1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Cơ chế keo tụ - tạo bông doc

12 1,3K 21

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 195,23 KB

Nội dung

Các hoá chất gây keo tụ thường là các loại muối vô cơ và được gọi là chất keo tụ.Hiện tượng các hạt keo cùng loại có thể hút nhau tạo thành những tập hợp hạt có kích thước và khối lượng

Trang 1

Cơ chế keo tụ - tạo bông

Trang 3

được triệt tiêu Hiện tượng keo tụ có tính thuận nghịch nghĩa là hạt keo đã keo tụ lại có thể tích điện trở lại và trở nên bền (xem phần tiếp theo) Các hoá chất gây keo tụ thường là các loại muối vô cơ và được gọi là chất keo tụ.Hiện tượng các hạt keo cùng loại có thể hút nhau tạo thành những tập hợp hạt có kích thước và khối lượng đủ lớn để có thể lắng xuống do trọng lực trong thời gian đủ ngắn được gọi là hiện tượng keo tụ Hiện tượng này xảy

ra khi thế

Một cách khác làm các hạt keo co cụm thành bông cặn lớn dễ lắng là dùng các tác nhân thích hợp “khâu” chúng lại thành các hạt lớn hơn đủ lớn, nặng để lắng Hiện

tượng này được gọi là hiện tượng tạo bông được thực hiện nhờ những phân tử các chất cao phân tử tan trong nước và có ái lực tốt với các hạt keo hoặc các hạt cặn nhỏ Khác với keo tụ có tính thuận nghịch, các chất có khả năng tạo bông được gọi là các chất tạo bông hay trợ keo

tụ, quá trình tạo bông là bất thuận nghịch

Như vậy, để kết tủa hệ keo có thể sử dụng các cách sau đây:

1 Phá tính bền của hệ keo (do lực đẩy tĩnh điện) bằng cách thu hẹp lớp điện kép tới mức thế zeta = 0, khi đó lực đẩy tĩnh điện hạt – hạt bằng không, tạo điều kiện cho các hạt keo hút nhau bằng các lực bề mặt tạo hạt lớn hơn dễ kết tủa Cách này có thể thực hiện khi cho hạt keo hấp phụ đủ điện tích trái dấu để trung hoà điện tích hạt keo Điện tích trái dấu này thường là các ion kim loại đa hoá trị bám dính (hiệu ứng quét).2 Tạo điều kiện cho các hạt keo va chạm với các bông kết tủa của chính chất keo tụ nhờ hiện tượng hấp phụ

3 Dùng những chất cao phân tử – trợ keo tụ để hấp phụ

“khâu” các hạt nhỏ lại với nhau tạo hạt kích thước lớn (gọi

là bông hay bông cặn) dễ lắng

Việc xử lý nước bằng phèn nhôm, và PAA nhằm thực hiện đồng thời một, hai hay cả ba giải pháp trên

• Hiện tượng co lớp điện kép nhằm giảm thế zeta

Khi cho các muối có điện tích cation khác nhau vào dung

Trang 4

dịch keo đất (âm), ví dụ muối Na+, Ca2+, Al3+ người ta thấy với cùng một lượng keo âm tích điện như nhau

lượng muối gây keo tụ giảm nếu điện tích cation tăng, đối với hệ trên để gây hiện tượng keo tụ ta có tỉ lệ nồng độ các muối sử dụng tuân theo tỷ lệ gần đúng (MZ+ là kí hiệu ion kim loại, z là số điện tích):

M+: M2+: M3+ = 1 : 1/(30:50) : 1/(1500:2500) (15.4)

Đây là quy tắc Schulze - Hardy (1890) nói nên khả năng gây keo tụ của các ion trái dấu Như vậy ion trái dấu trung hoà bớt điện tích hạt keo, lớp điện kéo bị ép lại tới mức zeta = 0, lực hút Van Der Waals và các lực bề mặt khác

sẽ thắng lực đẩy tĩnh điện, các hạt nhỏ sẽ hút nhau tạo hạt lớn hơn lắng được Ta thấy điều này rất rõ qua sự bồi đắp nhanh chóng các cửa sông khi nước phù sa (các hạt keo đất) gặp nước mặn và phù sa nhanh chóng bị lắng Hình 6.3- Dụng cụ xác định khả năng keo tụ - phương pháp thử trong cốc

