1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn : Ứng dụng kỹ thuật PCR - RFLP xác định các kiểu gen thụ thể prolactin trên giống heo Yorkshire part 2 ppt

9 294 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 252,78 KB

Nội dung

10 2.3.2 Gen, allen và sự đa hình của gen 2.3.2.1 Gen Gen là một đoạn DNA có khả năng kiểm soát một chức năng hoặc một tính trạng nào đó của cơ thể sống. Đoạn DNA có khả năng sao mã tạo ra mRNA (RNA thông tin). Từ mRNA thông tin này có thể đƣợc mã hóa tạo ra protein. Protein là đơn vị cấu tạo nên sự sống, mọi thành phần của cơ thể sống hầu hết đƣợc cấu tạo từ protein nhƣ các men tiêu hóa, các hormone, các thành phần cấu tạo của tế bào… Có nhiều gen không tham gia tổng hợp protein nhƣng nó có khả năng ức chế hoạt động của một gen hay một tổ hợp gen khác. Những loại gen này rất phổ biến ở động vật và ngƣời. Cấu trúc tổng quát của một gen động vật đƣợc phân chia thành hai vùng nhƣ sau: vùng mã hoá và vùng điều hoà ở đầu 5’(Lê Đức Trình, 2001; Bùi Trang Việt, 2002). Vùng mã hoá bao gồm một chuỗi lần lƣợt các exon và intron. Các exon là các vùng gen mã hoá protein. Theo qui ƣớc ngƣời ta gọi nucleotide thứ nhất nơi khởi sự sao chép là +1, nucleotide trƣớc đó là -1. Còn các intron là các vùng gen không mã hoá acid amin. Hiện nay, ngƣời ta vẫn chƣa tìm ra rõ chức năng của vùng này trong quá trình biểu hiện gen. Vùng điều hoà gồm các enhancer và promotor. Các enhancer là nơi chứa các trình tự nhận biết chuyên biệt của nhiều yếu tố điều hoà. Các promotor bao gồm các trình tự từ 6 – 8 nucleotide (đôi khi đến 20 nucleotide), nhận biết một cách gián tiếp RNA polymerase, thƣờng nhất là : TATA box (trình tự giàu T và A, ví dụ TATAAA), GC box, CCAAT box. Sự biểu hiện của gen hay sự điều hoà hoạt động của gen Sự biểu hiện gen ở động vật rất phức tạp. Sự biểu hiện này bị tác động bởi các yếu tố điều hoà có bản chất là protein, steroid, DNA. Trên cấu trúc của gen, các enhancer có các vùng trình tự nhận biết đƣợc các yếu tố này và có thể dẫn đến hiện tƣợng sao chép DNA tạo ra mRNA. Nếu xảy ra sự sao chép thì mRNA tạo ra ban đầu sẽ trải qua quá trình trƣởng thành. Cả exon và intron đều đƣợc sao chép thành mRNA, nhƣng trƣớc khi rời khỏi nhân, các đoạn tƣơng ứng với intron bị loại đi, các đoạn exon còn lại nối lại với nhau tạo thành mRNA có trình tự liên tục mã hoá acid amin. 11 Sự liên kết giữa gen và marker Marker là một đoạn DNA liên kết với gen (Bùi Chí Bửu, Nguyễn Thị Lang, 2000). Khi phát ra những đoạn DNA mới kiểm soát một chức năng nào đó của cơ thể sống, ngƣời ta cố gắng tìm kiếm một sự liên kết giữa marker và gen định vị trên nhiễm sắc thể nào đó. Điều này hoàn toàn có thể thực hiện đƣợc nhờ công trình có