doppler cùng với các thư viện tiết diện được cập nhật MCNP được nhóm X-5, ban vật lý ứng dụng, phòng thí nghiệm quốc gia Los Alamos, cải tiến và công bố phiên bản cứ 2 – 3 năm một lần MCNP có thể làm việc trên các máy tính Cray UNICOS, các workstation hay các máy tính (PC) chạy Unix hay Linux, các máy tính chạy trên Window MCNP đã cách mạng hóa khoa học không chỉ ở cách nó được ứng dụng mà còn ở thực tế nó đang trở thành kho kiến thức vật lý Hiện nay có khoảng 250 người sử dụng MCNP ở Los Alamos Trên toàn thế giới, có khoảng 3000 người sử dụng tích cực ở khoảng 200 thiết bị Kiến thức và kinh nghiệm có trong MCNP
là rất lớn
Trong 10 năm gần đây các tính toán bằng phần mềm mô phỏng MCNP đã được triển khai ở Viện Nghiên cứu Hạt nhân Đà Lạt, Trung tâm Nghiên cứu & Triển khai Công nghệ Bức xạ TP HCM, Viện Khoa học và Kỹ thuật hạt nhân Hà nội, Viện Năng lượng Nguyên tử Việt Nam Những tính toán này chủ yếu là các tính toán tới hạn lò phản ứng và các phân bố trường liều bức xạ
Trong luận văn này, phương pháp mô phỏng Monte Carlo dựa trên cơ sở chương trình MCNP5 đã được sử dụng để mô hình hóa cấu hình detector – nguồn – buồng chì và xây dựng các đường cong hiệu
suất
1.2.3.2 Các mô hình tương tác photon trong chương trình MCNP5
Phương pháp Monte Carlo cho phép mô phỏng lần lượt từng photon riêng biệt đi xuyên qua thể tích hoạt động của detector Các đại lượng vật lý tuân theo qui luật thống kê được lấy mẫu tương ứng theo một hàm phân bố xác suất thích hợp Chẳng hạn, trong trường hợp nguồn điểm, hướng và điểm tới của tia gamma trên bề mặt detector được xác định bằng cách lấy mẫu ngẫu nhiên từ phân bố đồng
Trang 24dạng Điểm tương tác của tia gamma trong thể tích hoạt động của detector được xác định bằng cách lấy mẫu ngẫu nhiên từ phân bố hàm mũ theo cường độ tia gamma Cường độ tia gamma trong môi trường được mô tả theo hàm số phụ thuộc vào hệ số hấp thụ tuyến tính toàn phần và bề dày lớp vật chất như sau
r t e I
I 0 , t Nt (1.15)
production Pair Scattering som T Scattering Compton ric
Đặt R là số ngẫu nhiên thuộc khoảng (0, 1) và thỏa mãn công thức
0 0
dr e I
dr e I R
r
r r
t t
Trang 25nghiệm có dạng Gauss Do đó quá trình mô phỏng phổ gamma còn sử dụng tùy chọn GEB (Gauss
Energy Broadening) của thẻ FT8 trong chương trình MCNP5 Khi đó phổ gamma mô phỏng phù hợp
tốt với phổ gamma thực nghiệm Dựa trên cơ sở phổ gamma mô phỏng này hiệu suất tính toán của detector được xác định bằng cách lấy số photon đóng góp trong đỉnh năng lượng toàn phần chia cho số photon phát ra từ nguồn theo mọi hướng
Đối với các tương tác photon, MCNP5 có hai mô hình: đơn giản và chi tiết Trong trường hợp xử
lý đơn giản, MCNP5 bỏ qua tán xạ kết hợp (tán xạ Thomson) và các photon huỳnh quang tạo ra từ hấp thụ quang điện Xử lý này được sử dụng cho các bài toán photon năng lượng cao hoặc các bài toán mà trong đó electron là tự do Trường hợp xử lý chi tiết sẽ tính đến tán xạ kết hợp và cả photon huỳnh
quang Xử lý này được áp dụng ở năng lượng dưới giá trị EMCPF của thẻ PHYS:P với giá trị mặc định
là 100 MeV
Việc tạo ra electron từ photon có thể theo ba cách Cả ba cách này là như nhau cho cả hai mô hình
đơn giản và chi tiết (1) Nếu vận chuyển electron được kích hoạt (mode P E) thì tất cả các va chạm
