Phòng giáo dục đào tạo nông cống Tr ờng t.h.c.s Thăng thọ Thầy và trò lớp 7A xin kính chào các thầy cô về dự tiết học này Năm học: 2009 - 2010 GV: Đặng Kiên C ờng Kiểm tra bài cũ Cho các đa thức : M = x 3 2xy + y 2 N = y 2 + 2xy + x 3 + 1 a) Tính M + N , Giải a) M + N = ( x 3 2xy + y 2 ) + ( y 2 + 2xy + x 3 + 1 ) = x 3 2xy + y 2 + y 2 + 2xy + x 3 + 1 = ( x 3 + x 3 ) + ( 2xy + 2xy ) + ( y 2 + y 2 ) + 1 = 2x 3 + 2y 2 + 1 ( Bỏ dấu ngoặc) ( áp dụng tính chất giao hoán và kết hợp ) ( Cộng trừ các đơn thức đồng dạng ) Dạng 1 : cộng , trừ đa thức Bài 35 Sgk/ 40 Cho các đa thức : M = x 2 2xy + y 2 N = y 2 + 2xy + x 2 + 1 a) Tính M + N b, Tính M N , Giải a, M + N = (x 2 2xy + y 2 ) + (y 2 + 2xy + x 2 + 1) = x 2 2xy + y 2 + y 2 + 2xy + x 2 + 1 = (x 2 + x 2 ) + ( -2xy + 2xy) + (y 2 + y 2 ) + 1 = 2x 2 + 2y 2 + 1 a, M - N = (x 2 2xy + y 2 ) - (y 2 + 2xy + x 2 + 1) = x 2 2xy + y 2 - y 2 - 2xy - x 2 - 1 = (x 2 - x 2 ) + ( -2xy - 2xy) + (y 2 - y 2 ) - 1 = - 4xy - 1 Tiết 60 - Luyện tập Dạng 1 : cộng , trừ đa thức Bài 37 Sgk/ 41 Cho các đa thức : A = x 2 2y + xy + 1 B = x 2 + y x 2 y 2 - 1 Tìm đa thức C sao cho: a, C = A + B b, C + A = B = x 2 2y + xy + 1 + x 2 + y x 2 y 2 1 = (x 2 + x 2 ) + (-2y + y) + (1 - 1) + xy x 2 y 2 = 2x 2 - y + xy x 2 y 2 Vậy: C = 2x 2 y + xy x 2 y 2 = x 2 + y - x 2 y 2 - 1 - x 2 + 2y - xy - 1 = (x 2 - x 2 ) + (y + 2y) + (-1 - 1) - xy - x 2 y 2 = 3y - 2 - xy - x 2 y 2 Vậy C = 3y - 2 - xy - x 2 y 2 Giải a, Vì C = A + B Ta có A + B = (x 2 2y + xy + 1) + (x 2 + y x 2 y 2 - 1) b, Từ C + A = B C = B - A Ta có: B - A = (x 2 + y - x 2 y 2 - 1) - (x 2 - 2y + xy + 1) Tiết 60 - Luyện tập Dạng 1 : cộng , trừ đa thức Dạng 2 : tính giá trị của đa thức Bài tập : Tính giá trị của mỗi đa thức sau : a) x 2 + 2xy 3x 3 + 2y 3 + 3x 3 y 3 tại x = 2 , y = - 1 b) xy x 2 y 2 + x 4 y 4 x 6 y 6 + x 8 y 8 tại x = - 1 , y = - 1 c) x ( x 2008 + y 2008 ) y ( x 2008 + y 2008 ) + 2008 biết x y = 0 Giải Thay x = 2 , y = - 1 vào đa thức ta có : 2 2 + 2.2.( - 1 ) + ( - 1 ) 3 = x 2 + 2xy + ( - 3x 3 + 3x 3 ) + ( 2y 3 y 3 ) a) Ta có : x 2 + 2xy 3x 3 + 2y 3 + 3x 3 y 3 = x 2 + 2xy + y 3 = 4 + ( - 4 ) + ( - 1 ) = - 1 Vậy giá trị của đa thức tại x = 2 , y = - 1 là - 1 Tiết 60 - Luyện tập b) Thay x = - 1 , y = - 1 vào đa thức ta có : - 1.