Phụ gia tạo gel: Polysaccharide khi có mặt trong thực phẩm đều thể hiện một số tính chất có lợi dựa trên cấu trúc phân tử, kích thước và lực liên kết phân tử, chủ yếu là liên kết Hydro.
Trang 1Bài 2:
Công nghệ sản xuất
nước uống ngân nhĩ
Trang 21 Nấm tuyết:
Tên khoa học: Tremella fuciformis, còn gọi là jelly – fungi do tính chất dai, đàn hồi
Nguồn gốc: được phát hiện đầu tiên tại Trung Quốc, sống hoại sinh trên các cành cây mục Hình dạng: ti thể màu trắng, có dạng thùy với nhiều nếp gấp, dài 3 – 15 cm
Nấm tuyết được coi như là 1 dược thảo rất phổ biến ở các nước Phương Đông Người Trung Quốc xem nấm tuyết như 1 loại thực phẩm quý có thể chữa được bệnh lao, huyết áp cao và các chứng cảm lạnh thông thường
Mục đích sử dụng: nấm tuyết cũng là loại nguyên liệu truyền thống để sản xuất nước yến
ngân nhĩ, tạo giá trị cảm quan đặc trưng và nâng cao giá trị dinh dưỡng của sản phẩm
2 Tìm hiểu về phụ gia tạo gel, tạo đặc:
Phụ gia thực phẩm:
• Định nghĩa :
Chất phụ gia thực phẩm là những chất, hợp chất hóa học được đưa vào trong quá trình đóng gói, chế biến, bảo quản thực phẩm, làm tăng chất lượng thực phẩm hoặc để bảo toàn chất lượng thực phẩm mà không làm cho thực phẩm mất an toàn
• Phân loại phụ gia thực phẩm:
Hiện nay người ta chia chất phụ gia thực phẩm làm 6 nhóm lớn:
Phụ gia tạo gel, tạo đặc:
Thuộc nhóm phụ gia cải tạo cấu trúc thực phẩm, bao gồm các polymer như polysaccharide, protein Nhóm phụ gia này nằm trong nhóm hydrocolloid
Hydrocolloid: là những polymer tan trong nước (polysaccharide và protein) hiện đang được sử dụng rộng rãi trong công nghiệp với rất nhiều chức năng như tạo đặc hay tạo gel hệ lỏng,
ổn định hệ bọt, nhũ tương và huyền phù, ngăn cản sự hình thành tinh thể đá và đường, giữ hương Chúng có thể được phân loại tùy thuộc vào nguồn gốc, phương pháp phân tách, chức năng, cấu trúc, khả năng thuận nghịch về nhiệt, thời gian tạo gel hay điện tích Nhưng phương
Trang 3pháp phân loại thích hợp nhất cho những tác nhân tạo gel là cấu trúc, khả năng thuận nghịch về nhiệt và thời gian tạo gel
Nguồn hydrocolloid quan trọng trong công nghiệp:
Thực vật:
- Trong cây: cellulose, tinh bột, pectin
- Gum từ nhựa cây: gum arabic, gum karaya, gum ghatti, gum tragacanth
- Hạt: guar gum, locust bean gum, tara gum, tamarind gum
- Củ: konjac mannan
Tảo (Algal)
- Tảo đỏ: agar, carrageenan
- Tảo nâu: alginate
Vi sinh vật: xanthan gum, curdlan, dextran, gellan gum, cellulose
Động vật: Gelatin, caseinate, whey protein, chitosan
Phụ gia tạo gel:
Polysaccharide khi có mặt trong thực phẩm đều thể hiện một số tính chất có lợi dựa trên cấu trúc phân tử, kích thước và lực liên kết phân tử, chủ yếu là liên kết Hydro Rất nhiều các polysaccharide không tan trong nước và không tiêu hóa được, chủ yếu là cellulose và hemicellulose Những polysaccharide còn lại trong thực phẩm thì tan được trong nước và phân tán đều trong nước Chúng đóng vai trò tạo độ kết dính, tạo đặc, tăng độ nhớt và tạo gel