tính lịch sử của Morgan về liên kết gen và khoảng cách di truyền (tính bằng centi Morgan, viết tắt là cM). Bản đồ di truyền của ruồi giấm đƣợc phát hiện rất sớm vào năm 1925. Những tính trạng di truyền chung với nhau đƣợc xếp chung vào một nhóm liên kết gen, trên cùng một nhiễm sắc thể. Những tính trạng này đƣợc xác định trên nhiễm sắc thể tùy mức độ liên kết của nó. Sự sắp xếp độc lập của các nhiễm sắc thể giúp cho việc xác định vị trí các locus trong các nhóm liên kết gen. Sự xuất hiện của hiện tƣợng quấn chéo (crossing over) trong gián phân giảm nhiễm giúp cho việc xác định thứ tự các locus trong nhiễm sắc thể. Khoảng cách di truyền đƣợc đo bằng tần suất tái tổ hợp gen. Gen thể hiện bản chất di truyền sẽ liên kết với một tính trạng hình thái nào đó, mà ngƣời ta có thể đo đếm đƣợc – gen đó có thể xem là marker gen. Việc lập bản đồ gen và việc chọn lọc marker hình thái nhƣ vậy tốn rất nhiều thời gian, thậm chí hàng chục năm trời. Số lƣợng marker thu đƣợc theo kiểu chọn lọc này rất ít và chỉ có ở qui mô hình thái. Do vậy ngƣời ta đã sử dụng marker isozyme đã làm cho vấn đề thay đổi theo chiều hƣớng tốt hơn, nhƣng số lƣợng marker thu đƣợc cũng rất ít không thỏa mãn cho nhu cầu nghiên cứu. Trong tình hình này thì DNA marker đƣợc đề xuất (Tankley và ctv, 1980). Về căn bản thì bất cứ chuỗi mã DNA nào đƣợc dùng để phân biệt giữa hai cá thể, hai dòng hoặc giống khác nhau, đều có thể xem nhƣ một DNA marker. Nhƣng nó phải đảm bảo về tính ổn định, sự xuất hiện của nó phải luôn luôn có sự xuất hiện của gen quan tâm. 2.3.2.2 Allen và sự đa hình của gen Gregor Mendel (1856) định nghĩa allen nhƣ sau: “ Allen là các dạng khác nhau của một gen cùng qui định một tính trạng”, các đối tƣợng đƣợc ông khảo sát ở đây là đậu Hòa Lan. Từ năm 1925 trở đi, sau khi Morgan thành công trong việc lập bản đồ di truyền của ruồi giấm, các khái niệm về nhiễm sắc thể, khoảng cách di truyền và locus đƣợc hình thành thì allen đƣợc định nghĩa lại nhƣ sau: “ Allen là 12 các dạng khác nhau của cùng một gen định vị trên một locus của cùng một nhiễm sắc thể cùng qui định một tính trạng nào đó ở cơ thể sinh vật”. Allen là cơ sở để xác định tính đa hình của gen. Gen có càng nhiều allen thì tính đa hình càng cao. Mỗi allen đƣợc hình thành từ sự đột biến đoạn mã di truyền của gen gốc do các yếu tố môi trƣờng sống, các tác nhân vật lý, hóa học hay các sai sót trong quá trình sao chép. Các đột biến này nếu tạo thuận lợi cho sự sống sót, sinh sản của cá thể sẽ đƣợc duy trì và lan truyền trong quần thể. Nhƣ vậy, gen là đơn vị có tính chất đột biến ( Bùi Chí Bữu và Nguyễn Thị Lang, 1999). Trong tự nhiên hai cá thể cùng một loài mang cùng một gen chƣa hẳn là có đoạn trình tự chuỗi mã