Phương trình cơ bản của chuyển động chất điểm m0 - khối lượng nghỉ v=0 5.2... ý nghĩa triết học của hệ thức Anhxtanh:• Duy tâm: Vật chất biến thμnh năng l−ợng -> thiêu huỷ • Duy vật: Vật
Trang 12 c
V 1
Vt
x '
x
−
−
=
2 2 2 c
V 1
x c
V t
'
t
−
−
=
2
2 c
V 1
Vdt
dx '
dx
−
−
=
2 2 2 c
V 1
dx c
V dt
'
dt
−
−
=
dx c
V dt
Vdt dx
' dt
' dx
2
−
−
=
x 2
x x
u c
V 1
V
u '
u
−
−
=
4.3 §Þnh lý vÒ tæng hîp vËn tèc
NÕu ux=c th× c
c c
V 1
V
c '
u
2
−
−
=
Trang 22 0
c
v 1
m m
ư
=
5 Động lực học tương đối tính
dt
) v m (
d F
r r
=
dt
) v m (
d F
r r
=
5.1 Phương trình cơ bản của chuyển động
chất điểm
m0 - khối lượng nghỉ (v=0)
5.2 Động lượng vμ năng lượng
2
2 0
c
v 1
v
m v
m
ư
r
ds F s
d F
| dA
|
• Năng lượng:
• Động lượng:
Trang 3ds ] c
v 1
v
m [
dt
d dW
2
2
0
−
=
ds
] dt
dv
) c
v 1
( c
v
m dt
dv
c
v 1
m [
dW
2 / 3 2
2 2
2 0
2
2
0
−
+
−
=
vdv
ds dt
2 / 3 2
2 0
2
2 2
2
2
2
0
) c
v 1
(
vdv
m ]
) c
v 1
( c
v 1
[ c
v 1
vdv
m dW
−
=
−
+
−
=
] c
v 1
1
v
[ dt
d m
] c
v 1
v
m [
dt d
2
2 0
2 2
0
−
=
−
Trang 42 0 c
v 1
m m
−
=
2 / 3 2
2 2
0
) c
v 1
( c
vdv
m dm
−
=
dm c
dW = 2
C mc
0 C
; 0 m
; 0
HÖ thøc Anhxtanh:
• HÖ qu¶ x §éng n¨ng:
) 1 c
v 1
1 (
c m c
m mc
W
2
2
2 0
2 0
−
=
−
=
d
Trang 52
2
2
c
v 2
1 1
c
v
1 − ≈ − Nếu v<<c thì
2
v
m )
1 c
v 2
1 1
( c m W
2 0
2
2 2
0
y Quan hệ giữa năng
l−ợng vμ động l−ợng:
2 2
2 0
c
v 1
c
m W
−
=
2
2
2 2
2
2 2
4 0
2
c
v
W W
) c
v 1
( W
c
v m p
vμ
mc
W
2 2
4
2 0
2
c p
c m
Trang 6z §é hôt khèi trong ph©n r· h¹t nh©n:
2 2
2 2
2 2
2 1 2
c
v 1
c m
c
v 1
c
m mc
−
+
−
=
2
W
2 1 2
2
2
c
v 1
c m
>
−
2 2 2
2
2
c
v 1
c m
>
−
m > m1 + m2 Khèi l−îng h¹t nh©n tr−íc khi ph©n r· lín h¬n khèi l−îng cña c¸c h¹t thμnh phÇn ph©n r·
N¨ng l−îng to¶ ra: ΔW=[m-(m1+m2)]c2=Δmc2
Trang 7ý nghĩa triết học của hệ thức Anhxtanh:
• Duy tâm: Vật chất biến thμnh năng l−ợng -> thiêu huỷ
• Duy vật: Vật chất tồn tại khách quan, hệ thức Anhxtanh nối liền 2 tính chất của vật chất:
Quán tính (m) vμ Mức độ vận động (W)
Trang 86 Thuyết tương đối rộng (tổng quát):
Thuyết tương đối hẹp chỉ nghiên cứu trong hệ
qui chiếu quán tính
Khi hệ qui chiếu chuyển động có gia tốc a so với
hệ qui chiếu quán tính, hệ qui chiếu đó lμ hệ qui chiếu không quán tính
Chất điểm chuyển động trong hệ qui chiếu
không quán tính chịu tác dụng của lực quán tính -> tương đương gia tốc hấp dẫn đều g=-a
Không phân biệt được chất điểm chuyển động
trong hệ qui chiếu không quán tính hay trong hệ qui chiếu quán tính có gia tốc hấp dẫn đều
Trang 9• Nguyên lý tương đương: Không thể có một thí nghiệm nμo thực hiện được trong một không
gian địa phương có thể phân biệt được một hệ
qui chiếu chuyển động có gia tốc vμ một hệ qui chiếu quán tính trong đó tồn tại một trường hấp dẫn đều
Thuyết tương đối hẹp: Không gian bốn chiều x,
y, z vμ t của hệ qui chiếu quán tính trong trường hấp dẫn lμ các trục thẳng + gia tốc hấp dẫn
Đường ngắn nhất giữa 2 điểm lμ đường thẳng trên mặt phẳng -> Không - thời gian phẳng + g
Trang 10Thuyết tương đối rộng nghiên cứu liên hệ giữa
không gian, thời gian vμ vật chất trong hệ qui
chiếu không quán tính bằng cách hình học hoá:
Thuyết tương đối rộng: Không gian bốn chiều x,
y, z vμ t của hệ qui chiếu không quán tính lμ các trục cong -> Đường ngắn nhất giữa 2 điểm lμ
đường cong trên mặt cầu -> không - thời gian
cong vμ g=0
Hiệu ứng cong không - thời gian thấy rất rõ tại những vật có khối lượng lớn: gần các lỗ đen
trong vũ trụ, tại đây mật độ vật chất rất lớn lên
đến cỡ 1015 lần mật độ vật chất của mặt trời
Trang 11-> không - thời gian bị uốn cong mạnh -> ánh sáng bị uốn cong vμ không
thoát khỏi các lỗ đen Rơi như quả táo rơi trên mặt đất
z
O
y
x
y
z O
x
Không gian ba chiều x, y, z
trong hệ có trường hấp dẫn
đều
g r
đối rộng:
g=0
... class="text_page_counter">Trang 86 Thuyết tương đối rộng (tổng quát):
Thuyết tương đối hẹp nghiên cứu hệ
qui chiếu quán tính
Khi hệ... phần phân rÃ
Năng lợng toả ra: W=[m-(m1+m2< /sub>)]c2< /sup>=mc2< /sup>
Trang 7... hệ thức Anhxtanh:
• Duy tâm: Vật chất biến thμnh l−ợng -& gt; thiêu huỷ
• Duy vật: Vật chất tồn khách quan, hệ thức Anhxtanh nối liền tính chất vật chất:
Quán tính (m) vμ Mức