Polysaccharide là các glycosyl từ đường hexose và pentose Mỗi gốc glycosyl có một số điểm
có khả năng tạo liên kết với Hydro Mỗi nhóm –OH trên gốc glycosyl có thể kết hợp với một phân tử nước và vì vậy mỗi gốc đều có thể hoàn toàn solvat hóa Do đó phân tử polysaccharide
có thể tan được trong nuớc
Lý do một số phân tử polysaccharide như cellulose không tan được trong nước là do các phân
tử có cấu trúc thẳng và liên kết chặt khít với nhau nên nước không có khả năng tiến gần các nhóm hydroxy (-OH)
Phụ gia tạo gel là các polysaccharide tan được trong nước Khi phân tán trong nước mỗi phân
tử sẽ liên kết với các phân tử bên cạnh tạo thành một cấu trúc không gian 3 chiều nhốt các phân
tử nước bên trong tạo thành khối gel
Khả năng tạo gel phụ thuộc vào:
Liên kết giữa các phân tử: độ bền gel phụ thuộc chủ yếu vào lực liên kết giữa
Cấu trúc các phân tử:
Trang 4Những phân tử có nhánh không liên kết với nhau chặt chẽ, vì vậy không tạo những vùng liên kết có kích thước và sức mạnh đủ lớn để tạo thành gel Chúng chỉ tạo cho dung dịch có độ nhớt và độ ổn định
Những phân tử mạch thẳng tạo gel chắc bền hơn
Điện tích phân tử:
Đối với các polysacchride tích điện, lực đẩy tĩnh điện giữa các nhóm tích điện cùng dấu
sẽ ngăn cản sự tạo thành liên kết
Ngoài ra còn phụ thuộc vào nhiệt độ, pH và sự có mặt của các yếu tố khác trong dung dịch Khả năng tạo gel và cấu trúc gel của một số Hydrocolloid
Gel thuận nghịch về nhiệt
Agar: Gel tạo thành khi làm lạnh Các phân tử có sự chuyển đổi từ cấu trúc cuộn sang cấu trúc
xoắn và tiếp theo là sự tổ hợp của các chuỗi xoắn
Kappa carrageenan: Gel tạo thành khi làm lạnh với sự có mặt của những muối Kali Các phân tử
có sự chuyển đổi từ cấu trúc cuộn sang cấu trúc xoắn và tiếp theo là sự tổ hợp của các chuỗi xoắn.Ion K+ liên kết các chuỗi xoắn Sự có mặt của các muối làm giảm lực đẩy tĩnh điện giữa các chuỗi thúc đẩy sự tổ hợp
Iota carrageenan: Gel tạo thành khi làm lạnh với sự có mặt của muối Các phân tử có sự chuyển
đổi từ cấu trúc cuộn sang cấu trúc xoắn và tiếp theo là sự tổ hợp của các chuỗi xoắn Sự có mặt của các muối làm giảm lực đẩy tĩnh điện giữa các chuỗi thúc đẩy sự tổ hợp
LMP: Gel được tạo thành khi có các ion kim loại hóa trị 2, chủ yếu là calci ở pH thấp Các phân
tử tạo liện kết chéo thông qua các ion pH thấp làm giảm lực tương tác tĩnh điện giữa các phân
tử
Gellan gum: Gel tạo thành khi làm lạnh với sự có mặt của muối Các phân tử có sự chuyển đổi từ
cấu trúc cuộn sang cấu trúc xoắn và tiếp theo là sự tổ hợp của các chuỗi xoắn Sự có mặt của các muối làm giảm lực đẩy tĩnh điện giữa các chuỗi thúc đẩy sự tổ hợp Các ion có tác dụng tạo liên kết chéo giữa các chuỗi Low acyl gellan gel thuận nghịch về nhiệt ở nồng độ muối thấp nhưng không thuận nghịch về nhiệt ở nồng độ muối cao hơn (100mM) đặc biệt khi có mặt các cation hóa trị 2
Xanthan gum và locust bean gum: Gel tạo thành khi làm nguội các hỗn hợp Đối với locust bean