photon ngoại trừ tán xạ kết hợp đều có thể tạo ra electron, các electron này sẽ được dự trữ cho vận
chuyển sau đó (2) Nếu vận chuyển electron không được kích hoạt (không có E trong thẻ MODE) thì
mô hình bức xạ hãm TTB (thick – target bremsstrahlung) được sử dụng Mô hình này tạo ra các
electron nhưng giả thiết rằng chúng chuyển động cùng hướng với photon tới và ngay lập tức bị hủy
Các photon bức xạ hủy này sẽ được lưu trữ cho quá trình vận chuyển sau đó Gần đúng TTB không được sử dụng trong các bài toán MODE P E, nhưng là mặc định cho các bài toán MODE P (3) Nếu tùy chọn IDES trên thẻ PHYS:P có giá trị 1 thì tất cả các quá trình sinh electron đều bị tắt, do đó không có
photon nào được tạo từ các electron
Sau đây ta sẽ xét mô hình xử lý chi tiết trong MCNP5 bởi đây là xử lý tốt nhất cho hầu hết các ứng dụng, đặc biệt là đối với các hạt nhân Z cao hoặc các bài toán xuyên sâu
Tán xạ Compton (tán xạ không kết hợp)
Để mô hình quá trình tán xạ Compton điều cần thiết là phải xác định góc tán xạ giữa phương chuyển động của tia tới và photon thứ cấp, năng lượng của photon thứ cấp '
E và động năng của electron giật lùi '
0
),,(
Trang 26' 2 ' 2
0 là công thức Klein – Nishima,
hiệu chỉnh I(Z,v) sẽ tăng từ I(Z,0)0 đến I(Z,)Z, trong đó
2sin
1 hom ( ,,)
trong đó T()d r02(12)d độc lập với năng lượng photon tới
Thừa số hiệu chỉnh C2(Z,v) sẽ làm giảm tiết diện tán xạ vi phân Thomson theo hướng tán xạ ngược với photon có E cao và vật liệu Z thấp Đối với vật liệu có Z bất kỳ, thừa số hiệu chỉnh C(Z,v)
sẽ giảm từ C(Z,0)Z đến C(Z,)0 Giá trị của 2( , )
v Z
C tại v 1 được nội suy từ bảng các giá trị C2(Z i,v i) có trong thư viện tiết diện tương tác của chương trình MCNP5 Trong đó
Trang 27+ Không có photon huỳnh quang nào năng lượng lớn hơn 1 keV được phát ra Trong trường hợp này chỉ có hiện tượng các electron chuyển mức liên tiếp (cascade) để lấp đầy lỗ trống do electron quỹ đạo bị bật ra từ hấp thụ quang điện hoặc hiệu ứng Auger Vì không có photon huỳnh quang phát ra nên quá trình vận chuyển của photon xem như kết thúc
+ Có một photon huỳnh quang năng lượng lớn hơn 1 keV được phát ra Ở đây năng lượng photon huỳnh quang ' ' '
)(E e e e e E
E , E là năng lượng photon tới, E – e là động năng electron thoát,
'
e là phần năng lượng kích thích dư sẽ bị tiêu tán bởi các quá trình Auger tiếp theo và được mô hình
hóa bằng MODE P E của chương trình MCNP5 Các chuyển đổi trạng thái sơ cấp nhờ năng lượng kích
thích dư '
e sẽ đóng góp vào hiệu suất huỳnh quang toàn phần và phát ra các tia X như
)(
,);
(,);
(,);
e có thể lấp đầy lỗ trống trên quỹ đạo của electron có năng lượng liên kết '
e và làm phát ra photon huỳnh quang thứ hai với năng lượng
E Đến lượt mình, năng lượng kích thích dư ''
e cũng sẽ bị tiêu tán bởi các quá trình Auger tiếp
theo và được mô hình bằng MODE P E của chương trình MCNP5 Các chuyển đổi trạng thái thứ cấp
này xảy ra khi các electron ở những lớp cao hơn chuyển về lớp L Do đó các chuyển đổi trạng thái sơ cấp K1 hoặc K2 sẽ để lại một lỗ trống ở lớp L
Mỗi photon huỳnh quang phát ra trong hai trường hợp sau được giả thiết là đẳng hướng và tiếp tục vận chuyển nếu '
Trang 281.2.3.3 Dữ liệu hạt nhân và phản ứng của MCNP5
MCNP5 sử dụng các thư viện số liệu hạt nhân và nguyên tử năng lượng liên tục Các nguồn cung cấp dữ liệu chính bao gồm:
+ The Evaluated Nuclear Data File (ENDF)
+ The Evaluated Nuclear Data Library (ENDL)
+ The Activation Library (ACTL)
+ Applied Nuclear Science (T – 2) Group tại Los Alamos
1.2.3.4 Tally F8
MCNP5 cung cấp cho chúng ta 7 tally chuẩn cho neutron, 6 tally chuẩn cho photon và 4 tally chuẩn cho electron [43] Các tally cơ bản này có thể thay đổi bởi người dùng theo nhiều cách khác nhau Trong bài toán mô phỏng detector thì tally F8 được sử dụng
Tally F8 hay còn gọi là tally độ cao xung, có chức năng cung cấp các phân bố năng lượng của xung được tạo ra trong cell detector Nó cũng cho ta biết sự mất mát năng lượng trong một cell Tally
độ cao xung này mô phỏng tương tự một detector vật lý Các khoảng chia năng lượng (energy bin)
trong tally F8 tương ứng với năng lượng toàn phần mất trong detector ở các kênh xác định bởi mỗi hạt vật lý
Trong cấu hình thực nghiệm, giả sử nguồn phát ra 100 photon năng lượng 10 MeV và 10 trong số những photon này đến được detector Tiếp theo, giả sử photon thứ nhất (và bất kỳ photon con cháu nào của nó được tạo ra trong detector) để lại 1 keV trong detector trước khi rời khỏi nó, photon thứ hai để lại 2 keV, và cho đến photon thứ 10 để lại 10 keV Khi đó độ cao xung ở detector sẽ là 1 xung trong khoảng chia năng lượng 1 keV, 1 xung trong khe năng lượng 2 keV, cho đến 1 xung trong khoảng chia năng lượng 10 keV
Khi đánh giá độ cao xung tương tự bằng MCNP5 ô nguồn được cho một khoảng năng lượng nhân với trọng số của hạt nguồn Nếu hạt đi ngang qua một mặt thì năng lượng nhân với trọng số của hạt được trừ khỏi đi năng lượng tích lũy của ô mà nó rời khỏi và cộng với năng lượng tích lũy của ô mà nó
đi vào Năng lượng là động năng của hạt cộng với 2m0c2 = 1,022 MeV nếu hạt là positron Ở cuối mỗi quá trình, năng lượng tích lũy trong mỗi ô đánh giá được chia cho trọng số nguồn Năng lượng nhận được khi đó sẽ xác định số ghi được đặt vào khoảng chia năng lượng phù hợp Giá trị của số ghi là trọng số nguồn đối với đánh giá F8 Giá trị số ghi này bằng 0 nếu không có hạt nào đi vào ô trong suốt quá trình mô phỏng
Khi đánh giá độ cao xung được sử dụng với các khoảng chia năng lượng cần phải lưu ý các số
Trang 29đếm âm từ quá trình không tương tự và các số ghi 0 gây nên do hạt đi qua ô được đánh giá độ cao xung nhưng không để lại năng lượng Trong một số chương trình những sự kiện này gây nên các đóng góp lớn vào số ghi độ cao xung ở khoảng chia năng lượng nhỏ nhất Và trong một số chương trình khác lại không có đóng góp nào từ chúng được thực hiện MCNP5 dung hòa điều này bằng cách đếm những sự kiện trên trong khoảng chia 0 và khoảng chia epsilon để những số ghi này có thể được tách ra Các
electron truyền va chạm (knock – on electrons) được mô phỏng trong MCNP5 là không tương tự vì sự
mất mát năng lượng được bao gồm trong tỉ suất mất mát năng lượng tán xạ nhiều lần chứ không được trừ đi ở mỗi sự kiện va chạm Vì vậy, các electron truyền va chạm có thể gây nên các số ghi âm độ cao xung năng lượng Những số ghi này sẽ được đặt trong khoảng chia năng lượng 0 Một trường hợp khác
là phân biệt giữa các sự kiện các hạt không đi vào ô và các hạt đi vào ô nhưng không để lại năng lượng Trong MCNP, điều này được thực hiện bằng tạo ra mất mát năng lượng tùy ý đủ nhỏ cho các hạt chỉ đi qua ô và sẽ xuất hiện trong khoảng chia năng lượng zero
