1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp tập 3 part 3 pps

33 272 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 244,87 KB

Nội dung

66 Chu . o . ng 11. T´ıch phˆan x´ac d i . nh Riemann Do d´o I = x · 1 cos x    π/3 0 − π/3  0 dx cos x = π 3 cos π 3 − ln tg  x 2 + π 4     π/3 0 = 2π 3 − ln tg  π 6 + π 4  + ln tg π 4 = 2π 3 −ln tg 5π 12 ·  V´ı du . 6. T´ınh t´ıch phˆan I = 1  0 x 2 (1 −x) 3 dx. Gia ’ i. Ta d ˘a . t u = x 2 ,dv=(1−x) 3 dx ⇒ du =2xdx, v = − (1 − x) 4 4 · Do d ´o I = −x 2 (1 − x) 4 4    1 0 + 1  0 2x (1 − x) 4 4 dx    I 1 =0+I 1 . T´ınh I 1 .T´ıch phˆan t`u . ng phˆa ` n I 1 ta c´o I 1 = 1 2 1  0 x(1 − x) 4 dx = − 1 2 x (1 − x) 5 5    1 0 + 1 2 1  0 (1 − x) 5 5 dx =0− 1 10 (1 − x) 6 6    1 0 = 1 60 ⇒ I = 1 60 ·  V´ı du . 7. ´ Ap du . ng cˆong th´u . c Newton-Leibnitz d ˆe ’ t´ınh t´ıch phˆan 1) I 1 = 100π  0 √ 1 − cos 2xdx, 2) I 2 = 1  0 e x arc sin(e −x )dx. 11.2. Phu . o . ng ph´ap t´ınh t´ıch phˆan x´ac d i . nh 67 Gia ’ i. Ta c´o √ 1 − cos 2x = √ 2|sinx|.Dod´o 100π  0 √ 1 − cos 2xdx = √ 2 100π  0 |sinx|dx = √ 2  π  0 sin xdx − 2π  π sin xdx + 3π  2π sin xdx − + ···+ 100π  99π sin xdx  = − √ 2[2 + 2 + ···+ 2] = 200 √ 2. 2) Thu . . chiˆe . n ph´ep d ˆo ’ ibiˆe ´ n t = e −x , sau d´o ´a p d u . ng phu . o . ng ph´ap t´ıch phˆan t`u . ng phˆa ` n. Ta c´o  e x arc sin(e −x )dx = −  arc sin t t 2 dt = 1 t arc sin t −  dt t √ 1 − t 2 = 1 t arc sin t + I 1 . I 1 = −  dt t √ 1 − t 2 =  d  1 t    1 t  2 − 1 =ln  1 t +  1 t 2 −1  + C. Do d ´o  e x arc sin e −x dx = arc sin t t +ln  1 t +   1 t 2 − 1  + C = e x arc sin e −x + ln(e x + √ e 2x − 1) + C Nguyˆen h`am v`u . athud u . o . . c c´o gi´o . iha . nh˜u . uha . nta . id iˆe ’ m x = 0. do d ´o theo cˆong th´u . c (11.3) ta c´o 1  0 e x arc sin e −x dx = earc sin e −1 − π 2 + ln(e + √ e 2 − 1).  68 Chu . o . ng 11. T´ıch phˆan x´ac d i . nh Riemann V´ı du . 8. T´ınh t´ıch phˆan Dirichlet π/2  0 sin(2n − 1)x sin x dx, n ∈ N. Gia ’ i. Ta c´o cˆong th´u . c 1 2 + n−1  k=1 cos 2kx = sin(2n −1)x 2 sin x · T`u . d ´o v`a lu . u´yr˘a ` ng π/2  0 cos 2kxdx =0,k =1, 2, ,n− 1 ta c´o π/2  0 sin(2n − 1)x sin x dx = π 2 ·  B ` AI T ˆ A . P T´ınh c´ac t´ıch phˆan sau d ˆay b˘a ` ng phu . o . ng ph´ap d ˆo ’ ibiˆe ´ n (1-14). 1. 5  0 xdx √ 1+3x .(D S. 4) 2. ln 3  ln 2 dx e x − e −x .