gum những vùng thiếu galactose sẽ tạo tạo nên sự tổ hợp Các chuỗi Xanthan tổ hợp sau khi chuyển cấu trúc cuộn-xoắn
Gel không thuận nghịch về nhiệt :
Alginate: Gel tạo thành khi có thêm các cation chủ yếu là Ca2+ hay ở pH thấp Các phân tử liên
kết chéo với nhau bằng các ion
High methoxyl (HM) pectin: Gel tạo thành khi có hàm lượng chất khô cao (>50% đường) ở pH
thấp 3.5 Hàm lượng đường cao và pH thấp làm giảm lực đẩy tĩnh điện giữa các phân tử Sự tổ hợp của các chuỗi còn được tăng cường bằng sự giảm hoạt tính nước
Locust bean gum: Gel tạo thành sau khi đông lạnh dung dịch
Phụ gia tạo đặc:
Trang 5Tất cả các polysaccharide tan được trong nước đều tạo thành dung dịch nhớt do kích thước phân tử lớn Gum arabic tạo dung dịch có độ nhớt min, guar gum tạo dung dịch có độ nhớt max
Độ nhớt phụ thuộc vào kích thước, hình dạng và điện tích phân tử
Khả năng tạo đặc của một số Hydrocolloid
Xanthan gum: Độ nhớt rất cao, không bị ảnh hưởng bởi sự có mặt của chất điện ly, ở khoảng
pH rộng và ở nhiệt độ cao
Galactomannans (guar and locust bean gum): Độ nhớt rất cao Không bị ảnh hưởng bởi sự có
mặt của chất điện ly nhưng có thể mất độ nhớt ở pH cao hay thấp hay ở nhiệt độ cao
Carboxymethyl cellulose: Độ nhớt cao nhưng bị giảm khi có chất điện ly và pH thấp Methyl cellulose and hydroxypropyl methyl cellulose: Độ nhớt tăng khi nhiệt độ tăng không bị
ảnh hưởng bởi sự có mặt của chất điện ly hoặc pH
Một số phụ gia tạo gel, tạo đặc thường được sử dụng trong thức uống:
Pectin:
• Nguồn gốc:
- Có mặt trong quả, củ, thân cây, đóng vai trò vận chuyển nước và lưu chất cho các trái cây đang trưởng thành, duy trì hình dáng và sự vững chắc của trái cây Tiền thân của pectin là protopectin, không tan trong nước và có nhiều trong mô trái cây còn xanh Quá trình chín sẽ kèm theo sự thủy phân protopectin thành pectin, sau đó kết hợp với sự demethyl hóa dưới tác dụng của enzyme và sự depolymer hóa của pectin taọ thành pectate và cuối cùng là các loại đường hòa tan và acid
- Từ thời tiền sử, chất pectin đã là thành phần trong khẩu phần ăn của con người Nhưng chỉ mới trong nửa thế kỉ trước ngành công nghiệp thực phẩm mới nhận biết được vai trò quan trọng của phụ gia pectin trong việc đa dạng hóa các sản phẩm thực phẩm
- Trong công nghiệp pectin được thu nhận từ dịch chiết của các nguyên liệu thực vật, thường là táo hay các quả có múi
- Phần lớn các quốc gia xem pectin là một loại phụ gia quý và vô hại, được sử dụng với liều lượng phụ thuộc vào từng quy trình công nghệ
Trang 6- Hợp chất pectin được đặc trưng bởi 2 chỉ số quan trọng là chỉ số methoxyl “MI” biểu hiện cho phần trăm khối lượng nhóm methoxyl –OCH3 có trong phân tử pectin và chỉ số este hóa
“DE” thể hiện mức độ este hóa của các phân tử acid galactoronic trong phân tử pectin
- Dựa trên mức độ methoxy hóa và este hóa, trong thương mại chia pectin thành 2 loại: pectin có độ methoxyl hóa cao và pectin có độ methoxyl hóa thấp
