1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Bài tập toán cao cấp tập 3 part 5 ppt

33 360 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 258,59 KB

Nội dung

132 Chu . o . ng 12. T´ıch phˆan h`am nhiˆe ` ubiˆe ´ n 51.  D ln(x 2 + y 2 ) x 2 + y 2 dxdy; D :1 x 2 + y 2  e.(DS. 2π) 52.  D (x 2 + y 2 )dxdy; D gi´o . iha . nbo . ’ ic´acd u . `o . ng tr`on x 2 + y 2 +2x − 1=0,x 2 + y 2 +2x =0. (DS. 5π 2 ) Chı ’ dˆa ˜ n. D ˘a . t x − 1=r cos ϕ, y = r sin ϕ. T´ınh thˆe ’ t´ıch cu ’ avˆa . tthˆe ’ gi´o . iha . nbo . ’ i c´ac m˘a . td ˜achı ’ ra. 53. x =0,y =0,z =0,x + y + z = 1. (D S. 1 6 ) 54. x =0,y =0,z =0,x + y =1,z = x 2 + y 2 .(DS. 1 6 ) 55. z = x 2 + y 2 , y = x 2 , y =1,z = 0. (DS. 88 105 ) 56. z =  x 2 + y 2 , x 2 + y 2 = a 2 , z = 0. (DS. 2 3 πa 3 ) 57. z = x 2 + y 2 , x 2 + y 2 = a 2 , z = 0. (DS. πa 4 2 ) 58. z = x, x 2 + y 2 = a 2 , z = 0. (DS. 4a 3 3 ) 59. z =4−x 2 − y 2 , x = ±1, y = ±1. (DS. 13 1 3 ) 60. 2 − x − y −2z =0,y = x 2 , y = x.(DS. 11 120 ) 61. x 2 + y 2 =4x, z = x, z =2x.(DS. 4π) T´ınh diˆe . n t´ıch c´ac phˆa ` nm˘a . td ˜achı ’ ra. 62. Phˆa ` nm˘a . t ph˘a ’ ng 6x +3y +2z = 12 n˘a ` m trong g´oc phˆa ` n t´am I. (D S. 14) 63. Phˆa ` nm˘a . t ph˘a ’ ng x + y + z =2a n˘a ` m trong m˘a . t tru . x 2 + y 2 = a 2 . (D S. 2a 2 √ 3) 12.2. T´ıch phˆan 3-l´o . p 133 64. Phˆa ` nm˘a . t paraboloid z = x 2 + y 2 n˘a ` m trong m˘a . t tru . x 2 + y 2 =4. (D S. π 6 (17 √ 17 − 1)) 65. Phˆa ` nm˘a . t2z = x 2 + y 2 n˘a ` m trong m˘a . t tru . x 2 + y 2 =1. (D S. 2 3 (2 √ 2 − 1)π) 66. Phˆa ` nm˘a . t n´on z =  x 2 + y 2 n˘a ` m trong m˘a . t tru . x 2 + y 2 = a 2 . (D S. πa 2 √ 2) 67. Phˆa ` nm˘a . tcˆa ` u x 2 +y 2 +z 2 = R 2 n˘a ` m trong m˘a . t tru . x 2 +y 2 = Rx. (D S. 2R 2 (π − 2)) 68. Phˆa ` nm˘a . t n´on z 2 = x 2 + y 2 n˘a ` m trong m˘a . t tru . x 2 + y 2 =2x. (D S. 2 √ 2π) 69. Phˆa ` nm˘a . t tru . z 2 =4x n˘a ` m trong g´oc phˆa ` n t´am th´u I v`a gi´o . iha . n bo . ’ im˘a . t tru . y 2 =4x v`a m˘a . t ph˘a ’ ng x = 1. (DS. 4 3 (2 √ 2 − 1)) 70. Phˆa ` nm˘a . tcˆa ` u x 2 + y 2 + z 2 = R 2 n˘a ` m trong m˘a . t tru . x 2 + y 2 = a 2 (a  R). (DS. 4πa(a − √ a 2 − R 2 )) 12.2 T´ıch phˆan 3-l´o . p 12.2.1 Tru . `o . ng ho . . pmiˆe ` n h`ınh hˆo . p Gia ’ su . ’ miˆe ` n D ⊂ R 3 : D =[a, b] × [c, d] ×[e, g]={(x, y, z):a  x  b, c  y  d, e  z  g} v`a h`am f(x,y, z)liˆen tu . c trong D. Khi d ´o t´ıch phˆan 3-l´o . pcu ’ a h`am f(x,y, z) theo miˆe ` n D d u . o . . c t´ınh theo cˆong th ´u . c  D f(x,y, z)dxdydz = b  a  d  c  g  e f(x,y, z)dz  dy  dx = b  a dx d  c dy g  e f(M)dx. (12.15) 134 Chu . o . ng 12. T´ıch phˆan h`am nhiˆe ` ubiˆe ´ n T`u . (12.15) suy ra c´ac giai d oa . n t´ınh t´ıch phˆan 3-l´o . p: (i) D ˆa ` u tiˆen t´ınh I(x, y)= g  e f(M)dz; (ii) Tiˆe ´ p theo t´ınh I(x)= d  c I(x, y)dy; (iii) Sau c`ung t´ınh t´ıch phˆan I = b  a I(x)dx. Nˆe ´ u t´ıch phˆan (12.15) d u . o . . c t´ınh theo th ´u . tu . . kh´ac th`ı c´ac giai d oa . n t´ınh vˆa ˜ ntu . o . ng tu . . :d ˆa ` u tiˆen t´ınh t´ıch phˆan trong, tiˆe ´ pdˆe ´ n t´ınh t´ıch phˆan gi˜u . a v`a sau c`ung l`a t´ınh t´ıch phˆan ngo`ai. 12.2.2 Tru . `o . ng ho . . pmiˆe ` n cong 1 + Gia ’ su . ’ h`am f(M)liˆen tu . c trong miˆe ` nbi . ch˘a . n D =  (x, y, z):a  x  b, ϕ 1 (x)  y  ϕ 2 (x),g 1 (x, y)  z  g 2 (x, y)  . Khi d ´o t´ıch phˆan 3-l´o . pcu ’ a h`am f(M) theo miˆe ` n D d u . o . . c t´ınh theo cˆong th´u . c  D f(M)dxdydz = b  a  ϕ 2 (x)  ϕ 1 (x)  g 2 (x,y)  g 1 (x,y) f(M)dx  dy  dx (12.16) ho˘a . c  D f(M)dxdydz =  D(x,y) dxdy g 2 (x,y)  g 1 (x,y) f(M)dz, (12.17) trong d ´o D(x, y)l`ah`ınh chiˆe ´ u vuˆong g´oc cu ’ a D lˆen m˘a . t ph˘a ’ ng Oxy. Viˆe . ct´ınh t´ıch phˆan 3-l´o . pd u . o . . c quy vˆe ` t´ınh liˆen tiˆe ´ p ba t´ıch phˆan thˆong 12.2. T´ıch phˆan 3-l´o . p 135 thu . `o . ng theo (12.16) t `u . t´ıch phˆan trong, tiˆe ´ pd ˆe ´ nt´ıch phˆan gi˜u . av`a sau c`ung l`a t´ınh t´ıch phˆan ngo`ai. Khi t´ınh t´ıch phˆan 3-l´o . p theo cˆong th ´u . c (12.17): d ˆa ` u tiˆen t´ınh t´ıch phˆan trong v`a sau d´o c ´o t h ˆe ’ t´ınh t´ıch phˆan 2-l´o . p theo miˆe ` n D(x, y) theo c´ac phu . o . ng ph´ap d ˜a c´o trong 12.1. 