ÑÔN VÒ : TRÖÔØNG THCS TIEÁN THAØNH 1. Nêu các dấu hiệu nhận biết tiếp tuyến của đường tròn? 2. Cho AB, AC là hai tiếp tuyến tại B, tại C của (O). Chứng minh: AB = AC. 1. Định lí về hai tiếp tuyến cắt nhau: Định lí: Cho đ ng tròn (O), điểm M ườ nằm bên ngoài đường tròn. Kẻ các tiếp tuyến MB, MC với đường tròn ( B, C là các tiếp điểm). Chứng minh : OM vuông góc với BC. Bài tập : TIẾT 29 TIẾT 29 : : § § 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì: °Điểm đó cách đều hai tiếp điểm. °Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến. °Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm. 1. Định lí về hai tiếp tuyến cắt nhau: Định lí: TIẾT 29 TIẾT 29 : : § § 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì: °Điểm đó cách đều hai tiếp điểm. °Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến. °Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm. Bµi tËp tr¾c nghiƯm: Chän ch÷ c¸i ®øng tríc c©u tr¶ lêi mµ em cho lµ ®óng. đường tròn !"#$ %& '(#")*" + ,-#$./#)*là các tiếp điểm). Gãc BHC cã sè ®o lµ bao nhiªu? O H B C 3 6 1. Định lí về hai tiếp tuyến cắt nhau: TIẾT 29 TIẾT 29 : : § § 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU Bµi tËp tr¾c nghiƯm: Chän ch÷ c¸i ®øng tríc c©u tr¶ lêi mµ em cho lµ ®óng. ,-#$./#0* ' (#112&31# ,-#$./#vu«ng gãc+ # 4 125 ' ! Tø gi¸c PMIN lµ h×nh g×? "6##$ "6#7#8 "6#9#$ "6# P M N I P M N I H K Tìm tâm của một vật hình tròn bằng cách nào? Thước phân giác Định lí: Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì: ° Điểm đó cách đều hai tiếp điểm. ° Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến. ° Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm. 1. nh lớ v hai tip tuyn ct nhau: nh lớ: ( SGK) Hoaùt ủoọng nhoựm Cho tam giác ABC. Gọi I là giao điểm các đờng phân giác các góc trong tam giác; D, E, F theo thứ tự là chân các đờng vuông góc kẻ từ I đến các cạnh BC, AC, AB. Chứng minh :D, E, F nằm trên cùng một đờng tròn tâm I. D E F I B A C 2) ( I; ID ) v ABC cú quan h gỡ vi nhau? TIT 29 TIT 29 : : Đ Đ 6 TNH CHT CA HAI TIP TUYN CT NHAU 6 TNH CHT CA HAI TIP TUYN CT NHAU • T©m cña ®êng trßn néi tiÕp tam gi¸c lµ giao ®iÓm cña ba ®êng ph©n gi¸c trong cña tam gi¸c. 1. Định lí về hai tiếp tuyến cắt nhau: Định lí: ( SGK) 2. Đường tròn nội tiếp tam giác: I B A C • (I; ID ) là đường tròn nội tiếp ∆ABC; ∆ABC ngoại tiếp (I; ID ). A B C . ) ) ) ) ) ) TIẾT 29 TIẾT 29 : : § § 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU I D • T©m cđa ®êng trßn néi tiÕp tam gi¸c lµ giao ®iĨm cđa ba ®êng ph©n gi¸c trong cđa tam gi¸c. 1. Định lí về hai tiếp tuyến cắt nhau: Định lí: ( SGK) 2. Đường tròn nội tiếp tam giác: I B A C • (I; ID ) là đường tròn nội tiếp ∆ABC; ∆ABC ngoại tiếp (I; ID ). 