o Pectin methoxyl hóa cao (High Methoxyl Pectin – HMP): DE >50 % hay MI > 7% Chất này có thể làm tăng độ nhớt cho sản phẩm Muốn tạo đông cần phải có điều kiện pH = 3,1 – 3,4 và nồng độ đường trên 60 %
o Pectin methoxyl hóa thấp (Low Methoxyl Pectin – LMP): DE < 50 % hay MI < 7% Được sản xuất bằng cách giảm nhóm methoxyl trong phân tử pectin Pectin methoxy thấp có thể tạo đông trong môi trường không có đường Chúng thường được dùng làm màng bao bọc các sản phẩm
• Tính chất của pectin:
- Dạng bột màu trắng hoặc hơi vàng, hơi xám, hơi nâu
- Tan trong nước, không tan trong ethanol
- Có khả năng tạo gel bền
• Khả năng tạo gel:
- Trong quá trình bảo quản có thể bị tách nước hoặc lão hóa Quá trình tạo đông phụ thuộc vào nhiều yếu tố: nguồn pectin, mức độ methoxy hóa càng cao thì khả năng tạo đông càng cao Khi sử dụng cần phải hòa tan pectin vào nước, khi pectin hút đủ nước thì mới sử dụng ở công đoạn cuối chế biến
- Các pectin đều là những chất keo háo nước nên có khả năng hydrat hóa cao nhờ sự gắn các phân tử nước vào nhóm hydroxyl của chuỗi polymethyl galacturonic Ngoài ra, trong phân tử pectin có mang điện tích âm nên chúng có khả năng đẩy lẫn nhau có khả năng làm giãn mạch và làm tăng độ nhớt của dung dịch Khi làm giảm độ tích điện và hydrat hóa sẽ làm cho sợi pectin
Trang 7xích lại gần nhau và tương tác với nhau tạo nên một mạng lưới ba chiều rắn chứa pha lỏng ở bên trong
- Chiều dài của phân tử quyết định độ cứng của gel: Nếu phân tử pectin quá ngắn thì nó sẽ không tạo được gel mặc dù sử dụng với liều lượng cao Nếu phân tử pectin quá dài thì gel tạo thành rất cứng
- Mức độ methoxyl hoá quy định cơ chế tạo gel:
o HMP: tạo gel bằng liên kết hydro Điều kiện tạo gel:[Đường] >50%, pH = 3-3,5; [Pectin]= 0,5-1%
Đường có khả năng hút ẩm, vì vậy nó làm giảm mức độ hydrat hóa của phân tử pectin trong dung dịch
pH acid trung hòa bớt các gốc COO-, làm giảm độ tích điện của các phân tử
Vì vậy các phân tử có thể tiến lại gần nhau để tạo thành liên kết nội phân tử và tạo gel
Liên kết hydro được hình thành giữa các phân tử pectin có thể hydroxyl – hydroxyl, carboxyl – carboxyl, hoặc hydroxyl – carboxyl Kiểu liên kết này không bền do đó các gel tạo thành sẽ mềm dẻo bởi tính linh động của các phân tử trong khối gel
Cấu trúc của gel phụ thuộc vào hàm lượng đường, hàm lượng acid, hàm lượng pectin, loại pectin
và nhiệt độ
30 – 50% đường thêm vào pectin là sucrose Do đó cần duy trì pH acid để khi đun nấu sẽ gây ra quá trình nghịch đảo đường sucrose, ngăn cản sự kết tinh của đường sucrose Tuy nhiên cũng không nên dùng quá nhiều acid vì pH quá thấp sẽ gây ra nghịch đảo một lượng lớn sucrose gây kết tinh glucose và hoá gel nhanh tạo nên các vón cục Khi dùng lượng pectin vượt quá lượng thích hợp sẽ gây ra gel quá cứng do đó khi dùng một nguyên liệu có chứa nhiều pectin cần tiến hành phân giải bớt chúng bằng cách đun lâu hơn
Khi sử dụng một lượng cố định bất cứ một loại pectin nào pH, nhiệt độ càng giảm và hàm lượng đường càng cao thì gel tạo thành càng nhanh
o LMP: tạo gel bằng liên kết với ion Ca2+.