(DS. ln 3 2 2 ) 3. √ 3  1 (x 3 +1)dx x 2 √ 4 − x 2 .(DS. 7 2 √ 3 − 1). D ˘a . t x = 2 sin t. 4. π/2  0 dx 2 + cos x .(D S. π 3 √ 3 ) 11.2. Phu . o . ng ph´ap t´ınh t´ıch phˆan x´ac d i . nh 69 5. 1  0 x 2 dx (x +1) 4 .(DS. 1 24 ) 6. ln 2  0 √ e x − 1dx.(DS. 4 − π 2 ) 7. √ 7  √ 3 x 3 dx 3  (x 2 +1) 2 .(DS. 3) Chı ’ dˆa ˜ n. D ˘a . t t = x 2 +1. 8. e  1 4 √ 1+lnx x dx.(D S. 0, 8(2 4 √ 2 − 1)) Chı ’ dˆa ˜ n. D ˘a . t t =1+lnx. 9. + √ 3  −3 x 2 √ 9 − x 2 dx.(DS. 81π 8 ) chı ’ dˆa ˜ n. D ˘a . t x = 3 cos t. 10. 3  0  x 6 − x dx.(D S. 3(π − 2) 2 ) Chı ’ dˆa ˜ n. D ˘a . t x = 6 sin 2 t. 11. π  0 sin 6 x 2 dx.(D S. 5π 16 ) Chı ’ dˆa ˜ n. D ˘a . t x =2t. 12. π/4  0 cos 7 2xdx.(DS. 8 35 ) Chı ’ dˆa ˜ n. D ˘a . t x = t 2 70 Chu . o . ng 11. T´ıch phˆan x´ac d i . nh Riemann 13. √ 2/2  0  1+x 1 − x dx.(D S. π 4 +1− √ 2 2 ) Chı ’ dˆa ˜ n. D ˘a . t x = cos t. 14. 29  3 3  (x − 2) 2 3+ 3  (x − 2) 2 dx.(DS. 8 + 3 √ 3 2 π) T´ınh c´ac t´ıch phˆan sau d ˆay b˘a ` ng phu . o . ng ph´ap t´ıch phˆan t`u . ng phˆa ` n (15-32). 15. 1  0 x 3 arctgxdx.(DS. 1 6 ) 16. e  1/e |ln x|dx.(DS. 2(1 −1/e)) 17. π  0 e x sin xdx.(DS. 1 2 (e π + 1)) 18. 1  0 x 3 e 2x dx.(DS. e 2 +3 8 ) 19. 1  0 arc sin x √ 1+x dx.(D S. π √ 2 − 4) 20. π/4  0 ln(1 + tgx)dx.(DS. π ln 2 8 ) 21. π/b  0 e ax sin bxdx.(DS. b a 2 + b 2  e πa b +1  ) 22. 1  0 e −x ln(e x +1)dx.(DS. − 1+e e ln(e +1)+2ln2+1) 11.2. Phu . o . ng ph´ap t´ınh t´ıch phˆan x´ac d i . nh 71 23. π/2  0 sin 2x · arctg(sin x)dx.(DS. π 2 − 1) 24. 2  1 sin(ln x)dx.(DS. sin(ln 2) −cos(ln 2) + 1 2 ) 25. π  0 x 3 sin xdx.(DS. π 3 − 6π) 26. 2  1 xlog 2 xdx.(DS. 2 − 3 4ln2 ) 27. a √ 7  0 x 3 3 √ a 2 + x 2 dx.(DS. 141a 3 3 √ a 20 ) 28. a  0 √ a 2 −x 2 dx.(DS. πa 2 4 ) 29. π/2  π/6 x + sin x 1 + cos x dx.(D S. π 6 (1 + √ 3)) 30. π/2  0 sin m x cos(m +2)xdx.(DS. − cos mπ 2 m +1 ) 31. π/2  0 cos m x cos(m +2)xdx.(DS. 0) 32. π/2  0 cos x cos 2nxdx.(DS. π 4n (−1) n−1 ) 72 Chu . o . ng 11. T´ıch phˆan x´ac d i . nh Riemann 33. T´ınh 2  0 f(x)dx, trong d´o f(x)=    x 2 khi 0  x  1 2 − x khi 1  x  2 b˘a ` ng hai phu . o . ng ph´ap; a) su . ’ du . ng nguyˆen h`am cu ’ a f(x) trˆen d oa . n [0, 2]; b) chia d oa . n[0, 2] th`anh hai doa . n[0, 1] v`a [1, 2]. (DS. 5 6 ) 34. Ch ´u . ng minh r˘a ` ng nˆe ´ u f(x)liˆen tu . ctrˆend oa . n[−, ]th`ı (i)   − f(x)dx =2   0 f(x)dx khi f(x) l`a h`am ch˘a ˜ n; (ii)   − f(x)dx = 0 khi f(x) l`a h`am le ’ . 35. Ch´u . ng minh r˘a ` ng ∀m, n ∈ Z c´ac d ˘a ’ ng th´u . c sau d ˆay du . o . . c tho ’ a m˜an: (i) π  −π sin mx cos nxdx =0. (ii) π  −π cos mx cos nxdx =0,m = n. (iii) π  −π sin mx sin nxdx =0,m = n. 36. Ch ´u . ng minh d ˘a ’ ng th´u . c b  a f(x)dx = b  a f(a + b − x)dx. Chı ’ dˆa ˜ n. D ˘a . t x = a + b − t. 11.2. Phu . o . ng ph´ap t´ınh t´ıch phˆan x´ac d i . nh 73 37. Ch´u . ng minh d ˘a ’ ng th´u . c π/2  0 f(cos x)dx = π/2  0 f(sin x)dx. Chı ’ dˆa ˜ n. D ˘a . t t = π 2 − x. 38. Ch´u . ng minh r˘a ` ng nˆe ´ u f(x)liˆen tu . c khi x  0th`ı a  0 x 3 f(x 2 )dx = 1 2 a 2  0 xf(x)dx. 39. Ch´u . ng minh r˘a ` ng nˆe ´ u f(t) l`a h`am le ’ th`ı x  a f(t)dt l`a h`am ch˘a ˜ n, t´u . cl`a −x  a f(t)dt = x  a f(t)dt. Chı ’ dˆa ˜ n. D ˘a . t t = −x v`a biˆe ’ udiˆe ˜ n −x  −a f(t)dt = a  −a + −x  a v`a su . ’ du . ng t´ınh ch˘a ˜ nle ’ cu ’ a h`am f. T´ınh c´ac t´ıch phˆan sau d ˆay (40-65) b˘a ` ng c´ach ´ap du . ng cˆong th´u . c Newton-Leibnitz. 40. 5  0 xdx √ 1+3x .(D S. 4) 41. ln 3  ln 2 dx e x − e −x .(DS. ln 1, 5 2 ) 74 Chu . o . ng 11. T´ıch phˆan x´ac d i . nh Riemann 42. √ 3  0 (x 3 +1)dx x 2 √ 4 − x 2 .(DS. 7 2 √ 3 − 1) 43. π/2  0 dx 2 + cos x .(D S. π 3 √ 3 ) 44. ln 2  0 √ e x − 1dx.(DS. 4 − π 2 ) 45. √ 7  √ 3 x 3 dx 3  (x 2 +1) 2 .(DS. 3) 46. e  1 4 √ 1+lnx x dx.(D S. 0, 8(2 4 √ 2 − 1)) 47. 3  −3 x 2 √ 9 − x 2 dx.(DS. 81π 8 ) 48. 3  0  x 6 − x dx.(D S. 3(π − 2) 2 ) Chı ’ dˆa ˜ n. D ˘a . t x = 6 sin 2 t. 49. 4  3 x 2 +3 x − 2 dx.(D S. 11 2 + 7ln2) 50. −1  −2 x +1 x 2 (x − 1) dx.(D S. 2 ln 4 3 − 1 2 ) 51. 1  0 (x 2 +3x)dx (x + 1)(x 2 +1) .(D S. π 4 ) 11.2. Phu . o . ng ph´ap t´ınh t´ıch phˆan x´ac d i . nh 75 52. 1  0 dx √ x 2 +2x +2 .(D S. ln 2+ √ 5 1+ √ 2 ) 53. 4  0 dx 1+ √ 2x +1 .(D S. 2 − ln 2) 54. 2  1 e 1 x x 3 dx.(DS. 1 2 (e − e 1 4 )) 55. e  1 dx x(1 + ln 2 x) .(D S. π 4 ) 56. e  1 cos(ln x) x dx.(D S. sin 1) 57. 1  0 xe −x dx.(DS. 1 − 2 e ) 58. π/3  π/4 xdx sin 2 x .(D S. π(9 − 4 √ 3) 36 ) 59. 3  1 ln xdx.(DS. 3 ln 3 − 2) 60. 2  1 x ln xdx.(DS. 2 ln 2 − 3 4 ) 61. 1/2  0 arc sin xdx.(DS. π 12 + √ 3 2 −1) 62. π  0 x 3 sin xdx.(DS. π 3 − 6π) [...]... t ∈ − , Tu.o.ng tu nhu trˆn ta ´p dung (11. 