1.2.3.5 Cấu trúc của chương trình
Phần quan trọng để vận hành một chương trình MCNP5 chính là input Trong file này các thông
số như cấu hình hệ đo, thời gian gieo hạt, số hạt cần gieo, các thông số chính xác của nguồn được khai báo Qua các thông số nhận được, MCNP5 sử dụng thư viện số liệu hạt nhân và các quá trình tính toán, gieo số ngẫu nhiên tuân theo quy luật phân bố, ghi lại sự kiện lịch sử phát ra từ nguồn cho đến hết thời gian sống của nó Khả năng mô tả hình học ba chiều của MCNP5 là rất tốt, input chuẩn được chia ra làm 3 phần là định nghĩa ô, định nghĩa mặt và định nghĩa vật liệu chúng được ngăn cách nhau bằng các dòng trống Định nghĩa ô dựa các mặt biên được liên kết lại với nhau tạo thành và được lấp đầy vật chất đồng nhất tương ứng Định nghĩa mặt là các dạng toàn phương liên kết tạo thành các ô Trong định nghĩa dữ liệu cần phải khai báo nguồn, vật liệu cấu tạo các ô, loại đánh giá cần tính toán, số hạt gieo,
độ quan trọng của các ô
Cấu trúc input trong MCNP5 được trình bày như sau:
+ Các dòng thông báo (tùy ý)
Trang 30+ Định nghĩa dữ liệu
1.3 Phương pháp mô phỏng trong nghiên cứu hệ phổ kế gamma
Cùng với sự phát triển của các máy tính điện tử, các phương pháp Monte Carlo ngày càng được
áp dụng rộng rãi trong các nghiên cứu khoa học và công nghệ hạt nhân Trong nghiên cứu hệ phổ kế gamma và các đặc trưng của detector đã có nhiều chương trình đáng tin cậy sử dụng phương pháp Monte Carlo để đánh giá các đặc trưng của hệ phổ kế tiêu biểu như các phần mềm EGS4 (Nelson et al
1985, Stanford Linear Accelerator Center), GEANT (R Brun et al 1986, CERN Data Handling Division, Geneva), CYLTRAN (Halbleib và Mehlhorn, 1986, Integrates Tiger Series), MCNP (J.F Briesmeister, 1997, Los Alamos National Laboratory Report, LA-12625-M), GESPECOR (O Sima và
D Arnold, 2000), DETEFF (Cornejo Diaz và D Pérez Sánchez,1998; Jurado Vargas et al., 2002), PENELOPE (PENetration and Energy LOss of Photon and Electrons, Salvat et al., 2003) Thông qua
đó người sử dụng có thể mô phỏng lại hệ đo của mình và từ đó đánh giá các đặc trưng mong muốn
Đa số các công trình nghiên cứu về hệ phổ kế gamma và các đặc trưng của detector đều tập trung vào các vấn đề liên quan đến mô phỏng hàm đáp ứng, sử dụng mô phỏng trong việc hỗ trợ tính toán hiệu suất đối với các dạng hình học nguồn và mẫu khác nhau, khảo sát hiệu suất theo năng lượng, theo khoảng cách, hiệu chỉnh trùng phùng tổng đối với gamma phân rã nhiều tầng, hiệu chỉnh tự hấp thụ đối với hình học nguồn và mẫu thể tích Vấn đề quan trọng khi thực hiện bài toán mô phỏng là phải có bộ
số liệu đầu vào về kích thước hình học cũng như cấu trúc và thành phần vật liệu được mô tả càng giống thực tế càng tốt Sự đúng đắn này được kiểm chứng bằng cách so sánh kết quả tính toán với số liệu thực nghiệm của các nguồn chuẩn phóng xạ Phần dưới đây sẽ liệt kê vắn tắt một số công trình tiêu biểu liên quan đến việc ứng dụng phương pháp mô phỏng Monte Carlo để nghiên cứu detector bán dẫn germanium siêu tinh khiết
1.3.1 Các nghiên cứu trên thế giới
Năm 1992, một chương trình tính toán mang tên MAR được viết bởi nhóm tác giả Bertolo, Manduchi và Manuchi [10] dựa trên phương pháp Monte Carlo dùng để tính toán hoạt độ của mẫu phóng xạ trong hộp dạng Marinelli với detector Các dung dịch chuẩn để kiểm tra gồm 57Co, 134Cs,
