1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp tập 3 part 7 docx

33 352 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 260 KB

Nội dung

198 Chu . o . ng 13. L´y thuyˆe ´ tchuˆo ˜ i 23.  n1 (−1) n−1 (2n + 1)!! 2 · 5 ·8 ···(3n −1) .(D S. Hˆo . itu . tuyˆe . tdˆo ´ i) 24.  n1 (−1) n+1  1 −cos π √ n  .(D S. Hˆo . itu . c´o diˆe ` ukiˆe . n) 25.  n1 (−1) n sin π n n .(D S. Hˆo . itu . tuyˆe . tdˆo ´ i) 26.  n1 (−1) n √ n +2 .(D S. Hˆo . itu . c´o diˆe ` ukiˆe . n) 27.  n1 (−1) n n √ n .(D S. Phˆan k`y) 28.  n1 (−1) n+1 n −ln n .(D S. Hˆo . itu . c´o diˆe ` ukiˆe . n) 29.  n1 (−1) n−1 (n +1)a 2n . (D S. Hˆo . itu . tuyˆe . tdˆo ´ i khi |a| > 1, hˆo . itu . c´o diˆe ` ukiˆe . n khi |a| =1, phˆan k`y khi |a| < 1) 30.  n1 (−1) n (n + 1)( √ n +1− 1) .(D S. Hˆo . itu . tuyˆe . tdˆo ´ i) 31.  n1 (−1) n+1  2+ 1 n  n 5 n .(DS. Hˆo . itu . tuyˆe . tdˆo ´ i) 32.  n1 (−1) n tg π 3 n .(DS. Hˆo . itu . tuyˆe . tdˆo ´ i) Trong c´ac b`ai to´an sau d ˆay, h˜ay t`ım sˆo ´ sˆo ´ ha . ng cu ’ a chuˆo ˜ id˜acho cˆa ` nlˆa ´ yd ˆe ’ tˆo ’ ng cu ’ ach´ung v`a tˆo ’ ng cu ’ achuˆo ˜ itu . o . ng ´u . ng sai kh´ac nhau mˆo . td a . ilu . o . . ng khˆong vu . o . . t qu´a sˆo ´ δ cho tru . ´o . c 33.  n1 (−1) n−1 1 2n 2 , δ =0, 01. (DS. No =7) 13.3. Chuˆo ˜ il˜uy th`u . a 199 34.  n1 cos(nπ) n! , δ =0, 001. (D S. No =5) 35.  n1 (−1) n−1 √ n 2 +1 , δ =10 −6 .(DS. No =10 6 ) 36.  n1 cos nπ 2 n (n +1) , δ =10 −6 .(DS. No = 15) 37.  n1 (−1) n 2n (4n + 1)5 n , δ =0, 1?; δ =0, 01? (DS. No =2,No =3) 38.  n1 (−1) n n! , δ =0,1; δ =0, 001? (D S. No =4,No =6) 13.3 Chuˆo ˜ il˜uy th`u . a 13.3.1 C´ac di . nh ngh˜ıa co . ba ’ n Chuˆo ˜ il˜uy th`u . ad ˆo ´ iv´o . ibiˆe ´ n thu . . c x l`a chuˆo ˜ ida . ng  n0 a n x n = a 0 + a 1 x + a 2 x 2 + ···+ a n x n + (13.6) hay  n0 a n (x −a) n = a 0 + a 1 (x −a)+···+ a n (x −a) n + (13.7) trong d ´o c´ac hˆe . sˆo ´ a 0 ,a 1 , ,a n , l`a nh˜u . ng h˘a ` ng sˆo ´ .B˘a ` ng ph´ep d ˆo ’ i biˆe ´ n x bo . ’ i x − a t`u . (13.6) thu d u . o . . c (13.7). Do d ´odˆe ’ tiˆe . n tr`ınh b`ay ta chı ’ cˆa ` n x´et (13.6) l`a d u ’ (t ´u . c l`a xem a = 0). Chuˆo ˜ i (13.6) luˆon hˆo . itu . ta . id iˆe ’ m x = 0, c`on (13.7) hˆo . itu . ta . i x = a. Do d ´otˆa . pho . . pd iˆe ’ m m`a chuˆo ˜ il˜uy th`u . ahˆo . itu . luˆon luˆon = ∅. D ˆo ´ iv´o . ichuˆo ˜ il˜uy th `u . abˆa ´ t k `y (13.6) luˆon luˆon tˆo ` nta . isˆo ´ thu . . c R :0 R  +∞ sao cho chuˆo ˜ id ´ohˆo . itu . tuyˆe . tdˆo ´ i khi |x| <Rv`a phˆan k`y khi |x| >R.Sˆo ´ R d ´odu . o . . cgo . il`ab´an k´ınh hˆo . itu . cu ’ a chuˆo ˜ i 200 Chu . o . ng 13. L´y thuyˆe ´ tchuˆo ˜ i (13.6) v`a khoa ’ ng I(R)=(−R, R)du . o . . cgo . il`akhoa ’ ng hˆo . itu . cu ’ achuˆo ˜ i l˜uy th `u . a (13.6). B´an k´ınh hˆo . itu . R cu ’ a chuˆo ˜ il˜uy th`u . ac´othˆe ’ t´ınh thˆong qua c´ac hˆe . sˆo ´ cu ’ an´obo . ’ imˆo . t trong c´ac cˆong th´u . c R = lim n→∞ |a n | |a n+1 | , (13.8) ho˘a . c R = lim n→∞ 1 n  |a n | (13.9) nˆe ´ u gi´o . iha . no . ’ vˆe ´ pha ’ icu ’ a (13.8) v`a (13.9) tˆo ` nta . i. D - i . nh ngh˜ıa 13.3.1. Ngu . `o . i ta n´oi r˘a ` ng h`am f(x) khai triˆe ’ nd u . o . . c th`anh chuˆo ˜ il˜uy th`u . a  n0 a n x n trˆen khoa ’ ng ( −R, R)nˆe ´ u trˆen khoa ’ ng d ´o c h u ˆo ˜ id˜anˆeuhˆo . itu . v`a tˆo ’ ng cu ’ a n´o b˘a ` ng f(x), t´u . cl`a f(x)=  n0 a n x n ,x∈ (−R, R). D i . nh ngh˜ıa 13.3.2. 1 + Chuˆo ˜ il˜uy th`u . ada . ng f(x 0 )+ f  (x 0 ) 1! (x −x 0 )+···+ f (n) (x 0 ) n! (x − x 0 ) n + =  n0 f (n) (x 0 ) n! (x −x 0 ) n (13.10) d u . o . . cgo . i l`a chuˆo ˜ i Taylor cu ’ a h`am f(x)v´o . i tˆam ta . id iˆe ’ m x 0 (o . ’ d ˆay 0! = 1, f (0) (x 0 )=f(x 0 )). 2 + C´ac hˆe . sˆo ´ cu ’ a chuˆo ˜ i Taylor a 0 = f(x 0 ),a 1 = f  (x 0 ) 1! , ,a n = f (n) (x 0 ) n! (13.11) d u . o . . cgo . il`ac´achˆe . sˆo ´ Taylor cu ’ a h`am f(x). 13.3. Chuˆo ˜ il˜uy th`u . a 201 3 + Khi x 0 = 0, chuˆo ˜ i Taylor f(0) + f  (0) 1! x + ···+ f (n) (0) n! x n + ···=  n0 f (n) (0) n! x n (13.12) d u . o . . cgo . il`achuˆo ˜ i Maclaurin. 