23) ´ o e a 2 2 o.c v` thu du a π/2 Sy = 2π 6 cos t · 36 sin2 t + 9 cos2 tdt 1 D˘t sin t = √ shϕ a 3 −π/2 √ = 24 3 √ arcsh 3 √ √ √ ch2ϕdϕ = 24 3 2 3 + ln(2 + 3) √ −arcsh 3 ` ˆ BAI TAP ’ o T´ dˆ d`i cung cua du.`.ng cong ınh o a √ 8 ´ (10 10 − 1)) u e 1 y = x3/2 t` x = 0 dˆn x = 4 (DS 27 ’ ıch a a i 11 .3 Mˆt sˆ u.ng dung cua t´ phˆn x´c d nh o o´... elip: ´ ´ Dˆ a o e o a o u e o o x = 6 cos t, y = 3 sin t, 0 t 2π e ’ e e ’ 1+ Ph´p quay xung quanh truc Ox Ta x´t nu.a trˆn cua elip tu.o.ng ´ u.ng v´.i 0 t π Theo cˆng th´.c (11.22) du.´.i dang tham sˆ ta c´ ´ o o u o o o π Sx = 2π 3 sin t · 36 sin2 t + 9 cos2 tdt 0 2 D˘t cos t = √ sin ϕ ta c´ o a 3 √ Sx = 24 3 π /3 √ √ cos2 ϕdϕ = 2 3 (4π + 3 3) −π /3 ’ ’ e 2+ Ph´p quay xung quanh truc Oy Ta x´t nu.a... 2 Do d´ o a 0 y 2dx = −6a3π V = 2π 0 sin6 t cos2 t sin tdt π/2 0 = 6a3π (1 − cos2 t )3 cos2 t(− sin tdt) π/2 0 3 (cos2 t − 3 cos4 t + 3 cos6 t − cos8 t)(d(cos t) = 6a π π/2 = ··· = 32 3 πa 105 ’ ’ ’ o ` V´ du 6 T´ thˆ t´ vˆt thˆ gi´.i han bo.i hypecboloid mˆt tˆng ı ınh e ıch a e o a x2 y 2 z 2 + 2 − 2 =1 a2 b c ’ ıch a a i 11 .3 Mˆt sˆ u.ng dung cua t´ phˆn x´c d nh o o´ ´ ’ v` c´c m˘t ph˘ng z... cho tru.´.c xung quanh truc cho tru.´.c o o o 23 D : y 2 = 2px, x = a; xung quanh truc Ox (DS πpa2) ’ ıch a a i 11 .3 Mˆt sˆ u.ng dung cua t´ phˆn x´c d nh o o´ ´ x2 y 2 24 D : 2 + 2 a b x2 y 2 25 D : 2 + 2 a b 26 27 28 29 30 31 32 4π 2 a b) 1 (b < a) xung quanh truc Oy (DS 3 4π 2 ab ) 1 (b < a) xung quanh truc Ox (DS 3 2 D : 2y = x2 ; 2x + 2y − 3 = 0 xung quanh truc Ox (DS 18 π) 15 π 2 2 D :... (DS e u 2 2e π 1 ´ y = ln cos x t` x = 0 dˆn x = (DS ln 3) u e 6 2 π 2π ´ (DS ln 3) y = ln sin x t` x = dˆn x = u e 3 3 √ π (DS 2(eπ/2 − 1)) x = et sin t, y = et cos t, 0 t 2 x = a(t − sin t), y = a(1 − cos t); 0 t 2π (DS 8a) ´ 2 y = x2 − 1 t` x = −1 dˆn x = 1 (DS u e 3 4 5 6 7 8 x = a cos3 t, y = a sin3 t; 0 ˜ ’ a Chı dˆ n V` ı t 2π (DS 6a) 3a a a o y xt 2 + yt2 = | sin 2t| v` h`m | sin 2t| c´ chu... du.`.ng xycloid ınh o ’ o a a 3 a2 ) 8 14 x = a cos t, y = b sin t, t ∈ [0, 2π] (DS πab) 13 x = a cos3 t, y = a sin3 t, t ∈ [0, 2π] (DS o 15 Du.`.ng lemniscate Bernoulli ρ2 = a2 cos 2ϕ (DS a2 ) o ınh 16 Du.`.ng h` tim (Cacdioid) ρ = a(1 + cos ϕ) 3 a2 ) (DS 2 87 ıch a a Chu.o.ng 11 T´ phˆn x´c dinh Riemann 88 √ o o 17∗ C´c du.`.ng tr`n ρ = 2 3a cos ϕ, ρ = 2a sin ϕ a √ 5 (DS a2 π − 3 ) 6 ’ ’ Trong c´c b`i... du.