137
Cs, 88Y và 65Zn được đổ vào hộp Marinelli thể tích 3 lít Kết quả cho thấy sự phù hợp giữa tính toán
mô phỏng và thực nghiệm Từ đó ứng dụng trong phân tích định lượng phóng xạ vết các nguyên tố 40K,
235
U, và 228Th cùng con cháu của chúng trong nhiều mẫu nước và bùn
Năm 1993, Haase, Tait và Wiechen [22] đã triển khai mô phỏng Monte Carlo đối với hệ phổ kế gamma cho phép tính toán quãng đường đi của photon trong nguồn và detector cũng như hiệu suất toàn
Trang 31phần Từ đó đánh giá hệ số hiệu chỉnh tự hấp thụ và trùng phùng tổng Việc tính toán được thực hiện khi cho biết kích thước và vị trí tương đối của nguồn với detector, cũng như hiệu suất phát gamma tương ứng Hệ số hiệu chỉnh trùng phùng tổng đối với các nguồn 22Na, 57Co, 60Co và 88Y dạng trụ và Marinelli phù hợp tốt với kết quả thí nghiệm hoặc với mô hình tính toán khác Đường cong hiệu suất toàn phần và quãng đường đi trung bình của photon trong nguồn cũng được khảo sát cụ thể đối với detector Ge(Li) và loại p
Năm 2000, cùng với ý tưởng cần phải kiểm tra lại thông tin về detector cung cấp bởi nhà sản xuất, nhóm tác giả Talavera, Neder, Daza và Quintana [39] đã sử dụng mô phỏng Monte Carlo với phần mềm GEANT để mô phỏng hàm đáp ứng hệ detector loại n hiệu suất tương đối 28,3% ở năng lượng
1332 keV Từ đó tính toán hiệu suất đỉnh toàn phần và so sánh với thực nghiệm với nhiều hình học đo như: nguồn điểm đặt trên trục detector ở khoảng cách 28 cm, giấy lọc cellulose có bán kính 2,2 cm trên nắp detector, hộp Marinelli 1,25 lít chứa mẫu nước và các matrix rắn, hộp Petri chứa mẫu dạng rắn Các hiệu ứng quan tâm ảnh hưởng đến hiệu suất đỉnh toàn phần bao gồm: ảnh hưởng hình học của detector liên quan đến thông tin cung cấp từ nhà sản xuất, ảnh hưởng của các đặc trưng từ mẫu bao gồm tính đồng nhất, hình học mẫu, thành phần hóa học, mật độ liên quan mạnh đến hiệu ứng tự hấp thụ đặc biệt ở vùng năng lượng thấp
Năm 2000, Korum và Vidmar [26] đã ứng dụng chương trình mô phỏng Monte Carlo GEANT3
để tính tỉ số đỉnh trên toàn phần của hệ phổ kế gamma dùng detector đồng trục đáy kín kiểu n của hãng Ortec và nhận thấy rằng hiệu suất tính toán lớn hơn hiệu suất thực nghiệm Để giải thích sự khác biệt này các tác giả cho rằng cần phải hiệu chỉnh các thông số lớp lithium ở bề mặt lõi, lớp boron ở bề mặt ngoài tinh thể germanium siêu tinh khiết và bề dày lớp vỏ nhôm của detector
Năm 2000, Laborie, Le Petit, Abt và Girad [28] bằng chương trình GEANT3 đã tính toán hiệu suất đỉnh năng lượng toàn phần của các vạch gamma trong miền năng lượng 46 – 1836 keV được đo trên hệ phổ kế gamma dùng detector dạng hình giếng Kết quả cho thấy hiệu suất tính toán với các thống số do nhà sản xuất cung cấp cao hơn hiệu suất thực nghiệm và thay đổi theo năng lượng Sự khác biệt giữa hiệu suất tính toán và thực nghiệm sẽ không đáng kể và không phụ thuộc vào năng lượng khi
bề dày lớp chết dùng để tính toán là 1,5 mm
Năm 2001, Ewa, Bodizs, Czifrus và Molnar [17] đã ứng dụng chương trình mô phỏng Monte Carlo MCNP4 để tính toán hiệu suất đỉnh năng lượng toàn phần của hệ phổ kế dùng detector của hãng Ortec trong miền năng lượng 50 – 2000 keV dựa vào các thông tin về hệ phổ kế do nhà sản suất cung cấp So sánh với thực nghiệm cho thấy hiệu suất tính toán lớn hơn hiệu suất thực nghiệm đặc biệt ở