13.3.2 D - iˆe ` ukiˆe . n khai triˆe ’ nv`aphu . o . ng ph´ap khai triˆe ’ n D - i . nh l´y 13.3.1 (Tiˆeu chuˆa ’ n khai triˆe ’ n). H`am f(x) khai triˆe ’ ndu . o . . c th`anh chuˆo ˜ il˜uy th`u . a  n0 a n x n trˆen khoa ’ ng (−R, R) khi v`a chı ’ khi trˆen khoa ’ ng d´o h`am f(x) c´o da . o h`am mo . icˆa ´ p v`a trong cˆong th´u . c Taylor f(x)=f(0) + f  (0) 1! x + ···+ f (n) (0) n! x n + R n (x) phˆa ` ndu . R n (x) → 0 khi n →∞∀x ∈ (−R, R). Trong thu . . c h`anh ngu . `o . i ta thu . `o . ng su . ’ du . ng dˆa ´ uhiˆe . ud u ’ nhu . sau. D - i . nh l´y 13.3.2. D ˆe ’ h`am f(x) khai triˆe ’ ndu . o . . c th`anh chuˆo ˜ il˜uy th`u . a  n0 a n x n ,x∈ (−R, R) d iˆe ` ukiˆe . ndu ’ l`a trˆen khoa ’ ng d´o h`am f(x) c´o da . o h`am mo . icˆa ´ p v`a c´ac d a . oh`amd´obi . ch˘a . n, t´u . cl`a∃M>0:∀n =0, 1, 2, v`a ∀x ∈ (−R, R) th`ı |f (n) (x)|  M. Ta nˆeu ra d ˆay hai phu . o . ng ph´ap khai triˆe ’ n h`am th`anh chuˆo ˜ il˜uy th `u . a 202 Chu . o . ng 13. L´y thuyˆe ´ tchuˆo ˜ i 1. Phu . o . ng ph´ap I (phu . o . ng ph´ap tru . . ctiˆe ´ p) gˆo ` m c´ac bu . ´o . c sau: a) T´ınh c´ac hˆe . sˆo ´ theo cˆong th´u . c (13.11) b) Ch´u . ng to ’ r˘a ` ng lim n→∞ R n (x)=0. Nhu . o . . cd iˆe ’ mcu ’ aphu . o . ng ph´ap n`ay l`a t´ınh to´an qu´a cˆo ` ng kˆe ` nh v`a sau n˜u . a l`a viˆe . c kha ’ o s´at gi´o . iha . n R n (x) → 0(n →∞)la . i c`ang ph´u . c ta . pho . n. 2. Phu . o . ng ph´ap II (phu . o . ng ph´ap gi´an tiˆe ´ p) l`a phu . o . ng ph´ap du . . a trˆen ba ’ ng c´ac khai triˆe ’ n “c´o s˘a ˜ n” (hay Khai triˆe ’ nba ’ ng)c`ung v´o . i c´ac ph´ep t´ınh d ˆo ´ iv´o . i chuˆo ˜ il˜uy th`u . a. I. e x =1+x + x 2 2! + ···+ x n n! −···=  n0 x n n! , x ∈ R. II. sin x = x − x 3 3! + x 5 5! −···+(−1) n x 2n+1 (2n + 1)! + ···= =  n0 (−1) n x 2n+1 (2n + 1)! , x ∈ R. III. cosx =1− x 2 2! + x 4 4! −···+(−1) n x 2n (2n)! + ···= =  n0 (−1) n x 2n (2n)! , x ∈ R. IV. (1 + x) α =1+αx + α(α − 1) 2! x 2 + ···+ α(α −1)···(α −n +1) n! x n + =1+  n1  α n  x n , −1 <x<1,  α 0  =1,  α n  = α(α −1)···(α −n +1) n! ,  α n  = C α n nˆe ´ u α ∈ N. 13.3. Chuˆo ˜ il˜uy th`u . a 203 Khi α = −1 ta c´o 1 1+x =1−x + x 2 −···+(−1) n x n + =  n0 (−1) n x n , −1 <x<1. 