`.ng astroid ı ım e ıch ınh a o 3 x = a cos3 t, y = a sin t ´ ’ ´ Giai Ap dung cˆng th´.c (11.7) V` du.`.ng astroid dˆi x´.ng qua o u ı o o u ıch a a Chu.o.ng 11 T´ phˆn x´c dinh Riemann 82 c´c truc toa dˆ (h˜y v˜ h`nh !) nˆn a e o a e ı 0 a sin3 t · 3a cos2 t(− sin t)dt S = 4S1 = 4 π/2 π/2 = 12a2 sin4 t cos2 tdt 0 π/2 3 = a2 2 (1 − cos 2t)(1 − cos2 2t)dt 0 3 = 3 a 8 ’ V´ du 2 Trˆn hypecbon x2... dy b2 0 y3 = 2πa2 y + 2 3b b 0 8 = πa2b 3 ’ ’ V´ du 5 T´ thˆ t´ vˆt thˆ lˆp nˆn do quay astroid x = a cos3 t, ı ınh e ıch a e a e y = a sin3 t, 0 t 2π xung quanh truc Ox ´ ´ ’ Giai Du.`.ng astroid dˆi x´.ng dˆi v´.i c´c truc Ox v` Oy Do d´ o a o u o o a o a a 2 Vx = π y 2 dx y dx = 2π −a 0 y 2 = a2 sin6 t, dx = −3a cos2 t sin tdt π t = khi x = 0, t = 0 khi x = a 2 Do d´ o a 0 y 2dx = −6a3π V = 2π... π dx = √ 4 + x2 + 1 x 2 2 0 pi/2 dx =1 1 + cos x 71 0 1 72 0 √ √ 1 1 x2 + 1dx = √ + ln(1 + 2) 2 2 a ınh ıch a a i 11.2 Phu.o.ng ph´p t´ t´ phˆn x´c d nh 1 73 1− √ 3 x2 3/ 2 dx = 3 32 0 D˘t x = sin3 ϕ a a x2 74 a−x π 2 2 dx = − a , a > 0 a+x 4 3 0 D˘t x = a cos ϕ a 2a √ πa2 2 dx = 2ax − x 2 75 0 D˘t x = 2a sin2 ϕ a 1 π ln(1 + x) dx = ln 2 2 1+x 8 76 0 ˜ ` a ’ a Chı dˆ n D˘t x = tgt rˆi ´p dung cˆng... (3 − 4) · 6 ’ ıch a a i 11 .3 Mˆt sˆ u.ng dung cua t´ phˆn x´c d nh o o´ ´ ` ˆ BAI TAP ’ a ınh e ı a ı a Trong c´c b`i to´n sau dˆy (1-17) t´ diˆn t´ch c´c h`nh ph˘ng a a a ’ a gi´.i han bo.i c´c du.`.ng d˜ chı ra o o a ’ 9 (DS ) 1 y = 6x − x2 − 7, y = x − 3 2 2 2 y = 6x − x , y = 0 (DS 36 ) 5 (DS 5 ) 3 4y = 8x − x2 , 4y = x + 6 24 2 2 4 y = 4 − x , y = x − 2x (DS 9) 5 6x = y 3 − 16y, 24x = y 3 . (1-14). 1. 5  0 xdx √ 1+3x .(D S. 4) 2. ln 3  ln 2 dx e x − e −x .(DS. ln 3 2 2 ) 3. √ 3  1 (x 3 +1)dx x 2 √ 4 − x 2 .(DS. 7 2 √ 3 − 1). D ˘a . t x = 2 sin t. 4. π/2  0 dx 2 + cos x .(D S. π 3 √ 3 ) 11.2 x .(D S. π 3 √ 3 ) 44. ln 2  0 √ e x − 1dx.(DS. 4 − π 2 ) 45. √ 7  √ 3 x 3 dx 3  (x 2 +1) 2 .(DS. 3) 46. e  1 4 √ 1+lnx x dx.(D S. 0, 8(2 4 √ 2 − 1)) 47. 3  3 x 2 √ 9 − x 2 dx.(DS. 81π 8 ) 48. 3  0  x 6. − 2 e ) 58. π /3  π/4 xdx sin 2 x .(D S. π(9 − 4 √ 3) 36 ) 59. 3  1 ln xdx.(DS. 3 ln 3 − 2) 60. 2  1 x ln xdx.(DS. 2 ln 2 − 3 4 ) 61. 1/2  0 arc sin xdx.(DS. π 12 + √ 3 2 −1) 62. π  0 x 3 sin xdx.(DS.

Ngày đăng: 29/07/2014, 02:20

TỪ KHÓA LIÊN QUAN

w