Trang 32miền năng lượng thấp 50 – 300 keV Sự khác biệt này được giải thích là do ảnh hưởng của các nguyên nhân như hạn chế của lý thuyết tương tác giữa bức xạ gamma với vật chất, sự suy giảm photon khi chúng xuyên qua các lớp vật liệu của hệ phổ kế trước khi đi vào thể tích vùng hoạt tinh thể germanium,
độ hụt phóng xạ, bề dày lớp chết, sai số của tỉ số phân nhánh, tính thăng giáng của quá trình tập hợp điện tích
Năm 2002, Tsutsumi, Oishi, Kinouchi, Sakamoto và Yoshida [40] đã ứng dụng chương trình mô phỏng Monte Carlo EGS – 4 để tính toán mô phỏng và thiết kế hệ phổ kế gamma dùng detector triệt Compton sử dụng trong việc xác định hoạt độ của mẫu đo và bản thân nó là nguồn phông đáng kể Năm 2006, Salgado, Conti và Becker [38] đã tính toán các đặc trưng của detector kiểu planar bằng chương trình mô phỏng Monte Carlo MCNP5 đối với các tia X trong miền năng lượng 20 – 150 keV và
đã phát hiện có sự khác biệt với thực nghiệm khoảng 10%
Năm 2006, Dryak và Kovar [16] đã tiến hành đo các thông số vật lý của detector, trong đó có bề dày lớp germanium bất hoạt bằng phương pháp suy giảm chùm tia gamma 59,5 keV của nguồn phóng
xạ 241Am, đường kính và chiều cao tinh thể germanium bằng phương pháp chụp ảnh tia X, đường kính
và độ sâu hốc khoan trong tinh thể bằng phương pháp chụp ảnh phóng xạ Bộ số liệu này được đưa vào input của chương trình MCNP4C2 để mô phỏng phổ gamma và tính toán hiệu suất detector trong miền năng lượng 40 – 2754 keV Kết quả cho thấy giữa hiệu suất tính toán và thực nghiệm có độ lệch không vượt quá 1,5%
1.3.2 Các nghiên cứu trong nước
Tại Việt Nam có nhiều nhóm nghiên cứu ứng dụng phương pháp Monte Carlo trong vận chuyển bức xạ để khảo sát các đặc trưng của hệ phổ kế
Nhóm nghiên cứu Lê Văn Ngọc, Nguyễn Thị Thanh Huyền, Nguyễn Hào Quang [29], [30] sử dụng chương trình MCNP4C2 nghiên cứu tính toán hiệu suất đỉnh cho hệ phổ kế gamma môi trường ký hiệu GMX tại Viện Khoa học và Kỹ thuật Hạt nhân Hà Nội
Nhóm nghiên cứu Ngô Quang Huy, Đỗ Quang Bình, Võ Xuân Ân [4], [5], [6] ở Đại học Công nghiệp TP HCM và Trung tâm Hạt nhân TP HCM nghiên cứu về phổ và tối ưu hiệu suất của hệ phổ kế gamma detector đặt tại Trung tâm Hạt nhân TP HCM bằng chương trình MCNP4C2
Nhóm nghiên cứu Mai Văn Nhơn, Trương Thị Hồng Loan, Đặng Nguyên Phương, Trần Ái Khanh, Trần Thiện Thanh [1], [3], [7] ở Bộ môn Vật lý Hạt nhân, Trường Đại học Khoa học Tự nhiên
TP HCM sử dụng phương pháp mô phỏng Monte Carlo với chương trình MCNP4C2 và MCNP5 để
Trang 33nghiên cứu chuẩn hiệu suất và đặc trưng đáp ứng của detector có tại Phòng thí nghiệm Bộ môn Vật lý Hạt nhân
Các công trình nghiên cứu nói trên đã cho thấy mô phỏng Monte Carlo với các chương trình dựng sẵn như MCNP rất đáng tin cậy để mô hình hóa chính xác hệ phổ kế, mô phỏng phổ gamma và đánh giá các đặc trưng của detector
Trang 34CHƯƠNG 2
MÔ HÌNH HÓA HỆ PHỔ KẾ GAMMA DETECTOR HPGe
Để mô hình hóa hệ phổ kế gamma bằng chương trình MCNP5, cần phải tìm hiểu chi tiết cấu trúc vật liệu, các thông số về mật độ, thành phần hóa học, nồng độ nguyên tố, các đặc trưng của nguồn phóng xạ, loại phân bố năng lượng, xác suất phát, loại hạt gây tương tác trên detector Như ta đã biết,