Hình 6.4- Các đường keo tụ đối với bốn loại chất keo tụ Như vậy, theo quy tắc này chất keo tụ thích hợp nhất là các muối Al3+ hay Fe3+ có điện tích lớn nhất trong số các muối kim loại phổ biến và không độc Điều này cũng dễ dàng chứng minh được bằng thực nghiệm

Nếu dùng phương pháp thử keo tụ trong cốc (hình 6.3) và khảo sát độ đục của nước thử theo thời gian sau khi cho thêm chất keo tụ ở hình 6.4(a) ta thấy lượng Al3+ dùng để

xử lý nước đạt độ trong cần thiết nhỏ hơn nhiều so với Ca2+ và Na+

Tuy nhiên thử keo tụ theo hình 6.4(a) chưa nói lên vai trò đầy đủ của chất keo tụ nói chung Khi trong hệ có chất keo tụ, ta có tuơng tác tay ba: chất keo tụ - hạt keo - dung môi

• Sự hấp phụ điện tích trái dấu để trung hoà điện tích hạt keo

Khác với các chất điện ly thông dụng (ví dụ: NaCl phân ly thành Na+ gây keo tụ hạt keo đất do điện tích trái dấu) có thể cho vào hệ một lượng nhiều hơn lượng gây keo tụ cần

Trang 5

thiết (ví dụ với NaCl là >dung môi (nước) giảm như vậy hạt keo lắng nhanh hơn.= 10-1 M), đối với chất keo tụ hữu cơ hoặc cao phân tử tan trong nước sự “quá tay” sẽ dẫn đến hiệu ứng ngược Điều này thấy rất rõ qua hình 6.4(b) và 6.4(d) ứng với hai chất keo tụ-tạo bông tổng hợp

là (dodecylamin) và polyacrylamit (PAA): lúc đầu keo tụ rất tốt ở nồng độ 10-4 M đối với và ~ 10-7 M với PAA (độ đục giảm mạnh), sau đó độ đục lại tăng do tính làm bền keo của chất cho thêm ở nồng độ vượt yêu cầu keo tụ đối với

hệ keo khảo sát Đó là vì ở nồng độ thấp chất cao phân tử hấp phụ lên hạt keo âm, trung hoà điện tích trái dấu nhờ các nhóm chức mang điện dương làm triệt tiêu lực đẩy tĩnh điện giữa các hạt keo, thúc đẩy quá trình keo tụ–lắng Mặt khác, phần kỵ nước của phân tử chất cho thêm quay

ra ngoài sẽ đẩy bớt nước ra khỏi bề mặt hạt keo, tương tác hạt keo

Nếu cho quá nhiều chất keo tụ, ví dụ đối với quá 4.104 M

sẽ xảy ra hiện tượng hạt keo sau khi được trung hoà điện tích sẽ hấp phụ thêm chất keo tụ mang điện Khi đó ta có hiện tượng đổi dấu điện tích bề mặt, thay vì điện tích âm lúc đầu, hạt keo sẽ tích điện dương của chất cho thêm, lực đẩy tĩnh điễn sẽ tái xuất hiện và hệ keo lại trở nên bền Điều này không xảy ra đối với Na+ vì tính hấp phụ yếu của Na+ Đây là hiệu ứng đảo dấu hạt keo, cản trở quá keo tụ (h 6.4(b))

của hạt keo âm để gây keo tụ Khi tăng nồng độ hiện

tượng đảo dấu hạt keo cũng xảy ra lúc đầu tương tự như

ở hình 6.4(c), nhưng sau đó, nếu tăng tiếp nồng độ

lênĐối với muối Al3+ nhờ điện tích lớn, khả năng hấp phụ mạnh sẽ có hai ngưỡng nồng độ Ngưỡng thứ nhất, ở nồng độ thấp (khoảng 10–4-10–5 M) bản chất hiện tượng tương tự như đối với Na+ và ở nồng độ thấp, các ion Al3+