Điều kiện tạo gel: khi có mặt Ca2+, ngay cả ở nồng độ < 0,1%, không cần đường và acid
Ở LMP, tỉ lệ các nhóm COO- cao, do đó các liên kết giữa những phân tử pectin sẽ được tạo thành qua cầu nối là các ion hóa trị (II), đặc biệt là Ca2+
Cấu trúc của gel phụ thuộc vào nồng độ Ca2+
Đặc điểm của gel: đàn hồi
• Ưng dụng:
- Pectin là tác nhân tạo gel quan trọng nhất được sử dụng để tạo ra cấu trúc gel cho thực phẩm,chủ yếu là những thực phẩm có nguồn gốc từ rau quả Khả năng tạo gel của nó còn được sử dụng ở những thực phẩm cần có sự ổn định của nhiều pha, hoặc trong sản phẩm cuối hoặc ở một giai đoạn tức thời trong quy trình sản xuất
- Tác dụng tạo đặc của pectin được sử dụng chủ yếu ở những loại thực phẩm mà quy định không cho phép sử dụng những loại gum có giá thành rẻ hơn hay ở những loại thực phẩm cần có một hình dáng thật tự nhiên
Trang 8• Phương pháp sản xuất pectin trong công nghiệp:
- Pectin là 1 sản phẩm carbohydrate được thu nhận từ dịch chiết của những nguyên liệu thực vật, thường là táo hay quả có múi Phần lớn các quốc gia xem pectin là một loại phụ gia quý và
vô hại, được sử dụng với liều lượng phụ thuộc vào từng quy trình công nghệ
o Sản phẩm pectin từ trái cây có múi:
Được chiết xuất từ vỏ chanh, vỏ cam và vỏ bưởi Vỏ của các loại trái cây này là sản phẩm phụ của quá trình ép nước quả, ép dầu và có chứa hàm lượng pectin cao với những tính chất mong muốn
o Sản phẩm pectin từ táo:
Bã táo, phần thu nhận được từ quá trình ép nước táo, là nguyên liệu thô cho sản phẩm pectin từ táo Những sản phẩm này có màu sắc tối hơn (màu nâu) so với pectin từ các loại trái cây
có múi nhưng khác nhau về chức năng
- Quá trình sản xuất pectin có thể khác nhau giữa các công ty nhưng quy trình chung bao gồm các bước như sau:
Nhà máy thu nhận bã táo hoặc vỏ trái cây có múi từ các nhà sản xuất nước trái cây Trong nhiều trường hợp nguyên liệu này được rửa và sấy để có thể vận chuyển và bảo quản mà không
bị hư hỏng Nếu nguyên liệu thô khô, nó có thể được lấy từ trong kho Nhưng khi sản xuất từ vỏ trái cây ướt phải sử dụng ngay vì chúng hư hỏng rất nhanh
Nguyên liệu thô được cho vào nước nóng có chứa các chất hỗ trợ cho quá trình chiết như acid hoặc enzyme Nếu chỉ dùng nước không thì chỉ chiết được một lượng giới hạn pectin
Sau một khoảng thời gian để chiết pectin, chất rắn còn lại sẽ được tách ra; và dung dịch được lọc, cô đặc bằng cách loại nước Chất rắn có thể tách ra bằng thiết bị lọc, thiết bị ly tâm hoặc các thiết bị khác Dung dịch sau đó được lọc lại 1 lần nữa nếu cần thiết Hoặc là ngay lập tức, hoặc sau 1 khoảng thời gian để biến tính pectin, chất lỏng cô đặc sẽ được trộn với cồn để kết tủa pectin Pectin có thể được deester hóa phần nào ở giai đoạn này; hoặc sớm hơn hay trễ hơn trong quy trình
Chất kết tủa được tách ra, rửa với cồn để loại bỏ tạp chất và được sấy Cồn được dùng có thể chứa các muối hay kiềm để biến đổi pectin thành dạng muối 1 phần (Na+,
K+, Ca2+, NH4+) Cồn (thường dùng là isopropanol) được thu lại và được dùng để kế tủa thêm pectin Trước khi hay sau khi sấy, pectin có thể được xử lý với NH3+ để sản xuất pectin amid hóa Pectin amid hóa được ưa chuộng hơn trong 1 vài ứng dụng
Chất rắn được nghiền thành bột, kiểm tra và trộn với đường hay dextrose hình thành khả năng tạo gel tiêu chuẩn hay những tính chất khác như khả năng tạo sệt, khả năng ổn định Pectin cũng được trộn với những phụ gia thực phẩm được chấp nhận khác và dùng trong những sản phẩm đặc trưng