2 + Phu . o . ng ph´ap d ˆo ’ ibiˆe ´ n. Ph´ep dˆo ’ ibiˆe ´ n trong t´ıch phˆan 3-l´o . p d u . o . . ctiˆe ´ n h`anh theo cˆong th ´u . c  D f(M)dxdydz =  D ∗ f  ϕ(u, v, w),ψ(u, v, w),χ(u, v, w)  × ×    D(x, y, z) D(u, v, w)    dudvdw, (12.18) trong d ´o D ∗ l`a miˆe ` nbiˆe ´ n thiˆen cu ’ ato . adˆo . cong u, v, w tu . o . ng ´u . ng khi c´ac d iˆe ’ m(x, y, z)biˆe ´ n thiˆen trong D: x = ϕ(u, v, w), y = ψ(u, v, w), z = χ(u, v, w), D(x, y, z) D(u, v, w) l`a Jacobiˆen cu ’ a c´ac h`am ϕ, ψ, χ J = D(x, y, z) D(u, v, w) =            ∂ϕ ∂u ∂ϕ ∂v ∂ϕ ∂w ∂ψ ∂u ∂ψ ∂v ∂ψ ∂w ∂χ ∂u ∂χ ∂v ∂χ ∂w            =0. (12.19) Tru . `o . ng ho . . pd ˘a . cbiˆe . tcu ’ ato . adˆo . cong l`a to . adˆo . tru . v`a to . adˆo . cˆa ` u. (i) Bu . ´o . c chuyˆe ’ nt`u . to . ad ˆo . Dˆec´ac sang to . adˆo . tru . (r, ϕ, z)du . o . . c thu . . c hiˆe . n theo c´ac hˆe . th ´u . c x = r cos ϕ, y = r sin ϕ, z = z;0 r<+∞, 0  ϕ<2π, −∞ <z<+∞.T`u . (12.19) suy ra J = r v`a trong to . a d ˆo . tru . ta c´o  D f(M)dxdydz =  D ∗ f  r cos ϕ, r sin ϕ, z  rdrdϕdz, (12.20) trong d ´o D ∗ l`a miˆe ` nbiˆe ´ n thiˆen cu ’ ato . adˆo . tru . tu . o . ng ´u . ng khi d iˆe ’ m (x, y, z)biˆe ´ n thiˆen trong D. 136 Chu . o . ng 12. T´ıch phˆan h`am nhiˆe ` ubiˆe ´ n (ii) Bu . ´o . c chuyˆe ’ nt`u . to . ad ˆo . Dˆec´ac sang to . adˆo . cˆa ` u(r, ϕ, θ)du . o . . c thu . . chiˆe . n theo c´ac hˆe . th ´u . c x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ,0 r<+∞,0 ϕ<2π,0 θ  π.T`u . (12.19) ta c´o J = r 2 sin θ v`a trong to . adˆo . cˆa ` u ta c´o  D f(M)dxdydz = =  D ∗ f  r sin θ cos ϕ, r sin θ sin ϕ, r cos θ  r 2 sin θdrdϕdθ, (12.21) trong d ´o D ∗ l`a miˆe ` nbiˆe ´ n thiˆen cu ’ ato . adˆo . cˆa ` utu . o . ng ´u . ng khi d iˆe ’ m (x, y, z)biˆe ´ n thiˆen trong D. 12.2.3 Thˆe ’ t´ıch cu ’ avˆa . tthˆe ’ cho´an hˆe ´ tmiˆe ` n D ⊂ R 3 du . o . . c t´ınh theo cˆong th ´u . c V D =  D dxdydz. (12.22) 12.2.4 Nhˆa . n x´et chung B˘a ` ng c´ach thay dˆo ’ ith´u . tu . . t´ınh t´ıch phˆan trong t´ıch phˆan 3-l´o . ptas˜e thu d u . o . . c c´ac cˆong th´u . ctu . o . ng tu . . nhu . cˆong th´u . c (12.16) d ˆe ’ t´ınh t´ıch phˆan. Viˆe . c t`ım cˆa . n cho t´ıch phˆan d o . n thˆong thu . `o . ng khi chuyˆe ’ nt´ıch phˆan 3-l´o . pvˆe ` t´ıch phˆan l˘a . pd u . o . . c thu . . chiˆe . nnhu . d ˆo ´ iv´o . i tru . `o . ng ho . . p t´ıch phˆan 2-l´o . p. C ´ AC V ´ IDU . V´ı du . 