3. Đường tròn bàng tiếp tam giác: - Đường tròn (K;KD) bàng tiếp trong góc A của tam giác ABC. x K B A C A B C ) ) ) ) ) ) ) ) ) ) ) ) F E K B A C D Hoạt động cá nhân Cho tam ABC, K là giao điểm các đường phân giác của hai góc ngoài tại B và C; D, E, F theo thứ tự là chân các đường vuông góc kẻ từ K đến các đường thẳng BC, AC. Chứng minh : D, E, F cùng nằm trên đường tròn tâm K. . TIẾT 29 TIẾT 29 : : § § 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU Đường tròn bàng tiếp tam giác là đường tròn tiếp xúc một cạnh của tam giác và các phần kéo dài của hai cạnh còn lại. K D D ) ) ) ) ) ) Tâm của đờng tròn nội tiếp tam giác là giao điểm của ba đờng phân giác trong của tam giác. 1. nh lớ v hai tip tuyn ct nhau: nh lớ: ( SGK) 2. ng trũn ni tip tam giỏc: I B A C (I; ID ) l ng trũn ni tip ABC; ABC ngoi tip (I; ID ). 3. ng trũn bng tip tam giỏc: - ng trũn (K; KD) bng tip trong gúc A ca tam giỏc ABC. x K B A C ) ) ) ) ) ) HNG DN V NH - Nm vng du hiu nhn bit tip tuyn vaứ tớnh cht ca hai tip tuyn caột nhau . - Phõn bit nh ngha v cỏch xỏc ủnh tõm ca ng trũn ni tip v bng tip tam giỏc. BTVN: 27, 29,31 SGK tr115, 116 TIT 29 TIT 29 : : Đ Đ 6 TNH CHT CA HAI TIP TUYN CT NHAU 6 TNH CHT CA HAI TIP TUYN CT NHAU D D [...]... tiếp tam giác với ba cạnh của tam giác 2-d 3 Đường tròn c là giao điểm ba đường ngoại tiếp tam giác phân giác trong của tam giác 3-a 4 Tâm của đường tròn nội tiếp tam giác d là đường tròn tiếp xúc với một cạnh của tam giác và phần kéo dài của hai cạnh kia 4-c 5 Tâm của đường tròn bàng tiếp tam giác e là giao điểm hai đường phân giác ngoài của tam giác 5-e ... ?2 Hóy nờu cỏch tỡm tõm ng trũn v hai tip tuyn AB v ming g hỡnh trũn bng thc =60o AC (B, C l hai tip im).BAC phõn giỏc a) Chứng minh ABC u b) OA = 2.OB B c) OA BC R A E C O Hãy nối mỗi ô ở cột trái với một ô ở cột phải để đư ợc khẳng định đúng 1 Đường tròn nội tiếp tam giác a là đường tròn đi qua ba đỉnh của tam giác 1-b 2 Đường tròn bàng b là đường tròn tiếp xúc tiếp tam giác với ba cạnh của tam...Kớnh chỳc quý thy cụ v cỏc em hc sinh mnh kho TIT 28: Đ6 TNH CHT CA HAI TIP TUYN CT NHAU 1 nh lớ v hai tip tuyn ct nhau: nh lớ: Nội dung:SGK/114 GT KL (O); AB v AC l hai tip tuyn AB = AC AO l phõn giỏc BAC OA l phõn giỏc BOC x B Tõm O A C y Chứng minh + AB v AC l cỏc tip tuyn ca(O) =>AB OB; AC OC + ABO v ACO cú: . § § 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì: °Điểm đó cách đều hai tiếp điểm. °Tia kẻ từ. tiếp điểm). Gãc BHC cã sè ®o lµ bao nhiªu? O H B C 3 6 1. Định lí về hai tiếp tuyến cắt nhau: TIẾT 29 TIẾT 29 : : § § 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU 6 TÍNH CHẤT CỦA HAI TIẾP. đường tròn tâm K. . TIẾT 29 TIẾT 29 : : § § 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU 6 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU Đường tròn bàng tiếp tam giác là đường tròn tiếp xúc một cạnh của