hệ phổ kế gamma gồm buồng chì, detector, nguồn phóng xạ và hệ thống điện tử rất phức tạp Tuy nhiên khi tiến hành mô hình hóa hệ phổ kế thì có thể bỏ qua những yếu tố đóng góp không đáng kể vào phổ gamma mô phỏng [8] Do đó chỉ có cấu trúc hình học và thành phần vật liệu của detector, buồng chì và nguồn phóng xạ là đáng quan tâm nhất và cần được mô tả càng chính xác càng tốt Thông tin về buồng chì có được bằng cách khảo sát, đo đạc trực tiếp, còn thông tin về detector và nguồn phóng xạ
do nhà sản xuất cung cấp Bộ số liệu đầu vào này phải chính xác và thỏa mãn các chuẩn mực đối với một input của MCNP5 [43]
2.1 Hệ phổ kế gamma
Hệ phổ kế gamma sử dụng trong luận văn này đặt tại Phòng thí nghiệm Vật lý Hạt nhân, trường Đại học Sư phạm TP HCM (phụ lục 1) Hệ phổ kế gồm: buồng chì, detector HPGe GEM 15P4, nguồn cung cấp cao thế, tiền khuếch đại nhạy điện tích, khuếch đại, khối phân tích biên độ đa kênh, khối xử lý
và lưu trữ số liệu Tuy nhiên, như đã nói ở trên, chỉ có detector, nguồn và buồng chì là được quan tâm 2.1.1 Detector
Các hình 2.1 và 2.2 trình bày sơ đồ cấu trúc của detector GEM 15P4, cấu trúc hình học và thành phần vật liệu được lấy từ số liệu do nhà sản xuất cung cấp Đây là detector germanium siêu tinh khiết dạng đồng trục với các thông số danh định như đã trình bày trong phần 1.1.6
Trang 35Hình 2.1: Cấu trúc bên trong của detector GEM 15P4 [35]
Phần chính của detector là tinh thể germanium siêu tinh khiết có đường kính ngoài 51,2 mm, chiều cao 45 mm, ở giữa có một hốc hình trụ đường kính 11 mm và chiều cao 33,5 mm Tín hiệu được lấy ra từ một điện cực bằng đồng đặt ở trong hốc của tinh thể Mặt trên và mặt bên của tinh thể được bao phủ bởi lớp lithium khuếch tán 0,7 mm được gọi là lớp germanium bất hoạt Đây cũng là lớp n+được nối với cực dương của nguồn điện Vì lớp tiếp xúc lithium n+ được hình thành bằng cách khuếch tán lithium vào tinh thể germanium [20], [35], do đó mật độ của lớp này được lấy xấp xỉ mật độ germanium tinh khiết Điều này cũng có nghĩa là vùng hoạt của tinh thể nhỏ hơn kích thước vật lý của
nó Mặt trong hốc tinh thể là lớp boron được cấy ion với bề dày 0,3 μm Đây là lớp p+ được nối với cực
âm của nguồn điện Mặt trên cùng của tinh thể có phủ hai lớp vật liệu, trong đó lớp trên là kapton 0,1
mm và lớp dưới là mylar được kim loại hóa với bề dày 0,06 mm Tinh thể germanium đặt trong một hộp kín bằng nhôm và ghép cách điện với que tản nhiệt bằng đồng Que tản nhiệt sẽ dẫn nhiệt từ tinh
Trang 36thể germanium đến bình chứa nitrogen lỏng -1960C (77 K) nhằm giảm tối thiểu ảnh hưởng nhiễu do dao động nhiệt trong tinh thể germanium và các linh kiện điện tử của tiền khuếch đại Hộp kín bằng nhôm có bề dày 0,76 mm để đảm bảo tránh sự hấp thụ photon năng lượng thấp và che chắn bức xạ hồng ngoại từ bên ngoài vào tinh thể germanium Các điện cực cách điện với nhau bởi lớp teflon và có một khoảng chân không trong tinh thể Toàn bộ hộp kín này được đặt trong một vỏ nhôm có đường kính 70 mm và dày 1,3 mm Khoảng chân không giữa mặt trên tinh thể và mặt dưới vỏ nhôm là 3 mm giúp tránh các va chạm vào bề mặt tinh thể khi lắp ráp detector Detector được đặt trong một buồng chì
để giảm phông gamma từ môi trường