1. T´ınh t´ıch phˆan l˘a . p I = 1  −1 dx 1  x 2 dy 2  0 (4 + z)dx. 12.2. T´ıch phˆan 3-l´o . p 137 Gia ’ i. Ta t´ınh liˆen tiˆe ´ p ba t´ıch phˆan x´ac di . nh thˆong thu . `o . ng b˘a ´ t d ˆa ` ut`u . t´ıch phˆan trong I(x, y)= 2  0 (4 + z)dz =4z   2 0 + z 2 2    2 0 = 10; I(x)= 1  x 2 I(x, y)dy =10 1  x 2 dy = 10(1 − x 2 ); I = 1  −1 I(x)dx = 1  −1 10(1 − x 2 )dx = 40 3 ·  V´ı du . 2. T´ınh t´ıch phˆan I =  D (x + y + z)dxdydz, trong d ´omiˆe ` n D du . o . . c gi´o . iha . nbo . ’ i c´ac m˘a . t ph˘a ’ ng to . ad ˆo . v`a m˘a . t ph˘a ’ ng x + y + z =1. Gia ’ i. Miˆe ` n D d ˜a cho l`a mˆo . tt´u . diˆe . nc´oh`ınh chiˆe ´ u vuˆong g´oc trˆen m˘a . t ph˘a ’ ng Oxy l`a tam gi´ac gi´o . iha . nbo . ’ i c´ac d u . `o . ng th˘a ’ ng x =0, y =0,x + y = 1. R˜o r`ang l`a x biˆe ´ n thiˆen t`u . 0d ˆe ´ n1(doa . n[0, 1] l`a h`ınh chiˆe ´ ucu ’ a D lˆen tru . c Ox). Khi cˆo ´ d i . nh x,0 x  1th`ıy biˆe ´ n thiˆen t`u . 0d ˆe ´ n1−x.Nˆe ´ ucˆo ´ di . nh ca ’ x v`a y (0  x  1, 0  y  1 −x) th`ı d iˆe ’ m(x, y, z)biˆe ´ n thiˆen theo du . `o . ng th˘a ’ ng d ´u . ng t`u . m˘a . t ph˘a ’ ng z =0d ˆe ´ nm˘a . t ph˘a ’ ng x + y + z =1,t´u . cl`az biˆe ´ n thiˆen t`u . 0d ˆe ´ n 1 − x −y. Theo cˆong th´u . c (12.16) ta c´o I = 1  0 dx 1−x  0 dy 1−x−y  0 (x + y + z)dz. 138 Chu . o . ng 12. T´ıch phˆan h`am nhiˆe ` ubiˆe ´ n Dˆe ˜ d`ang thˆa ´ yr˘a ` ng I = 1  0 dx 1−x  0  xz + yz + z 2 2     1−x−y 0 dy = 1 2 1  0  y − yx 2 − xy 2 − y 3 3     1−x 0  dx = 1 6 1  0 (2 − 3x + x 3 )dx = 1 8 ·  V´ı d u . 3. T´ınh I =  D dxdydz (x + y + z) 3 , trong d´omiˆe ` n D du . o . . c gi´o . i ha . nbo . ’ i c´ac m˘a . t ph˘a ’ ng x + z =3,y =2,x =0,y =0,z =0. Gia ’ i. Miˆe ` n D d ˜a cho l`a mˆo . th`ınh l˘ang tru . c´o h`ınh chiˆe ´ u vuˆong g´oc lˆen m˘a . t ph˘a ’ ng Oxy l`a h`ınh ch˜u . nhˆa . t D(x, y)=  (x, y):0 x  3, 0  y  2  .V´o . id iˆe ’ m M(x, y)cˆo ´ di . nh thuˆo . c D(x, y)diˆe ’ m (x, y, z) ∈ D biˆe ´ n thiˆen trˆen d u . `o . ng th˘a ’ ng d ´u . ng t`u . m˘a . t ph˘a ’ ng Oxy (z =0)d ˆe ´ nm˘a . t ph˘a ’ ng x + z =3,t´u . cl`az biˆe ´ n thiˆen t`u . 