( - 1 ) ( - 1) 2. ( - 1 ) 2 + ( - 1 ) 4. ( - 1 ) 4 ( - 1) 6. ( - 1) 6 + ( - 1 ) 8 ( - 1 ) 8 Dạng 1 : cộng , trừ đa thức Dạng 2 : tính giá trị của đa thức Bài 1 : Tính giá trị của mỗi đa thức sau : a) x 2 + 2xy 3x 3 + 2y 3 + 3x 3 y 3 tại x = 2 , y = - 1 b) xy x 2 y 2 + x 4 y 4 x 6 y 6 + x 8 y 8 tại x = - 1 , y = - 1 c) x ( x 2008 + y 2008 ) y ( x 2008 + y 2008 ) + 2008 biết x y = 0 Giải = 1 1 + 1 1 + 1 = 1 Vậy giá trị của đa thức tại x = - 1 , y = - 1 là 1 Tiết 60 - Luyện tập c, Ta có: x(x 2008 + y 2008 ) y(x 2008 +y 2008 ) + 2008 = x 2009 + x.y 2008 y.x 2008 y 2009 + 2008 Dạng 1 : cộng , trừ đa thức Dạng 2 : tính giá trị của đa thức Bài 1 : Tính giá trị của mỗi đa thức sau : a) x 2 + 2xy 3x 3 + 2y 3 + 3x 3 y 3 tại x = 2 , y = - 1 b) xy x 2 y 2 + x 4 y 4 x 6 y 6 + x 8 y 8 tại x = - 1 , y = - 1 c) x ( x 2008 + y 2008 ) y ( x 2008 + y 2008 ) + 2008 biết x y = 0 Giải = (x 2009 y.x 2008 ) + (x.y 2008 y 2009 ) + 2008 Vì x - y = 0 ta có x 2008 .0 + y 2008 .0 + 2008 = 2008 Tiết 60 - Luyện tập = x 2008 (x y) + y 2008 (x y) + 2008 Dạng 1 : cộng , trừ đa thức Dạng 2 : tính giá trị của đa thức * H ớng dẫn về nhà : - Nắm vững các b ớc cộng hay trừ các đa thức , cách tính giá trị của một biểu thức . - Làm bài 34, 37 SGK trang 41 - Xem lại các bài tập đã làm Tiết 60 - Luyện tập Tiết 60 - Luyện tập Bài 34 Sgk/ 40: Tính tổng các đa thức: a, P = x 2 y + xy 2 5x 2 y 2 + x 3 và Q = 3xy 2 x 2 y + x 2 y 2 b, M = x 3 + xy + y 2 x 2 y 2 2 và N = x 2 y 2 + 5 y 2 Giải a, P + Q = (x 2 y + xy 2 5x 2 y 2 + x 3 ) + ( 3xy 2 x 2 y + x 2 y 2 ) = x 2 y + xy 2 5x 2 y 2 + x 3 + 3xy 2 x 2 y + x 2 y 2 = (x 2 y x 2 y ) + (xy 2 + 3xy 2 ) + (- 5x 2 y 2 + x 2 y 2 ) + x 3 = 4xy 2 4x 2 y 2 + x 3 b, M + N = (x 3 + xy + y 2 x 2 y 2 - 2) + (x 2 y 2 + 5 y 2 ) = x 3 + xy + y 2 x 2 y 2 2 + x 2 y 2 + 5 y 2 = (y 2 y 2 ) + ( -x 2 y 2 + x 2 y 2 ) +( -2 + 5)+ x 3 + xy = 3 + x 3 + xy ⇒ Cho c¸c ®a thøc : A = x 2 – 2y + xy + 1 B = x 2 + y – x 2 y 2 - 1 , C = - y – x 2 y 2 , TÝnh A + B - C Gi¶i = ( x 2 – 2y + xy + 1 ) + ( x 2 + y – x 2 y 2 – 1 ) – ( – y – x 2 y 2 ) Ta cã : A + B – C = = x 2 – 2y + xy + 1 + x 2 + y – x 2 y 2 – 1 + y + x 2 y 2 = 2x 2 + xy = ( x 2 + x 2 ) + ( – 2y + y + y ) + xy + ( x 2 y 2 – x 2 y 2 ) + (1 -1) TiÕt 60 - LuyÖn tËp . 2 , y = - 1 là - 1 Tiết 60 - Luyện tập b) Thay x = - 1 , y = - 1 vào đa thức ta có : - 1.( - 1 ) ( - 1) 2. ( - 1 ) 2 + ( - 1 ) 4. ( - 1 ) 4 ( - 1) 6. ( - 1) 6 + ( - 1 ) 8 ( - 1 ) 8 . + (-2 y + y) + (1 - 1) + xy x 2 y 2 = 2x 2 - y + xy x 2 y 2 Vậy: C = 2x 2 y + xy x 2 y 2 = x 2 + y - x 2 y 2 - 1 - x 2 + 2y - xy - 1 = (x 2 - x 2 ) + (y + 2y) + (-1 - 1) - xy -. 3y - 2 - xy - x 2 y 2 Vậy C = 3y - 2 - xy - x 2 y 2 Giải a, Vì C = A + B Ta có A + B = (x 2 2y + xy + 1) + (x 2 + y x 2 y 2 - 1) b, Từ C + A = B C = B - A Ta có: B - A = (x 2 + y -