sẽ nhanh chóng trung hoà thế > 10-2 M dung dịch lại trở nên trong hơn nhờ hiện tượng bông cặn Al(OH)3 hình thành nhiều sẽ quét theo hạt keo kết tủa rơi xuống Đây là hiện tượng keo tụ quét, là cơ sở để sử dụng phèn nhôm như chất keo tụ phổ biến nhất hiện nay Nồng độ Al3+

Trang 6

trong khoảng 10–4 - 10–5 M (khoảng chục mg phèn

nhôm/L) chính là nồng độ phèn nhôm hay sử dụng trong

xử lí nước cấp

• Lôi kéo hạt keo bằng bông cặn

tạo bôngHình 6.5- Mô hình quá trình keo tụ

(a) Sự đẩy giữa các hạt keo cùng dấu; (b) Hiện tượng co lớp điện kép và sự hút nhau giữa các hạt keo bị trung hoà

về điện; (c) Hiện tượng tạo bông nhờ PAA: các hạt keo

âm bị phân tử PAA “khâu lại” thành bông lớn

Hiện tượng chất keo tụ (Al2(SO)3 và FeCl3) tạo bông kết tủa hyđroxit có kích thước lớn, khi sa lắng kéo theo các hạt keo có thể thấy rõ ở hình 6.4(c) Điều này đã được phân tích trên cơ sở hiệu ứng keo tụ quét của phèn nhôm

ở trên

• Tạo điều kiện “khâu” các hạt cặn lơ lửng bằng phân tử polyme

Một số polime tan trong nước, ví dụ PAA, có khả năng

“khâu” các hạt keo lại với nhau nhờ tương tác giữa hạt keo với các nhóm chức khác dấu hoặc bằng lực hấp phụ (hình 6.5), nhờ quá trình này bông cặn trở lên to hơn, nặng hơn và dễ lắng

Chú ý: do hiệu ứng đảo dấu hạt keo nên khi sử dụng các chất keo tụ nhất là các chất tạo bông cao phân tử nhất thiết phải có thí nghiệm để định lượng vừa đủ hoá chất đưa vào, mật độ thử tuỳ diễn biến chất lượng nước cần

xử lí, chưa kể đến các yếu tố ảnh hưởng khác

Chất keo tụ và các yếu tố ảnh hưởng

1 Phèn nhôm (n = 14 -18)

Đây là chất keo tụ phổ biến nhất, đặc biệt là ở Việt Nam Khi dùng phèn nhôm làm chất keo tụ sẽ xảy ra phản ứng thuỷ phân:

Nếu trong nước thiếu độ kiềm (ĐK), pH sẽ giảm; nếu đủ

ĐK sẽ có phản ứng:

Hình 6.6- ảnh hưởng của pH và liều lượng đến khả năng gây keo tụ của phèn nhôm

Theo phương trình (15.6) cứ 342 mg khan, hàm lượng

Trang 7

100% cần 6 mđl ĐK (HCO3–) Nếu ĐK trong nước không

đủ thì cần bổ sung vôi hoặc sôđa để bù, nếu không pH sẽ

hạ Lượng kiềm cần (K) tính theo công thức:

K = F(6/324) – ĐK + 1 = 0,0175F – ĐK + 1 (6.7)

Trong đó:

K = lượng kiềm cần thêm, mđl/L ;

F = lượng phèn, mg/L;

ĐK = độ kiềm của nước, mđl/L

Để chuyển đổi ra đơn vị g/L, đối với vôi K sau khi tính theo

pt (6.7) cần nhân với 37; đối với sôđa nhân với 58

Khi sử dụng phèn nhôm hay bất kì chất keo tụ nào khác cần lưu ý nồng độ và vùng pH tối ưu (hình 6.6), pH hiệu quả tốt nhất với muối nhôm là khoảng 5,5 - 7,0