0d ˆe ´ n3−x: 0  z  3 − x.T`u . d ´o theo (12.17) ta c´o  D f(M)dxdydz =  D(x,y) dxdy z=3−x  z=0 (x + y + z +1) −3 dz =  D(x,y)  (x + y + z +1) −2 −2    3−x 0  dxdy = ···= 4ln2− 1 8 ·  V´ı du . 4. T´ınh t´ıch phˆan  D (x 2 + y 2 + z 2 )dxdydz, trong d´omiˆe ` n D d u . o . . c gi´o . iha . nbo . ’ im˘a . t3(x 2 + y 2 )+z 2 =3a 2 . Gia ’ i. Phu . o . ng tr`ınh m˘a . tbiˆen cu ’ a D c´o thˆe ’ viˆe ´ tdu . ´o . ida . ng x 2 a 2 + y 2 b 2 + z 2 (a √ 3) 2 =1. 12.2. T´ıch phˆan 3-l´o . p 139 D´o l`a m˘a . t elipxoid tr`on xoay, t´u . cl`aD l`a h`ınh elipxoid tr`on xoay. H`ınh chiˆe ´ u vuˆong g´oc D(x, y)cu ’ a D lˆen m˘a . t ph˘a ’ ng Oxy l`a h`ınh tr`on x 2 + y 2  a 2 .Dod´o ´ap du . ng c´ach lˆa . p luˆa . nnhu . trong c´ac v´ıdu . 2 v`a 3 ta thˆa ´ yr˘a ` ng khi d iˆe ’ m M(x, y) ∈ D(x, y)du . o . . ccˆo ´ d i . nh th`ı diˆe ’ m (x, y, z)cu ’ amiˆe ` n D biˆe ´ n thiˆen trˆen d u . `o . ng th˘a ’ ng d ´u . ng M(x,y)t`u . m˘a . tbiˆen du . ´o . icu ’ a D z = −  3(a 2 − x 2 − y 2 ) d ˆe ´ nm˘a . tbiˆen trˆen z =+  3(a 2 − x 2 − y 2 ). T`u . d ´o theo (12.17) ta c´o I =  D(x,y) dxdy + √ 3(a 2 −x 2 −y 2 )  − √ 3(a 2 −x 2 −y 2 ) (x 2 + y 2 + z 2 )dz =2a 2 √ 3  x 2 +y 2 a 2  a 2 − x 2 − y 2 dxdy = |chuyˆe ’ n sang to . adˆo . cu . . c| =2a 2 √ 3  ra √ a 2 −r 2 rdrdϕ = a 2 √ 3 2π  0 dϕ a  0 (a 2 − r 2 ) 1/2 rdr = 4πa 5 √ 3 ·  V´ı d u . 5. T´ınh thˆe ’ t´ıch cu ’ avˆa . tthˆe ’ gi´o . iha . nbo . ’ i c´ac m˘a . t ph˘a ’ ng x + y + z =4,x =3,y =2,x =0,y =0,z =0. Gia ’ i. Miˆe ` n D d ˜a cho l`a mˆo . th`ınh lu . cdiˆe . n trong khˆong gian. N´o c´o h`ınh chiˆe ´ u vuˆong g´oc D(x, y) lˆen m˘a . t ph˘a ’ ng Oxy l`a h`ınh thang vuˆong gi´o . iha . nbo . ’ i c´ac d u . `o . ng th˘a ’ ng x =0,y =0,x =3,y =2v`a 140 Chu . o . ng 12. T´ıch phˆan h`am nhiˆe ` ubiˆe ´ n x + y = 4. Do d´o´apdu . ng (12.17) ta c´o V D =  D dxdydz =  D(x,y) dxdy 4−x−y  0 dz =  D(x,y) (4 − x − y)dxdy = 1  0 dy 3  0 (4 − x − y)dx + 2  1 dy 4−y  0 (4 − x −y)dx = 1  0  (4 − y)x − x 2 2     3 0  dy + 2  1  (4 − y)x − x 2 2     4−y 0  dy = 1  0  15 2 −3y  dy + 1 2 2  1 (4 − y) 2 dy = 55 6 ·  V´ı du . 