Trang 9Carrageenan:
• Nguồn gốc:
Carrageenan bắt đầu được sử dụng hơn 600 năm trước đây, được chiết xuất từ rêu Irish moss (Loài rong đỏ Chondrus crispus) tại một ngôi làng trên bờ biển phía Nam Ireland trong một ngôi
làng mang tên Carraghen
Vào những năm 30 của thế kỷ XX, carrageenan được sử dụng trong công nghiệp bia và hồ sợi Cũng trong thời kỳ này những khám phá về cấu trúc hóa học của carrageenan được tiến hành mạnh mẽ
Sau này, carrageenan được chiết xuất từ một số loài rong khác như Gigartina stelata thuộc chi rong Gigartina Nhiều loài rong khác cũng được nghiên cứu trong việc chiết tách carrageenan
để ứng dụng trong nhiều lĩnh vực khác nhau
Ngày nay, sản xuất công nghiệp carrageenan không còn giới hạn vào chiết tách từ Irish moss,
mà rất nhiều loài rong đỏ thuộc ngành Rhodophyta đã được sử dụng Những loài này gọi chung là Carrageenophyte Qua nhiều nghiên cứu, đã có hàng chục loài rong biển được khai thác tự nhiên hay nuôi trồng để sản xuất carrageenan
• Cấu tạo:
Carrageenan là m t h n h p ph c t p c a ít nh t 5 lo i polymer: ⎢, ⎣, ⎡, ∝, ⎨- carrageenan, c u
t o t các g c D-galactose và 3,6-anhydro D-galctose Các g c này k t h p v i nhau b ng liên k t
®-1,4 và 〈-1,3 luân phiên nhau Ngoài mạch polysaccharide chính còn có thể có các nhóm sulfat được gắn vào carrageenan ở những vị trí và số lượng khác nhau Vì vậy, carrageenan không phải chỉ là một polysaccharid đơn lẻ, có cấu trúc nhất định mà là các galactan sulfat Mỗi galactan sulfat là một dạng riêng của carrageenan và có ký hiệu riêng Ví dụ: λ – , κ –, ι –, ν – carrageenan
Trong quá trình chi t tách, do tác đ ng c a môi tr ng ki m các -, -, -carrageenan d chuy n hóa thành -, -, - carrageenan t ng ng Các carrageenan có m c đ sulfat hóa khác nhau, thí d –carrageenan (25 % sulfat), –carrageenan (32 % sulfat), –carrageenan (35 % sulfat) Các s n
ph m này đã đ c th ng m i hóa, chi m v trí quan tr ng trong th tr ng polysaccharide
Trang 10• Tính chất của carrageenan:
- Màu hơi vàng, màu nâu vàng nhạt hay màu trắng
- Dạng bột thô, bột mịn và gần như không mùi
o Độ tan Carrageenan tan trong nước nhưng độ tan của nó phụ thuộc vào dạng, nhiệt độ, pH, nồng
độ của ion và các chất tan khác
Nhóm carrageenan có cầu nối 3,6-anhydro không ưa nước, do đó các carrageenan này không tan trong nước Nhóm carrageenan không có cầu nối thì dễ tan hơn Thí dụ như λ-carrageenan không có cầu nối 3,6-anhydro và có thêm 3 nhóm sulfat ưa nước nên nó tan trong nước ở điều kiện bất kỳ Đối với κ –carrageenan thì có độ tan trung bình, muối natri của κ –carrageenan tan trong nước lạnh nhưng muối kali của κ –carrageenan chỉ tan trong nước nóng
o Độ nhớt
Độ nhớt của các dung dịch carrageenan phụ thuộc vào nhiệt độ, dạng, trọng lượng phân tử
và sự hiện diện của các ion khác trong dung dịch Khi nhiệt độ và lực ion của dung dịch tăng thì
độ nhớt của dung dịch giảm Các carrageenan tạo thành dung dịch có độ nhớt từ 25 – 500 Mpa, riêng κ –carrageenan có thể tạo dung dịch có độ nhớt tới 2000 Mpa
Sự liên quan tỷ lệ thuận giữa độ nhớt và trọng lượng phân tử của carrageenan có thể mô tả bằng công thức cân bằng của Mark-Houwink như sau:
[η] = K(Mw)α Trong đó: η: độ nhớt
Trang 11Mw: trọng lượng phân tử trung bình
K và α: hằng số phụ thuộc vào dạng của carrageenan và dung môi hòa tan