Hình 2.2: Tiết diện detector và ảnh tia X của một detector cùng loại của Ortec [11]
2.1.2 Buồng chì
Để giảm phông do các đồng vị phóng xạ tự nhiên và nhân tạo phân bố xung quanh detector làm ảnh hưởng đến kết quả phân tích phổ gamma, detector và mẫu đo phải được đặt trong một buồng chì thích hợp Cấu trúc buồng chì tại Phòng thí nghiệm Vật lý Hạt nhân Trường Đại học Sư phạm TP HCM được trình bày trên hình 2.3
Trang 37Hình 2.3: Tiết diện buồng chì (đơn vị mm)
Dưới đáy buồng chì là một lỗ tròn đường kính 11,5 cm để đặt detector Buồng chì có dạng hình trụ với đường kính ngoài 60,2 cm và cao 51,93 cm Phần nắp buồng chì dày 5 cm, thành dày 7,8 cm và đáy dày 6,05 cm Mặt trong của buồng chì là một lớp đồng dày 0,15 cm có tác dụng hấp thụ các tia X phát ra từ chì Giữa thân và nắp buồng chì là một lớp sắt dày 0,93 cm làm giá đỡ và di chuyển nắp buồng chì khi thực hiện việc đo đạc mẫu Tất cả các kích thước được khảo sát bằng thước cuộn và thước kẹp
2.1.3 Nguồn phóng xạ
Nhằm phục vụ cho thực nghiệm và mô phỏng, luận văn đã sử dụng bộ tám nguồn chuẩn model RSS – 8EU do hãng Spectrum Techniques LLC sản suất và nguồn 226Ra của hãng Leybold Didactic GmbH Chu kỳ bán rã, hoạt độ, ngày sản xuất và năng lượng gamma của các nguồn này được trình bày trong phụ lục 4
Trang 38
Hình 2.4: Ảnh chụp và cấu trúc nguồn cuả hãng Spectrum Techniques LLC
Hình 2.5: Cấu trúc nguồn 226 Ra của hãng Leybold Didactic GmbH
Bộ nguồn chuẩn phóng xạ đặt tại Phòng thí nghiệm Vật lý Hạt nhân bao gồm 133Ba, 109Cd, 57Co,
60
Co, 22Na và 65Zn Viên phóng xạ có dạng hình trụ đường kính 0,3048 cm và chiều cao 0,0127 cm, chứa trong hốc epoxy đường kính 0,635 cm và sâu 0,2619 cm Cả viên phóng xạ và hốc epoxy được đặt trong một đĩa plexiglas với đường kính 2,54 cm và chiều cao 0,3 cm Bề dày cửa sổ kiểu nguồn này
là 0,0381 cm Mặt trên cùng của đĩa plexiglas có dán một lớp decal với các thông tin về nguyên tố phóng xạ, hoạt độ, thời gian bán rã, ngày sản xuất, công ty sản xuất và cơ quan cấp chứng nhận nguồn
Để khảo sát sự phụ thuộc của đại lượng FWHM theo năng lượng và cung cấp các thông số cho tùy
chọn GEB trong input của chương trình tính toán, nguồn 226Ra được mượn từ Phòng thí nghiệm Bộ môn Vật lý Hạt nhân, Trường Đại học KHTN TP HCM và đo trong 24 giờ Đây là nguồn có dạng đĩa tròn đường kính 6,5 cm, bề dày 0,5 cm làm bằng hợp kim chứa 226Ra đặt trong một hốc hình giếng của giá đỡ bằng thép không gỉ hình trụ Trên giá đỡ này có một đầu nối bằng đồng hình bầu dục đàn hồi nhằm tạo sự thuận tiện khi lắp đặt nguồn trong các thí nghiệm
2.2 Mô hình hóa hệ phổ kế gamma dùng MCNP5
2.2.1 Mô tả hình học cấu hình detector – buồng chì – nguồn
Trang 39Để mô hình hóa hệ phổ kế gamma bằng MCNP, phải có một input trong đó các yếu tố cần mô phỏng được chia thành các ô đồng chất giới hạn bởi các mặt được định nghĩa trước Đối với bài toán hiệu tại, cấu hình detector – buồng chì – nguồn được chia làm 23 ô và được lấp đầy bằng vật liệu tương ứng Các ô gồm có
Ô 1: Lõi đồng dẫn tín hiệu
Ô 2: Lớp boron
Ô 3: Tinh thể Germanium
Ô 4: Lớp lithium khuếch tán
Ô 5: Lớp nhôm bảo vệ tinh thể
Ô 6: Chân không bên trong lớp nhôm
Hình 2.6: Cấu hình detector – buồng chì – nguồn được mô hình hóa bằng MCNP5
Ô 13: Cóc teflon
Ô 14: Chân không trong hốc lõi
Ô 15: Không khí trong buồng chì