di truyền của gen giống nhau, giữa những cá thể khác nhau thì luôn xuất hiện đột biến khác nhau nhƣng hiếm khi biểu hiện thành các đặc điểm hình thái. Tính đa hình của gen trong trƣờng hợp này chỉ đƣợc xác định bằng các phƣơng pháp phân tích ở mức phân tử. 2.3.3 Phƣơng pháp chiết tách DNA từ mô động vật DNA đƣợc chiết tách từ mô và các cơ quan của động thực vật. Ở động vật DNA đƣợc chiết tách từ da, cơ vân, mô mỡ và từ máu. Qui trình này cơ bản gồm 3 bƣớc: Bƣớc 1: Phá vỡ màng tế bào và màng nhân. Tiến hành nghiền mô, tế bào trong dung dịch SDS (sodium dodecyl sulphate) và proteinase (proteinase K). Hỗn hợp sẽ phá hủy màng tế bào và màng nhân, giải phóng DNA ra môi trƣờng, đồng thời phân hủy các protein liên kết với DNA. Bƣớc 2: Loại bỏ các thành phần không mong muốn trong dung dịch chứa DNA bằng hổn hợp dung dịch phenol và chloroform kết hợp với phƣơng pháp ly tâm. Bƣớc 3: Tủa dung dịch acid nucleic, thu nhận acid nucleic dạng cô đặc trong ethanol hoặc isopropanol. 13 2.3.4 Phƣơng pháp định tính và định lƣợng cho DNA 2.3.4.1 Định lƣợng bằng phƣơng pháp đo OD (optical density) Phƣơng pháp này không thật chính xác, chỉ ƣớc lƣợng tƣơng đối nồng độ acid nucleic có trong mẫu. Nguyên tắc của phƣơng pháp này là dựa vào sự hấp phụ ánh sáng tử ngoại có bƣớc sóng λ = 260 nm. Một đơn vị OD tƣơng ứng với nồng độ là: - 50 μg / ml cho một dung dịch sợi đôi - 40 μg / ml cho một dung dịch RNA hay DNA sợi đơn Ví dụ: một OD 260 nm = 0,9 sẽ tƣơng ứng với: - Dung dịch có nồng độ DNA sợi đôi bằng 0,9*50 = 4,5 μg - Dung dịch có nồng độ DNA sợi đơn hay RNA bằng 0,9*40 = 3,6 μg Tuy nhiên cách tính này chỉ đúng với dung dịch có độ tinh sạch cao. Để kiểm tra độ tinh sạch của DNA thu đƣợc ngƣời ta đo thêm giá trị OD 280 nm, ở bƣớc sóng này protein có mức hấp thụ cao nhất. Nhƣng các protein cũng hấp thụ ở bƣớc sóng 260 nm, do đó làm sai giá trị thật của acid nucleic có trong mẫu. Một dung dịch acid nucleid đƣợc xem là sạch nếu có tỉ số OD 260 nm / OD 280 nm nằm trong khoảng 1,8 – 2. Nồng độ DNA trong mẫu đƣợc tính bằng công thức sau: Nồng độ (ng / μl) = OD 260 nm *62,9 - OD 280 nm *36 2.3.4.2 Định tính DNA bằng phƣơng pháp điện di Phƣơng pháp điện di là phƣơng pháp cho phép xác định kích thƣớc của các đoạn DNA. DNA đƣợc cho vào một bản gel agarose và đặt trong điện trƣờng. Do DNA tích điện âm nên trong môi trƣờng điện trƣờng nó sẽ di chuyển từ cực âm sang cực dƣơng. Agarose là một trong các dạng của polysacharide. Agarose sẽ tạo thành hạt agarose sau khi tan (melting) ở nhiệt độ cao, hoặc đun sôi vài phút. Khi nguội lại những hạt agarose sẽ kết tụ lại với nhau (gelling). Giữa những hạt nhƣ vật có những lỗ rất nhỏ. Tùy theo nồng độ của gel mà kích thƣớc của các lỗ nhỏ này khác nhau. Nồng độ gel càng cao thì kích thƣớc của các lỗ càng nhỏ và ngƣợc lại. Khi DNA đi qua các lỗ nhỏ này sự cọ sát giữa các hạt agarose và phân tử DNA tạo lực trở kháng làm ngăn cản sự dịch chuyển này. DNA có kích thƣớc càng lớn thì lực trở kháng càng mạnh do đó sự di chuyển càng chậm và ngƣợc lại. Các DNA cùng kích thƣớc sẽ di chuyển về cùng vị trí 14 và tạo thành các băng, các băng này có thể quan sát đƣợc sau khi nhuộm chúng trong dung dịch ethium bromide và đặt dƣới tia tử ngoại. 2.4 Kỹ thuật PCR (Polymerase chain reaction) 2.4.1 Giới thiệu về phản ứng PCR Là phản ứng nhân nhanh số lƣợng mẫu DNA nhờ thực hiện cơ chế tự nhân đôi DNA invitro. Quá trình này đƣợc tiến hành nhờ enzyme DNA polymerase. Nguyên tắc phản ứng PCR Phản ứng PCR gồm các bƣớc chủ yếu sau: Bƣớc 1: Biến tính mẫu DNA thành chuỗi đơn ở nhiệt độ 94 - 95 o C Bƣớc 2: Giai đoạn bắt cặp giữa primer và mạch khuôn, nhiệt độ bắt cặp tùy thuộc vào trình tự của primer, thông thƣờng khoảng 40 – 50 o C. Bƣớc 3: Giai đoạn kéo dài tổng hợp bản sao DNA đƣợc tiến hành ở 72 o C Mỗi chu kỳ gồm 3 bƣớc trên đƣợc lập lại nhiều lần. Hình 2.5: Các chu kỳ của phản ứng PCR 2.4.2 Các yếu tố tham gia vào phản ứng PCR 2.4.2.1 Taq polymerase Taq polymerase là enzyme chính tham gia vào quá trình tổng hợp các mạch DNA. Enzyme này còn có khả năng phân hủy primer bắt cặp vào mạch DNA tạo điều kiện cho việc bổ sung các nucleotide vào mạch DNA mới. Taq polymerase đƣợc phân lập từ vi khuẩn suối nƣớc nóng Thermus aquaticus. 2 4 6 8 1 0 Biến tính Ủ bắt cặp Kéo dài Lặp lại n lần 94–95 o C 72 o C 45-56 o C 15 Enzyme này có tính chịu nhiệt rất cao, nó chịu đƣợc nhiệt độ biến tính DNA khoảng 94 o C. Nhiệt độ tối ƣu cho sự hoạt động của Taq polymerase khoảng 70 – 72 o C. Trong phản ứng PCR nếu nồng độ enzyme này quá thấp không đủ lƣợng enzyme xúc tác cho phản ứng sẽ tạo ra sản phẩm PCR không mong muốn. 2.4.2.2 Các nucleotid dNTP – deoxyribonucleotide-5-triphosphate. Đây là hổn hợp 4 loại nucleotide dATP, dTTP, dCTP, dGTP làm nguyên liệu cho phản ứng tổng hợp mạch DNA mới. Nồng độ nucleotide trong phản ứng PCR mất cân bằng sẽ làm cho phát sinh các lỗi sao chép của Taq polymerase. 2.4.2.3 Primer (mồi) Primer (mồi) là những đoạn oligoribonucleotide mạch đơn có trình tự bổ sung với trình tự của hai đầu mạch khuôn để khởi đầu quá trình tổng hợp DNA. Chiều dài của mồi thƣờng từ 10 – 35 nucleotide. Mồi khởi đầu cho quá trình tổng hợp mạch mới. Khi mồi bắt cặp vào mạch khuôn thì Taq polymeresa bắt đầu kéo dài chuỗi DNA. 2.4.2.4 Dung dịch đệm Thành phần quan trọng nhất trong dung dịch đệm là ion Mg 2+ . Nó rất cần thiết cho quá trình liên kết các dNTP, xúc tác cho enzyme Taq polymerase, làm tăng nhiệt