Có thể dùng phèn kép để thay phèn nhôm, mọi quy luật tương tự phèn nhôm song giá đắt hơn nhiều Không dùng trong xử lí nước cấp vì gây nhiễm amôni

ở các nước công nghiệp người ta có đòi hỏi rất cao về độ trong của nước lọc Nếu đo bằng độ đục kế thì độ đục nước lọc phải nhỏ hơn hoặc bằng 0,1 đến 3 NTU (AWWA Task Group 225 M)

Thậm chí khi nước có độ đục rất thấp 0,1 NTU vẫn có rất nhiều cặn không thể thấy bằng mắt thường Nó có thể là những hạt cặn rất tinh chưa bị tác động của chất keo tụ hoặc bản thân những mảnh vỡ nhỏ của các bông kết tủa chất keo tụ không thể lắng – lọc được Người ta đã xác định được ứng với SS = 0,1 mg/L có thể có tới 200 triệu hạt cỡ 0,1 um là các mảnh của bông cặn có p = 1,01 Tuy nhiên đây là đại lượng không nguy hiểm vì chỉ ứng với hàm lượng Al3+ bằng 0,06 mg/L (theo QĐ BYT

1329/2002, hàm lượng Al <=0,2 mg/L)

ở Việt Nam phèn nhôm được sản xuất ở các nhà máy hoá chất Việt Trì, Tân Bình và có hàm lượng nhôm quy về Al2O3 là khoảng 14% (đối với hoá chất tinh khiết là

15,1%) Do độ ngậm nước rất thay đổi nên cần định

lượng hàm lượng nhôm khi sử dụng

2 Muối sắt hoặc (n = 1 - 6)

Trang 8

Muối sắt chưa phổ biến ở Việt Nam nhưng rất phổ biến ở các nước công nghiệp Hoá học của muối sắt tương tự như muối nhôm nghĩa là khi thuỷ phân sẽ tạo axit, vì vậy cần đủ độ kiềm để giữ pH không đổi

(6.8)

So với phèn nhôm muối sắt có ưu thế là vùng pH tối ưu rộng hơn, từ 5 đến 9, bông cặn bền hơn và nặng hơn nên lắng tốt hơn, lượng sắt dư thấp hơn

Các polime nhôm, sắt

1 ưu điểm và nhược điểm của phèn nhôm trong xử lí nước

Như đã nêu, trong công nghệ xử lí nước cấp (và ở mức

độ nhất định công nghệ xử lí nước thải và một số công nghệ khác) công nghệ keo tụ mà theo truyền thống chất keo tụ là phèn nhôm (Al2(SO4)3) đóng vai trò quan trọng Vai trò của phèn nhôm là ở chỗ, khi được đưa vào nước cần xử lí chứa cặn lơ lửng đầu tiên nó phải hoà tan tạo Al3+ để trung hoà điện tích các hạt keo âm, sau đó Al3+ thuỷ phân tạo bông cặn là Al(OH)3, trong bể lắng bông cặn kết tủa kéo theo cặn lơ lửng cần xử lí (keo tụ quét) và làm trong nước Như vậy phá độ bền hệ keo bằng ít nhất

là hai trong 3 cách đầu nêu trong mục 6.4 Trong thực tế phèn cũng thực hiện cả cách thứ ba là tạo bông nếu thiết

kế khu vực tạo bông tốt, tạo điều kiện cho các bông cặn nhỏ tiếp xúc tốt để tạo các bông lớn Công đoạn keo tụ làm trong nước (dân gian gọi là đánh phèn) là một bước

kĩ thuật quan trọng trong dây chuyền công nghệ xử lí nước mặt và các loại nước nhiều cặn lơ lửng khác (kể cả các loại nước thải)

ưu điểm chính của phương pháp keo tụ bằng phèn nhôm

• Về mặt năng lực keo tụ ion nhôm (và cả sắt(III)), nhờ điện tích 3+, có năng lực keo tụ thuộc loại cao nhất (quy tắc Shulz-Hardy) trong số các loại muối ít độc hại mà loài người biết