6. T´ınh t´ıch phˆan I =  D z  x 2 + y 2 dxdydz, trong d ´omiˆe ` n D gi´o . iha . nbo . ’ im˘a . t ph˘a ’ ng y =0,z =0,z = a v`a m˘a . t tru . x 2 + y 2 =2x (x  0, y  0, a>0). Gia ’ i. Chuyˆe ’ n sang to . ad ˆo . tru . ta thˆa ´ yphu . o . ng tr`ınh m˘a . t tru . x 2 + y 2 =2x trong to . adˆo . tru . c´o da . ng r = 2 cos ϕ,0 ϕ  π 2 (h˜ay v˜e h`ınh !). Do d ´o theo cˆong th´u . c (12.20) ta c´o I = π/2  0 dϕ 2 cosϕ  0 r 2 dr a  0 zdz = a 2 2 π/2  0 dϕ 2 cosϕ  0 r 2 dr = 4a 2 3 π/2  0 cos 3 ϕdϕ = 8 9 a 2 .  V´ı du . 7. T´ınh t´ıch phˆan I =  D (x 2 + y 2 )dxdydz, 12.2. T´ıch phˆan 3-l´o . p 141 nˆe ´ umiˆe ` n D l`a nu . ’ a trˆen cu ’ a h`ınh cˆa ` u x 2 + y 2 + z 2  R 2 , z  0. Gia ’ i. Chuyˆe ’ n sang to . ad ˆo . cˆa ` u, miˆe ` nbiˆe ´ n thiˆen D ∗ cu ’ a c´ac to . adˆo . cˆa ` utu . o . ng ´u . ng khi d iˆe ’ m(x, y, z)biˆe ´ n thiˆen trong D l`a c´o da . ng D ∗ :0 ϕ<2π, 0  θ  π 2 , 0  r  R. T`u . d ´o I =  D ∗ r 2 sin 2 θ · r 2 sin θdrdϕdθ = 2π  0 dϕ π/2  0 sin 3 θdθ R  0 r 4 dr = 4 15 πR 5 .  B ` AI T ˆ A . P T´ınh c´ac t´ıch phˆan l˘a . p sau 1. 1  0 dx √ x  0 ydy 2−2x  1−x dz.(DS. 1 12 ) 2. a  0 ydy h  0 dx a−y  0 dz.(DS. a 3 h 6 ) 3. 2  0 dy 2  √ 2y−y 2 xdx 3  0 z 2 dz.(DS. 30) 4. 1  0 dx 1−x  0 dy 1−x−y  0 dz (1 + x + y + z) 3 .(DS. ln 2 2 − 5 16 ) 5. c  0 dz b  0 dy a  0 (x 2 + y 2 + z 2 )dx.(DS.  abc 3 (a 2 + b 2 + c 2 )  ) [...]... = 0 a b c 29 ax = y + z , x = a (DS abc ) 6 πa3 ) (DS 2 30 2z = x2 + y 2, z = 2 (DS 12) (DS 4π) 2 2 31 z = x2 + y 2, x2 + y 2 + z 2 = 2 (DS 32 z = x2 + y 2 , z = x2 + y 2 33 x2 + y 2 − z = 1, z = 0 34 2z = x2 + y 2, y + z = 4 35 x2 y 2 z 2 + + 2 = 1 a2 b2 c (DS (DS π √ [8 2 − 7]) 6 π ) 6 π ) 2 81π ) (DS 4 (DS 4 πabc) 3 12 .3 T´ phˆn du.`.ng ıch a o 12 .3. 