1 1 −x =1+x + x 2 + ···+ x n + ···=  n0 x n , −1 <x<1. V. ln(1 + x)=x − x 2 2 + x 3 3 −···+(−1) n−1 x n n + ; −1 <x<1 ln(1 −x)=−x − x 2 2 −···− x n n − , −1 <x<1. C ´ AC V ´ IDU . V´ı du . 1. T`ım miˆe ` nhˆo . itu . cu ’ a chuˆo ˜ il˜uy th`u . a  n1 (−1) n−1 nx n . Gia ’ i. 1 + Tas˜e´apdu . ng cˆong th´u . c (13.8). V`ı a n =(−1) n−1 n v`a a n+1 =(−1) n (n + 1) nˆen ta c´o R = lim n→∞ |a n | |a n+1 | = lim n→∞ n n +1 =1. Nhu . vˆa . y chuˆo ˜ ihˆo . itu . b´o . i −1 <x<1. 2 + Ta c`on cˆa ` n kha ’ o s´at su . . hˆo . itu . cu ’ a chuˆo ˜ ita . i c´ac d ˆa ` um´ut cu ’ a khoa ’ ng hˆo . itu . . V´o . i x = −1 ta c´o  n1 (−1) n−1 n(−1) n =  n1 (−1) 2n−1 n =  n1 (−n). Do d ´o chuˆo ˜ id˜a cho phˆan k`y ta . idiˆe ’ m x = −1 (khˆong tho ’ a m˜an diˆe ` u kiˆe . ncˆa ` n!) 204 Chu . o . ng 13. L´y thuyˆe ´ tchuˆo ˜ i V´o . i x = 1 ta c´o  n1 (−1) n−1 n ⇒ lim n→∞ (−1) n−1 n khˆong tˆo ` nta . i Do d ´o chuˆo ˜ i phˆan k`yta . idiˆe ’ m x = 1. Vˆa . ymiˆe ` nhˆo . itu . cu ’ a chuˆo ˜ il`a (−1, 1).  V´ı d u . 2. T`ım khoa ’ ng hˆo . itu . cu ’ a chuˆo ˜ i  n1 (−1) n (x − 2) n n n · Gia ’ i. Trong tru . `o . ng ho . . p n`ay ta su . ’ du . ng cˆong th´u . c (13.9) v`a thu d u . o . . c R = lim n→∞ 1 n  |a n | = lim n→∞ 1 n     (−1) n n n    = lim n→∞ n =+∞. D iˆe ` ud´o c´o ngh˜ıa l`a chuˆo ˜ id˜achohˆo . itu . v´o . imo . i gi´a tri . x,t´u . cl`a I(R)=(−∞, +∞). V´ı d u . 3. T`ım khoa ’ ng hˆo . itu . cu ’ a chuˆo ˜ i  n0 n!x n , 0! ≡ 1. Gia ’ i. ´ Ap du . ng cˆong th´u . c (13.8) ta c´o R = lim n→∞ |a n | |a n+1 | = lim n→∞ n! n!(n +1) = lim n→∞ 1 n +1 =0. Vˆa . y R =0.D iˆe ` ud´o c´o ngh˜ıa r˘a ` ng chuˆo ˜ id˜a cho hˆo . itu . ta . idiˆe ’ m x =0.  V´ı du . 4. Khai triˆe ’ n h`am 1 4 −x th`anh chuˆo ˜ il˜uy th`u . ata . i lˆan cˆa . nd iˆe ’ m x 0 =2(c˜ung t´u . c l`a: theo c´ac l˜uy th`u . acu ’ ahiˆe . u x − 2 hay chuˆo ˜ il˜uy th `u . av´o . i tˆam ta . id iˆe ’ m x 0 = 2). 13.3. Chuˆo ˜ il˜uy th`u . a 205 Gia ’ i. Ta biˆe ´ ndˆo ’ i h`am d˜achodˆe ’ c´o thˆe ’ ´ap du . ng khai triˆe ’ nba ’ ng: 1 1 −t =  n0 t n , −1 <t<1. Ta c´o 1 4 −x = 1 2 · 1 1 − x −2 2 Xem t = x −2 2 ta c´o: 1 4 −x = 1 2  1+  x −2 2  +  x −2 2  2 + ···+  x − 2 2  n +  ⇒ 1 4 −x =  n0 1 2 n+1 (x −2) n . Khai triˆe ’ n n`ay chı ’ d ´ung khi    x −2 2    < 1 ⇔|x − 2| < 2 ⇔−2 <x− 2 < 2 ⇔ 0 <x<4.  Nhˆa . nx´et. Ba . nd o . cc˜ung dˆe ˜ d`ang thu du . o . . c khai triˆe ’ ntrˆend ˆay b˘a ` ng phu . o . ng ph´ap tru . . ctiˆe ´ p. V´ı d u . 5. Khai triˆe ’ n h`am f(x) = sin πx 4 th`anh chuˆo ˜ i Taylor v´o . i tˆam ta . id iˆe ’ m x 0 =2. Gia ’ i. Ta biˆe ´ nd ˆo ’ i h`am d˜a cho nhu . sau sin π 4 x = sin π 4 (x −2 + 2) = sin  π 4 (x − 2) + π 2  = cos π 4 (x −2). Xem π 4 (x −2) = t v`a ´ap du . ng khai triˆe ’ nba ’ ng I II ta c´o sin π 4 x =  n0 (−1) n (2n)!  π 4 (x −2)  2n =  n0 (−1) n π 2n 4 2n (2n)! (x −2) 2n ,x∈ R.  206 Chu . o . ng 13. L´y thuyˆe ´ tchuˆo ˜ i V´ı d u . 6. Khai triˆe ’ n h`am f(x)=ln 1+x 1 −x th`anh chuˆo ˜ i Maclaurin. Gia ’ i. Ta c´o ln 1+x 1 −x = ln(1 + x) − ln(1 −x). M˘a . t kh´ac ln(1 + x)=x − x 2 2 + ···+(−1) n−1 x n n + , −1 <x<1; ln(1 −x)=−x − x 2 2 −···− x n n − , −1 <x<1. T`u . d ´o ln(1 + x) − ln(1 − x)=2x + 2x 3 3 + 2x 5 5 + ···+ 2x 2n−1 2n −1 + − 1 <x<1.  B ` AI T ˆ A . P Su . ’ du . ng c´ac khai triˆe ’ nba ’ ng d ˆe ’ khai triˆe ’ n h`am th`anh chuˆo ˜ il˜uy th `u . av´o . i tˆam ta . id iˆe ’ m x 0 = 0 v`a chı ’ ra b´an k´ınh hˆo . itu . cu ’ a chuˆo ˜ i 1. f(x)=e −2x .(DS.  n0 (−1) n 2 n n! x n , R =+∞) 2. f(x)=ln 1 1 −2x .(D S.  n1 2 n n x n , R = 1 2 ) 3. f(x)=x ln  1+ x 3 3  .(D S.  n1 (−1) n x 3n+1 3 n n x n , R = 3 √ 3) 4. f(x)= 3 √ 1 −4x.(DS. 1 − 4 3 x +  n2 4 n · 2 · 5 ···(3n − 4) 3 n · n! x n ; R =1) 5. f(x) = sin 5x.