• Muối nhôm ít độc, sẵn có trên thị trường và khá rẻ

• Công nghệ keo tụ bằng phèn nhôm là công nghệ tương đối đơn giản, dễ kiểm soát, phổ biến rộng rãi

Trang 9

Nhược điểm chính của phèn nhôm nằm trong bản chất quá trình keo tụ bằng muối kim loại [5]

Quá trình keo tụ bởi muối kim loại MZ+ gồm các bước theo thứ tự:

1 Tạo các hạt gây keo tụ hạt keo âm (ví dụ phèn nhôm phân li tạo Al3+)

2 Làm mất ổn định hạt keo nhờ phá tương tác tĩnh điện,

ví dụ Al3+ trung hoà điện tích âm của hạt keo (hạt keo trong nước thường tích điện âm, như vậy các hạt keo cùng điện tích có xu thế đẩy nhau nên khá bền), khi đó các hạt keo dễ dàng hút nhau nhờ các lực phân tử để tạo thành các hạt lớn hơn

3 Tạo bông: trước hết Al3+ thuỷ phân tạo Tiếp theo các hạt có xu thế "dính" vào nhau tạo các bông cặn lớn, dễ dàng kết tủa dưới tác dụng của trọng lực Trên đường đi các bông cặn lớn này lại "quét" những hạt nhỏ để làm trong nước

Khi cho hoá chất keo tụ vào nước để thực hiện quá trình thuỷ phân (muối nhôm) và để các hạt Al3+ tiếp xúc tốt với các hạt keo cần xử lí ta phải khấy mạnh, đó là các bước

1, 2 Bước 3 cần khấy chậm để tạo điều kiện cho các hạt cặn nhỏ mới hình thành va chạm, tạo bông cặn to hơn dễ lắng hơn

Nếu chất keo tụ là phèn nhôm (hay sắt) ta có [5]:

Thuỷ phân và hấp phụ: micro giây

Tạo thành hạt nhỏ: 1 giây

Tạo kết tủa Al(: 1-7 giây

Như vậy quá trình thuỷ phân tạo kết tủa Al(OH)3 quá nhanh, tính bằng micro giây và giây, khi đó ion Al3+ chưa kịp thực hiện chức năng của chúng (bước 1, 2) đã bị

chuyển hoá thành kết tủa không có khả năng trung hoà điện tích các hạt keo, suy ra chi phí hoá chất sẽ lớn hơn thực tế cần Điều này dẫn tới chi phí hoá chất cao, lượng bùn sinh ra cần xử lí lớn hơn thực cần

Mặt khác, bản thân cũng có độ tan nhất định dẫn tới nguy

cơ nước bị nhiễm Al3+ - một tác nhân gây bệnh Alzmeyer [6]

Trang 10

Những yếu điểm đã nêu cùng với tính công nghệ không cao của muối nhôm (sắt) cổ điển (nhạy cảm với pH, nhiệt

độ ) đã thúc đẩy việc nghiên cứu các muối polime vô cơ (Al, Fe) có khả năng keo tụ cao hơn, ít nhạy môi trường hơn và ít độc hơn

2 Sự phát triển của các sản phẩm polime vô cơ

ưu thế của polime vô cơ trong công nghệ xử lí nước,

trước hết là PAC (PolyAluminiumChloride) so với phèn được phát hiện từ những năm 1960-70 và được ứng dụng công nghiệp từ 1980 [7-14]

Trước khi có khái niệm về PAC, để làm trong nước phèn nhôm (hoặc sắt) được sử dụng như sau:

Dung dịch phèn được định lượng vào nước cần xử lí, khấy mạnh cho tan đều đồng thời chỉnh pH về gần pH7 rồi cho nước qua bể tạo bông và lắng Công nghệ này hiện nay vẫn áp dụng ở Việt Nam Tới những năm 60-70 cho tới đầu những năm 80 khi phát hiện ra hiệu ứng của phèn được trung hoà một phần (Pre-neutralised alum tức là PAC) thì dung dịch PAC thường được ứng dụng dưới dạng dung dịch phèn được trung hoà tại chỗ Khi đó bản chất dung dịch PAC và bản thân quá quá trình keo tụ

bằng PAC còn chưa được rõ Do sự thiếu hiểu biết về thành phần và bản chất các hạt trong hệ PAC, ngoài ra PAC còn chưa được sản xuất dưới dạng sản phẩm

thương mại (dạng bột) nên kĩ thuật này bị hạn chế sử dụng mặc dù ưu thế đã được chứng minh bằng thực tế Việc điều chế PAC tại chỗ rất phức tạp, nhiều khi dung dịch chuẩn bị trước bị mất hoạt tính sau 24 giờ [13]

Để khắc phục những nhược điểm trên nhiều nghiên cứu chế tạo PAC dạng bột thương phẩm được tiến hành chủ yếu vào những năm 1980 Đồng thời là hàng loạt công bố liên quan đến bản chất của quá trình hình thành các hạt polime quyết định đến khả năng keo tụ tiên tiến của PAC [15, 16]

Sự thành công của PAC dẫn đến sự ra đời của hàng loạt sản phẩm tương tự trong những năm 1990 Ví dụ, theo sau sự thành công của PAC người ta đã chế tạo và ứng

Trang 11

dụng thành công PASS-PolyAluminiumSilicateSulphate) Tiếp theo sự ra đời của các polime nhôm, do sự lo ngại về ảnh hưởng của dư lượng nhôm trong nước ăn uống

người ta chuyển sự chú ý sang các polime sắt PFC

(PolyFerric Chloride) và PFS (PolyFerric Sulphate)

Tóm lại thành công trong nghiên cứu sản xuất PAC và sau đó là PFC dẫn tới sự thay thế đánh phèn cổ điển

bằng PAC và bằng PFC

Trong những năm 1990 các loại PFS bắt đầu được coi trọng Ngoài ra còn phải kể đến polime hỗn hợp nhôm-sắt PAFS (Poly-Alumino-Ferric Sulphate)

3 Sự hình thành các hạt polyme nhôm trong dung dịch

Sự hình thành các hạt polyme nhôm trong dung dịch được làm rõ từ những năm 1980 Đây là cơ sở khoa học để sản xuất PAC cũng như ứng dụng PAC

Hoá học của quá trình keo tụ:

Thông thường khi keo tụ chúng ta hay dùng muối clorua hoặc sulphát của Al(III) hoặc Fe(III) Khi đó, do phân li và thuỷ phân ta có các hạt trong nước: Al3+, Al(OH)2+,

Al(OH)2+, Al(OH) phân tử và Al(OH)4-, ba hạt polime: Al_2(OH)_24+, Al_3(OH)_45+ và Al_13O_4(OH)_247+ và Al(OH)_3 rắn Trong đó gọi tắt là Al13 là tác nhân gây keo

tụ chính và tốt nhất

Với Fe(III) ta có các hạt: Fe3+, Fe(OH)2+, Fe(OH)2+,

Fe(OH) phân tử và Fe(OH)4-, polime: và rắn Các dạng polime hoặc

Trong công nghệ xử lí nước thông thường, nhất là nước

tự nhiên với pH xung quanh 7 quá trình thuỷ phân như đã nêu xảy ra rất nhanh, tính bằng micro giây, khi đó hạt Al3+ nhanh chóng chuyển thành các hạt polime rồi hyđroxit nhôm trong thời gian nhỏ hơn giây mà không kịp thực hiện chức năng của chất keo tụ là trung hoà điện tích trái dấu của các hạt cặn lơ lửng cần xử lí để làm chúng keo

tụ

Khi sử dụng PAC quá trình hoà tan sẽ tạo các hạt polime Al13, với điện tích vượt trội (7+), các hạt polime này trung hoà điện tích hạt keo và gây keo tụ rất mạnh, ngoài ra tốc

Ngày đăng: 12/07/2014, 08:21

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w