1 ’ C´c dinh ngh˜ co ban a ıa ’ ’ ’ a a e ... th`nh t´ phˆn 2-l´.p T` phu.o.ng tr`nh cua (σ) r´t ıch a a a ıch a o u ı u 1 u o ra z = (6 − x − 2y) T` d´ 3 √ 14 2 2 dxdy dS = 1 + zx + zy dxdy = 2 Do d´ o √ 14 I= 3 3 [(6x + 4y + (6 − x − 2y)]dxdy 3 ∆OAB √ 14 = 3 6−2y 3 dy 0 √ 14 = 3 (5x + 2y + 6)dx 0 3 5 2 x + 2xy + 6x 2 0 6−2y 0 √ dy = 54 14 ´ ` ıch a a e e Chu.o.ng 12 T´ phˆn h`m nhiˆu biˆn 164 1 + 4x2 + 4y 2 dS, (σ) l` phˆn paraboloid tr`n... · 2x √ √ 1 √ 1 + 2x √ dx = [5 5 − 3 3] 6 2x 1 o V´ du 2 T´ dˆ d`i cua du.`.ng astroid x = a cos3 t, y = a sin3 t, ı ınh o a ’ t ∈ [0, 2π] ’ Giai Ta ´p dung cˆng th´.c: dˆ d`i (L) = ds Trong tru.`.ng a o u o o a L a o ho.p n`y ta c´ x = −3a cos2 t sin t, y = 3a sin2 t cos t, ds = 3a sin 2tdt 2 ´ V` du.`.ng cong dˆi x´.ng v´.i c´c truc toa dˆ nˆn ı o o a o u o e π/2 3a − cos 2t sin 2tdt = 6a 2... a e e a a ı 1 c tiˆp (DS ´ ) e tru 30 ex [(1 − cos y)dx − (y − sin y)dy], C l` biˆn cua tam gi´c ABC a e ’ a 33 C a v´.i A = (1, 1), B = (0, 2) v` C = (0, 0) (DS 2(2 − e)) o o 12 .3 T´ phˆn d u.`.ng ıch a 34 157 (xy + x + y)dx + (xy + x − y)dy, trong d´ C l` o a C x2 y 2 a) elip 2 + 2 = 1; a b 3 `.ng tr`n x2 + y 2 = ax (a > 0) (DS a) 0; b) − πa ) b) du o o 8 πR4 35 xy 2dx − x2ydy, C l` du.`.ng tr`n... BC ta c´ x + y = 1 ⇒ y = −x + 1, dy = −dx Do d´ e o 0 5 [3x2 + (1 − x) − x + 2(1 − x2)]dx = − · 3 = BC 1 o 12 .3 T´ phˆn d u.`.ng ıch a 151 c) Trˆn canh CA ta c´ x = 0 ⇒ dx = 0 v` do d´ e o a o 0 2y 2dy = =− 2 · 3 1 CA Nhu vˆy a =1− 5 2 + = 0 3 3 L (x +y)dx −(x −y)dy, trong d´ L l` du.`.ng o a o V´ du 5 T´ t´ phˆn ı ınh ıch a L x2 y 2 o o elip 2 + 2 = 1 c´ dinh hu.´.ng du.o.ng a b + ’ ´ ` ’ e ı... Green ta c´ o u = L [(4y + 3) − 4y]dxdy = 3 ∆ABC dxdy ∆ABC = 3S∆ABC = 3 ` ˆ BAI TAP T´ c´c t´ phˆn du.`.ng theo dˆ d`i sau dˆy ınh a ıch a o o a a √ ’ ´ (x + y)ds, C l` doa n th˘ng nˆi A(9, 6) v´.i B(1, 2) (DS 36 5) a a o o 1 C 2 xyds, C l` biˆn h` vuˆng |x| + |y| = a, a > 0 (DS 0) a e ınh o C (x + y)ds, C l` biˆn cua tam gi´c dınh A(1, 0), B(0, 1), C(0, 0) a e ’ a ’ 3 C (DS 1 + √ 2) √ ds ’ ´ ,... dinh ngh˜a ıa a ıch a a ı o i ’ bo n−1 def i P (Ni )m(σxy ) d→0 (σ) (12 . 