(D S.  n0 (−1) n 5 2n+1 (2n + 1)! x 2n+1 ; R =+∞) 6. f(x) = cos x 3 3 .(D S.  n0 (−1) n x 6n 3 2n (2n)! ; R =+∞) 13.3. Chuˆo ˜ il˜uy th`u . a 207 B˘a ` ng c´ach biˆe ´ ndˆo ’ i (trong tru . `o . ng ho . . pcˆa ` n thiˆe ´ t) sao cho c´o thˆe ’ ´a p du . ng c´ac khai triˆe ’ nba ’ ng d ˆe ’ khai triˆe ’ n h`am f(x) th`anh chuˆo ˜ il˜uy th`u . a v´o . i tˆam ta . id iˆe ’ m x 0 . H˜ay chı ’ ra b´an k´ınh hˆo . itu . cu ’ a chuˆo ˜ i 7. f(x)=e − x 2 , x 0 = 10. (DS. e −5  n0 (−1) n n! (x −10) n 2 n , R =+∞) 8. f(x)=2 x , x 0 = a.(DS. 2 a  n0 ln n 2 n! (x −a) n , R =+∞) 9. f(x)=2 x 3 −x , x 0 = 0. (DS.  n0  ln 2 3  n n! x n , R =+∞) 10. f(x)=e 1−2x 3 , x 0 = 0. (DS.  n0 (−1) n 2 n e n! x 3n , R =+∞) 11. f(x)=(2+x)e x−1 , x 0 = −2. (DS. 1 e 3  n0 (x +2) n+1 n! , R =+∞) 12. f(x) = sin(a + x), x 0 =0. (D S. sin a  n0 (−1) n x 2n 2n! + cos a  n0 (−1) n x 2n+1 (2n + 1)! ,R=+∞) 13. f(x) = sin xcos 3x, x 0 =0. (D S. 1 2  n0 (−1) n (4x) 2n+1 (2n + 1)! − 1 2  n0 (−1) n (2x) 2n+1 (2n + 1)! ,R=+∞) 14. f(x)=    cos x − 1 x ,x=0 0,x=0 ; x 0 =0. (D S.  n0 (−1) n (x) 2n−1 (2n)! , R =+∞) 15. f(x) = cos x, x 0 = π 2 .(D S.  n1 (−1) n  x − π 2  2n−1 (2n −1)! , R =+∞) 16. f(x) = sin 2 x cos 2 x, x =0. [...]... ’ o 30 f (x) = ex−1 , x0 = 4 (DS e3 n (x − 4)n , R = +∞) n! 0 ˜ ´ y e o Chu.o.ng 13 L´ thuyˆt chuˆ i 210 n 3n − 2(−1)n n x , R = +∞) n! 0 , x0 = −1 (DS 32 23x−2 n (ln 8)n (x + 1)n , R = +∞) n! 0 31 f(x) = e3x − 2e−x , x0 = 0 (DS 32 f(x) = 1 33 f (x) = 2x ex−1, x0 = 1 (DS 2 n (ln 2 + 1)n (x − 1)n , R = +∞) n! 0 π 34 f (x) = sin 3x, x0 = 4 √ 2 (−1)n 32 n π 2n (DS x− 2 n 0 (2n)! 4 √ π 2 (−1)n 32 n+1... = +∞) π x 35 f (x) = cos , x0 = − 2 3 (−1)n x + √ (DS 3 n 0 (−1)n π π x+ x+ 2n+1 (2n + 1)!(2 3 3 36 f (x) = cos2 x, x0 = (DS 2n (2n)!22n+1 n 0 + π 3 1 + 2 n 2n+1 , R = +∞) π 4 (−1)n 4n−1 x − (2n − 1)! 1 π 4 2n−1 , R = +∞) 37 f (x) = sin x cos2 x, x0 = 0 (DS n 0 (−1)n (1 + 32 n+1 )x2n+1 , R = +∞) 4(2n)! 