o Tương tác giữa carrageenan với protein Đây là một trong những tính chất quan trọng của carrageenan và cũng là đặc trưng cho tất
cả các chất tạo gel cũng như các chất không tạo gel là xuất hiện phản ứng với protein Phản ứng này xảy ra nhờ các cation có mặt trong các nhóm protein tích điện tác dụng với nhóm sulfat mang điện âm của carrageenan và có tính quyết định đến độ bền cơ học của gel Trong công nghiệp sữa, nhờ vào tính chất liên kết với các protein trong sữa mà carrageenan được sử dụng (với nồng
độ 0,015 – 0,025 %) làm tác nhân để ngăn chặn sự tách lỏng và làm ổn định các hạt coca trong sữa sôcôla
o Tạo gel Carrageenan có một tính chất vô cùng quan trọng là tạo gel ở nồng độ thấp (nhỏ hơn 0,5%) Ở dạng gel các mạch polysaccharide xoắn vòng như lò xo và cũng có thể xoắn với nhau tạo thành khung xương không gian ba chiều vững chất, bên trong có thể chứa nhiều phân tử nước (hay dung môi) Từ dạng dung dịch chuyển sang dạng gel là do tương tác giữa các phân tử polyme hòa tan với các phân tử dung môi ở bên trong, nhờ tương tác này mà gel tạo thành có độ bền cơ học cao Phần xoắn vòng lò xo chính là những mầm tạo gel, chúng lôi kéo các phân tử dung môi vào vùng liên kết
Sự hình thành gel có thể gây ra bởi nhiệt độ thấp hoặc thêm các cation với một nồng độ nhất định Quá trình hình thành gel diễn ra phức tạp, được thực hiện theo hai bước:
- Bước 1: khi hạ nhiệt độ đến một giới hạn nào đó trong phân tử carrageenan có sự chuyển cấu hình từ dạng cuộn ngẫu nhiên không có trật tự sang dạng xoắn có trật tự Nhiệt độ của quá trình chuyển đổi này phụ thuộc vào dạng và cấu trúc các carrageenan, cũng như phụ thuộc vào dạng và nồng độ của muối thêm vào dung dịch carrageenan Do đó, mỗi một dạng carrageenan có một điểm nhiệt độ tạo gel riêng
- Bước 2: gel của các polyme xoắn có thể thực hiện ở các cấp độ xoắn Trong trường hợp đầu, sự phân nhánh và kết hợp lại sẽ xuất hiện cấp độ xoắn thông qua sự hình thành không đầy đủ
Trang 12của xoắn kép, theo hướng đó mỗi chuỗi tham gia vào xoắn kép với hơn một chuỗi khác Trong trường hợp thứ hai, các phần đã phát triển đầy đủ của đa xoắn tụ hợp lại tạo thành gel Còn dưới các điều kiện không tạo gel, ở các nồng độ polyme thấp sự hình thành và hợp lại của các xoắn sẽ dẫn đến tăng độ nhớt
Qua đó, có thể mô tả cơ chế tạo gel như sau: trước hết là xuất hiện sự chuyển đổi cấu hình
từ dạng cuộn sang xoắn lò xo, tiếp sau là sự kết hợp các xoắn và tụ hợp lại có trật tự tạo thành xoắn kép – gel Như vậy, gel là tập hợp các xoắn có trật tự hay còn gọi là xoắn kép
• Phương pháp sản xuất carrageenan trong công nghiệp:
Carrageenan được thu nhận bằng cách chiết từ tảo biển bằng nước hay bằng dung dịch kiềm loãng Carrageenan được thu lại bằng sự kết tủa bởi cồn, sấy thùng quay, hay kết tủa trong dung dịch KCl và sau đó làm lạnh Cồn được sử dụng trong suốt quá trình thu nhận và tinh sạch là methanol, ethanol và isopropanol
Sản phẩm có thể chứa đường nhằm mục đích chuẩn hóa, chứa muối để thu được cấu trúc gel đặc trưng hay tính năng tạo đặc
trong hơn
Aginate:
• Nguồn gốc:
Alginate là lo i polymer sinh h c bi n phong phú nh t th gi i và là lo i poymer sinh h c nhi u
th hai trên th gi i sau cellulose
Ngu n alginate ch y u đ c tìm th y thành t bào và gian bào c a t o nâu bi n (thu c h Rhaeophyceae) Các phân t alginate t o ra cho th c v t đ m m d o và đ b n c n thi t cho các loài
th c v t bi n do alginate các gian bào t o thành m t m ng l i