35 ) i Q(Ni )m(σxz ) (12 .36 ) i R(Ni )m(σyz ) P (M)dxdy = lim (12 .37 ) i=0 n−1 def Q(M)dxdz = lim d→0 (σ) i=0 n−1 def R(M )dydz = lim d→0 (σ) i=0 ´ ` ıch a a e e Chu.o.ng 12 T´ phˆn h`m nhiˆu biˆn 160 ´ ´ ` u o o nˆu c´c gi´.i han o vˆ phai (12 . 35 )-(12 .37 ) tˆn tai h˜.u han khˆng phu e a o ’ e ’ ’ e thuˆc v`o ph´p phˆn hoach... a 2 + y2 + 4 x C (DS √ 5 +3 ) ln 4 o (x2 + y 2 + z 2 )ds, C l` cung du.`.ng cong x = a cos t, y = a sin t, a 10 C z = bt; 0 t 2π, a > 0, b > 0 2π √ 2 a + b2 (3a2 + 4π 2b2 )) (DS 3 o x2ds, C l` du.`.ng tr`n a o 11 C  x2 + y 2 + z 2 = a2 x + y + z = 0 ˜ ` ’ a ’ a Chı dˆ n Ch´.ng to r˘ng u x2 ds = C ra I= (DS 1 3 z 2 ds v` t` d´ suy a u o y 2ds = C (x2 + y 2 + z 2)ds C 2πa3 ) 3 C ´ ` ıch a a e e Chu.o.ng... (DS 5 ln 2) a a o o x−y 4 C o x2 + y 2ds, C l` du.`.ng tr`n x2 + y 2 = ax a o 5 (DS 2a2 ) C o (x2 + y 2)n ds, C l` du.`.ng tr`n x2 + y 2 = a2 a o 6 C √ 7 e C x2 +y 2 ds, C l` biˆn h`nh quat tr`n a e ı o (DS 2πa2n+1) o 12 .3 T´ phˆn d u.`.ng ıch a (r, ϕ) : 0 r 1 53 a, 0 π 4 ϕ (DS 2(ea − 1) + πaea ) 4 ` ` ` a o a xyds, C l` mˆt phˆn tu elip n˘m trong g´c phˆn tu I a o a 8 C ab a2 + ab + b2 · ) 3 a+b... Chu.o.ng 12 T´ phˆn h`m nhiˆu biˆn 158 (x + y)2dx − (x2 + y 2)dy, C l` biˆn cua ∆ABC v´.i dınh a e ’ o ’ 40 C 2 A(1, 1), B (3, 2) v` C(2, 5) (DS −46 ) a 3 (y − x2)dx + (x + y 2)dy, C l` biˆn h`nh quat b´n k´ R v` a e ı a a ınh 41 C g´c ϕ (0 o ϕ π ) (DS 0) 2 y 2 dx + (x + y)2dy, C l` biˆn cua h`nh tam gi´c ∆ABC v´.i a e ’ ı a o 42 C A(a, 0), B(a, a), C(0, a) (DS 2a3 ) 3 12.4 T´ phˆn m˘t ıch a a 12.4.1 . (D S. 1 6 ) 54 . x =0,y =0,z =0,x + y =1,z = x 2 + y 2 .(DS. 1 6 ) 55 . z = x 2 + y 2 , y = x 2 , y =1,z = 0. (DS. 88 1 05 ) 56 . z =  x 2 + y 2 , x 2 + y 2 = a 2 , z = 0. (DS. 2 3 πa 3 ) 57 . z = x 2 +. 7]) 32 . z =  x 2 + y 2 , z = x 2 + y 2 .(DS. π 6 ) 33 . x 2 + y 2 −z =1,z = 0. (DS. π 2 ) 34 . 2z = x 2 + y 2 , y + z = 4. (DS. 81π 4 ) 35 . x 2 a 2 + y 2 b 2 + z 2 c 2 = 1. (DS. 4 3 πabc) 12 .3 T´ıch. z 2 )dz =2a 2 √ 3  x 2 +y 2 a 2  a 2 − x 2 − y 2 dxdy = |chuyˆe ’ n sang to . adˆo . cu . . c| =2a 2 √ 3  ra √ a 2 −r 2 rdrdϕ = a 2 √ 3 2π  0 dϕ a  0 (a 2 − r 2 ) 1/2 rdr = 4πa 5 √ 3 ·  V´ı d u . 5.

Ngày đăng: 29/07/2014, 02:20

TỪ KHÓA LIÊN QUAN