38 f (x) = cos x cos 2x, x0 = 0 (DS 1 2 (−1)n n 0 32 n 1 + x2n , R = +∞) (2n)! (2n)! ˜ 13. 4 Chuˆ i... Fourier o 211 39 f (x) = x ln x, x0 = 1 (DS n 1 (−1)n−1 (x − 1)n+1 + n n 1 (−1)n−1 (x − 1)n , R = 1) n 40 f (x) = ln(2x + 3) , x0 = 4 2 11 (−1)n ln 11 + (DS n 1 n+1 11 1 (x − 4)n , R = ) n+1 2 41 f (x) = ln (3 − 4x), x0 = −2 (DS ln 11 − n 1 42 f (x) = arctg 4 11 n (x + 2)n −19 3 , x∈ , ) n 4 4 x +3 , x0 = 0 x 3 (DS π − + 4 n ˜ ’ a Chı dˆ n f (x) = − 0 (−1)n+1 x2n+1 , R = 3) 32 n+1 2n + 1 2n 3 n+1 x = (−1)... k ∈ Z) 2 12 y − y = 2x − 3 (DS y = 1 − 2x + Cex) ˜ ’ ´ ’ a Chı dˆ n Dˆi biˆn z = y + 2x − 3 o e 1 1 + = C) 13 (x + 1 )3 dy − (y − 2)2 dx = 0 (DS − y − 2 2(x + 1)2 √ √ √ √ 14 ( xy + x)y − y = 0 (DS 2 y + ln |y| − 2 x = C) x+y 15 2 x−2y +3 2 3 x 18−y = C) y = 0 (DS − 2 ln 18 ln 3 ı a Chu.o.ng 14 Phu.o.ng tr`nh vi phˆn 230 16 (y + xy)dx + (x − xy)dy = 0 (DS x − y + ln |xy| = C) 17 yy + x = 1 (DS (x − 1)2... nπxdx −1 1 = 2 π 2 n2 x cos nπx 1 −1 − cos nπxdx = 4 π 2 n2 (−1)n , n = 1, 2, −1 1 (x3 + x2 − x − 1) sin nπxdx = bn = 12 (−1)n , n = 1, 2, 3 n3 π −1 ’ ’ V` h`m f (x) kha vi trˆn khoang (−1, 1) nˆn ta c´ ı a e e o 4 2 x +x −x−1=− + 2 3 π 3 2 n 1 3( −1)n (−1)n cos nπx + sin nπx , n2 πn3 ∀x ∈ (−1, 1) ’ V´ du 3 Khai triˆn h`m f (x) = x, x ∈ [0, ]: ı e a 1) theo c´c h`m cosin; a a 2) theo c´c h`m...˜ ´ y e o Chu.o.ng 13 L´ thuyˆt chuˆ i 208 (DS n (−1)n+1 · 24n 3 2n x , R = +∞) (2n)! 1 17 f(x) = ln(x2 + 3x + 2), x0 = 0 (DS (−1)n−1 [1 + 2−n ] ln 2 + n 1 xn , R = +∞) n 18 f(x) = ln(4 + 3x − x2 ), x0 = 2 DS ln 6 + n 1 19 f (x) = x2 1 (−1)n−1 3 n − 2−n (x − 2)n ) n 1 , x0 = 0; x0 = 4 − 2x − 3 (DS 1) n 0 2) n 0 1 1 (−1)n+1 − 4 12 3 n xn , |x| < 1; 1 (−1)n (−1)n − (x − 4)n ,... (−1)n−1 Thay x0 = 0, ta thu du.o.c 3 n2 n 1 n 1 π2 (−1)n−1 = Thay x = π thu du.o.c n2 12 n 1 5 f(x) = x2 , x ∈ (0, π), f(x) = f (x + pi) (DS π2 + 3 n 1 π 1 cos 2nx − sin 2nx ) 2 n n π2 1 = ) n2 6 ˜ ´ y e o Chu.o.ng 13 L´ thuyˆt chuˆ i 220 x 6 f(x) = cos , x ∈ (0, 2π], f (x) = f (x + 2π) 2 (DS 7 f (x) = (DS  0 cos 8 x = 2 π ´ nˆu − 3 < x e 2 x nˆu 0 < x < 3 ´ e 6 3 − 2 4 π n 1 n 1 n sin nx ) (2n... Chu.o.ng 13 L´ thuyˆt chuˆ i 212 - ˜ a Dinh ngh˜ 13. 