độ nóng chảy của các DNA mạch kép. Nồng độ MgCl 2 tối ƣu là 1.5 mM. Môi trƣờng đệm KCl đã và đang áp dụng rộng rãi, cũng có thể là chất đệm hữu dụng cho phản ứng PCR. Tuy nhiên trong nhiều trƣờng hợp môi trƣờng này không hiệu quả nên ngƣời ta vẫn lựa chọn sử dụng Mg 2+ . Những đoạn DNA giàu G, C ngƣời ta thƣờng dùng dung dịch đệm amonium sulphate làm giảm những sản phẩm đƣợc phát triển một cách không hoàn toàn trong PCR với Taq . Phƣơng pháp này dùng phát hiện những đoạn gen có kích thƣớc nhỏ chạy trên gel acrylamide. 16 2.4.2.5 DNA khuôn Phản ứng PCR tối ƣu trên DNA thật tinh sạch. Tuy nhiên có nhiều nghiên cứu cho thấy PCR vẫn tốt trên DNA thu nhận trực tiếp từ dịch chiết tế bào, các vết máu, mẫu khảo cổ, vi khuẩn bị hấp khử trùng…Lƣợng DNA khuôn mẫu sử dụng có khuynh hƣớng giảm từ 1 µg xuống khoảng 20 ng nhằm giảm việc tạo các sản phẩm phụ không mong muốn. 2.4.2.6 Số chu kỳ phản ứng Số lƣợng chu kỳ phản ứng PCR trong thực tế không vƣợt qua 40 chu kỳ. Số chu kỳ cho một phản ứng PCR tùy thuộc vào số lƣợng DNA mẫu ban đầu. Nếu ít chu kỳ thì sản phẩm PCR thu đƣợc ít. Nếu kéo dài tiến trình PCR thì hiệu quả khuyếch đại giảm hẳn do: sự cạn kiệt các thành phần phản ứng, sự mỏi mệt của các enzyme dùng trong phản ứng. 2.4.2.7 Nhiệt độ và pH Những enzyme đƣợc sử dụng rất mẫn cảm với nhiệt độ. Sự thay đổi nhiệt độ có ảnh hƣởng mạnh đến năng suất và độ chuyên biệt của sản phẩm PCR. Để biến tính thì khoảng nhiệt độ từ 94 – 95 o C là thích hợp nhất, nếu nhiệt độ cao hơn sẽ làm mất hoạt lực của Taq polymerase. Để kéo dài chuỗi ngƣời ta sử dụng 72 o C, đây là nhiệt độ tối ƣu cho Taq polymerase hoạt động. Khoảng nhiệt độ dùng để bắt cặp là khó xác định nhất, khoảng nhiệt độ này đƣợc xác định tùy từng loại primer. Primer có trình tự càng nhiều G, C thì nhiệt độ bắt cặp càng cao. Thông thƣờng nhiệt độ bắt cặp từ 50 – 56 o C. Hầu hết các enzyme, mẫu DNA đƣợc đệm trong môi trƣờng tối ƣu có pH = 8. Ở pH này DNA rất ổn định. Trong môi trƣờng acid các bazơ purin rất dể bị tách khỏi sợi DNA, cầu nối phosphodiester bị phá vỡ. Tuy nhiên theo chu kỳ nhiệt độ của phản ứng PCR thì pH có thể thay đổi từ 6,8 – 7,8. 2.4.2.8 Các vấn đề thƣờng gặp trong PCR và phƣơng pháp khắc phục Trong quá trình thực hiện phản ứng PCR chúng ta thƣờng gặp những hiện tƣợng không mong muốn nhƣ: không có hiện diện sản phẩm PCR, sản phẩm PCR ít, xuất hiện các băng phụ. Dƣới đây là bảng trình bày các hiện tƣợng không mong muốn xảy ra khi thực hiện phản ứng PCR và cách khắc phục nó. 17 Bảng 2.3: Các vấn đề thƣờng gặp trong PCR và phƣơng pháp khắc phục 1. Có nhiều sản phẩm chuỗi ngắn không đặc trƣng Gia tăng nhiệt độ ủ bắt cặp Gia tăng thời gian ủ bắt cặp Gia tăng thời gian kéo dài chuỗi