4.1 1) Chuˆ i h`m dang ıa o a0 nπx nπx + + bn sin , an cos 2 n 1 ( 13. 14) ˜ ´ o a a ` a o a e o ’ o trong d´ > 0; an , bn l` c´c h˘ng sˆ (goi l` hˆ sˆ cua chuˆ i ( 13. 14)) ´ ˜ du.o.c goi l` chuˆ i lu.o.ng gi´c o a a o.ng gi´c ( 13. 14) du.o.c goi l` chuˆ i Fourier cua h`m ˜ ˜ ’ 2) Chuˆ i lu o a o a a ˜ ´ ’ f (x) theo hˆ lu.o.ng gi´c co so ( 13. 13) (goi... 0 v` chı ’ a ˜ u dˆ e e a o u o a a ’ ra b´n k´ hˆi tu a ınh o 21 f (x) = x2 22 f (x) = arcctgx (DS x3 (−1)n x2n−1 π x+ +···+ + , |x| 2 3 2n − 1 1) ˜ u 13. 3 Chuˆ i l˜y th`.a o u 209 π ˜ ’ ’ a e u Chı dˆ n Khai triˆn arctgx v` su dung hˆ th´.c arcctgx = − e a ’ 2 arctgx 23 f (x) = 1 (1 − x )3 (DS 24 f (x) = arc sin x 1 (n + 1)(n + 2)xn , R = 1) 2n 0 (2n − 1)!!x2n+1 , R = 1) 1 (2n)!!(2n + 1) (DS... Chu.o.ng 13 L´ thuyˆt chuˆ i 222 ` ´ 16 f(x) = x − [x] = {x} - phˆn thˆp phˆn cua sˆ x a a a ’ o (DS {x} =  −x 17 f(x) = x2  π (DS 5π + 12 n ´ nˆu − π e 1 1 − 2 π x ´ nˆu 0 < x e n 1 sin 2nπx ) n 0 π 4 3( −1)n − 1 cos nx − 2 sin(2n − 1)x ) 2 πn π (2n − 1 )3 1  0 khi − 2 x 0 18 f (x) = 1  x khi 0 < x 2 2 (DS 1 + 4 n − 1 nπx 2 nπx (−1)n+1 + sin ) cos 2 (2n − 1 )3 π 2 nπ 2 19 f (x) = x, x ∈ [3, 5] (DS . −2x .(D S.  n1 2 n n x n , R = 1 2 ) 3. f(x)=x ln  1+ x 3 3  .(D S.  n1 (−1) n x 3n+1 3 n n x n , R = 3 √ 3) 4. f(x)= 3 √ 1 −4x.(DS. 1 − 4 3 x +  n2 4 n · 2 · 5 ···(3n − 4) 3 n · n! x n ; R =1) 5. f(x). =10 −6 .(DS. No = 15) 37 .  n1 (−1) n 2n (4n + 1)5 n , δ =0, 1?; δ =0, 01? (DS. No =2,No =3) 38 .  n1 (−1) n n! , δ =0,1; δ =0, 001? (D S. No =4,No =6) 13. 3 Chuˆo ˜ il˜uy th`u . a 13. 3.1 C´ac di . nh. tru . ´o . c 33 .  n1 (−1) n−1 1 2n 2 , δ =0, 01. (DS. No =7) 13. 3. Chuˆo ˜ il˜uy th`u . a 199 34 .  n1 cos(nπ) n! , δ =0, 001. (D S. No =5) 35 .  n1 (−1) n−1 √ n 2 +1 , δ =10 −6 .(DS. No =10 6 ) 36 .  n1 cos

Ngày đăng: 29/07/2014, 02:20

TỪ KHÓA LIÊN QUAN