Gia tăng nhiệt độ kéo dài chuỗi lên đến 74 – 78 o C Giảm nồng độ KCl buffer đến 0,7 – 0,8 nM, giữ nguyên nồng độ MgCl 2 ở mức 1,5 – 2 nM. Gia tăng nồng độ MgCl 2 lên 3 – 4,5 mM, nhƣng giữ nguyên nồng độ dNTP Giảm lƣợng mồi Giảm lƣợng DNA khuôn Giảm lƣợng tap polymerase 2. Có nhiều sản phẩm chuỗi dài không đặc trƣng Giảm thời gian ủ bắt cặp Gia tăng nhiệt độ ủ bắt cặp Giảm thời gian kéo dài Giảm nhiệt độ kéo dài xuống còn 62 – 68 o C Gia tăng nồng độ KCl buffer lên 1,2 – 2 X, vẫn giữ nồng độ MgCl 2 ở mức 1,5 – 2 mM Gia tăng nồng độ MgCl 2 lên 3 – 4,5 nM, nhƣng vẫn giữ nguyên nồng độ dNTP Giảm lƣợng mồi Giảm lƣợng DNA khuôn Giảm lƣợng Taq polymerase 18 3. Không có sản phẩm nào cả Đảm bảo rằng các thành phần PCR đã cho vào phản ứng Đổi dung dịch dNTP do dNTP rất nhạy cảm với việc cấp rã đông. Gia tăng hàm lƣợng mồi Gia tăng hàm lƣợng DNA khuôn mẫu Giảm nhiệt độ bắt cặp xuống 6 – 10 o C 4. Sản phẩm PCR ít Giảm nhiệt độ ủ bắt cặp đến mức có thể Gia tăng lƣợng mồi Gia tăng lƣợng DNA khuôn Gia tăng lƣợng Taq polymerase 2.4.2.9 Ứng dụng của PCR PCR có nhiều ứng dụng trong ngành sinh học. PCR với cặp primer đƣợc thiết kế riêng sẽ phân lập đƣợc đoạn DNA mong muốn. Từ đây nó đƣợc ứng dụng trong các lĩnh vực: Y khoa: dùng chẩn đoán bệnh do các tác nhân là vi khuẩn hoặc virus. Nông nghiệp: dùng trong chọn giống và xác định các yếu tố gây bệnh trên cây trồng. Dùng chuẩn đoán bệnh trong công tác chăn nuôi, chọn giống. Dùng phát hiện ra các gen dự tuyển về năng suất sinh sản trong chăn nuôi heo nhƣ việc xác định gen thụ thể estrogen, gen halothan, gen thụ thể prolactin Thực phẩm: Xác định các tác nhân gây bệnh do vi khuẩn vius có trong mẫu thực phẩm. Dùng chứng nhận sản phẩm có nguồn gốc tự nhiên hay là sản phẩm chuyển gen… 2.5 Giới thiệu về kỹ thuật RFLP và kỹ thuật PCR – RFLP 2.5.1 Kỹ thuật RFLP ( restriction fragment length polymorphism) Đây là phƣơng pháp so sánh DNA của các cá thể khác nhau sau khi cắt mẫu bằng một enzyme giới hạn (restriction endonuclease) nhằm tìm hiểu xem có hay không đột . chăn nuôi heo nhƣ việc xác định gen thụ thể estrogen, gen halothan, gen thụ thể prolactin Thực phẩm: Xác định các tác nhân gây bệnh do vi khuẩn vius có trong mẫu thực phẩm. Dùng chứng nhận. phẩm chuyển gen 2. 5 Giới thiệu về kỹ thuật RFLP và kỹ thuật PCR – RFLP 2. 5.1 Kỹ thuật RFLP ( restriction fragment length polymorphism) Đây là phƣơng pháp so sánh DNA của các cá thể khác nhau. nếu có tỉ số OD 26 0 nm / OD 28 0 nm nằm trong khoảng 1,8 – 2. Nồng độ DNA trong mẫu đƣợc tính bằng công thức sau: Nồng độ (ng / μl) = OD 26 0 nm * 62, 9 - OD 28 0 nm *36 2. 3.4 .2 Định tính DNA bằng

Ngày đăng: 28/07/2014, 06:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN