1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Hóa học phức chất - Chương 3 doc

59 575 5

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 59
Dung lượng 1,04 MB

Nội dung

Hỗn hợp phức chất NXB Đại học quốc gia Hà Nội 2006. Tr 30 – 89. Từ khoá: Liên kết hóa học, thuyết liên kết hóa trị, thuyết trường tinh thể, thuyết trường phối tử. Tài liệu trong Thư viện điện tử ĐH Khoa học Tự nhiên có thể được sử dụng cho mục đích học tập và nghiên cứu cá nhân. Nghiêm cấm mọi hình thức sao chép, in ấn phục vụ các mục đích khác nếu không được sự chấp thuận của nhà xuất bản và tác giả. Mục lục Chương 3 LIÊN KẾT HÓA HỌC TRONG PHỨC CHẤT 3 3.1 Một số khái niệm rút ra từ hóa học lượng tử 3 3.1.1 Hàm sóng và các trạng thái electron 4 3.1.2 Các số hạng nguyên tử 38 3.1.3 Sự hình thành liên kết hoá học 41 3.2 Thuyết liên kết hoá trị 41 3.2.1 Sự lai hoá các obitan nguyên tử 41 3.2.2 Liên kết σ cộng hoá trị cho - nhận 42 3.2.3 Sự hình thành liên kết π 45 3.3 Thuyết trường tinh thể 46 3.3.1 Tách các số hạng của ion trung tâm dưới ảnh hưởng của trường phối tử 47 3.3.2 Cường độ của trường phối tử 50 3.3.3 Thông số tách. Năng lượng bền hóa bởi trường tinh thể 51 Chương 3. Liên kết hóa học tron g phức chất Lê Chí Kiên 3.3.4 Tính chất của phức chất 56 3.3.5 Đánh giá thuyết trường tinh thể 73 3.4 Thuyết trường phối tử 73 3.4.1 Đối xứng của các MO - σ . Các MO - σ liên kết và phản liên kết 74 3.4.2 Đối xứng của các MO - π . Các MO - π liên kết và phản liên kết 82 3.4.3 Các phức chất tứ diện và vuông phẳng 86 3.5 So sánh các kết quả của thuyết trường phối tử và thuyết trường tinh thể 90 3 Chương 3 LIÊN KẾT HÓA HỌC TRONG PHỨC CHẤT Cấu trúc của phức chất khá phức tạp và không thể giải thích được khi dựa trên quan điểm của thuyết hoá trị cổ điển. Khi thuyết phối trí ra đời (1893), chưa có những quan niệm về bản chất của lực tương tác hoá học nên khái niệm về hoá trị phụ mà Werner đưa ra, mà ngày nay người ta gọi là liên kết phối trí, chưa thể được sáng tỏ. Chỉ 20 năm sau đó, nghĩ a là vào những năm 1915, 1916, mới xuất hiện các thuyết về liên kết hoá học. Đó là thuyết ion của Coxen (Kossel): tương tác hoá học được giải thích bằng quá trình hình thành và tương tác tĩnh điện giữa các ion; thuyết liên kết cộng hóa trị của Liuyt (Lewis): các nguyên tử liên kết với nhau nhờ các cặp electron chung. Cả hai thuyết tiền lượng tử này đều được sử dụng để làm sáng tỏ bản chất của các l ực tạo phức. Ý nghĩa vật lý của khái niệm về các cặp electron chỉ được giải thích rõ khi cơ học lượng tử phát triển. Liên kết thuần tuý ion và liên kết thuần tuý cộng hóa trị chỉ là những trường hợp giới hạn, còn liên kết hoá học thực thường mang tính chất trung gian. Hiện nay, các thuyết về liên kết trong phức chất đều là các thuyết electron, vì các tính chất hoá lý của phức chất (cấu hình không gian, kh ả năng phản ứng, tính chất từ, nhiệt động, quang phổ hấp thụ, v.v…) đều mang những đặc trưng về electron, nghĩa là phụ thuộc vào cấu trúc electron của hệ. Sở dĩ như vậy là vì các quá trình hoá học và hóa lý thường được xác định bởi những biến đổi trong lớp vỏ electron của các nguyên tử và phân tử tham gia vào các quá trình đó. Mặt khác, trạng thái của electron trong một hệ nguyên tử nào đấy chỉ có thể được mô tả đúng đắn nhờ cơ học lượng tử. Bởi vậy thuyết electron về phức chất phải dựa trên cơ học lượng tử. Hiện nay có ba thuyết lượng tử giải thích sự tạo thành, cấu trúc và tính chất của phức chất: thuyết liên kết hoá trị, thuyết trường tinh thể và thuyết trường phối tử. Trước khi trình bày nội dung của các thuyết trên, cần xét m ột số khái niệm cơ bản rút ra từ hoá học lượng tử. 3.1 Một số khái niệm rút ra từ hóa học lượng tử Năm 1927, V. Heitler và F. London lần đầu tiên chỉ ra rằng liên kết trong phân tử H 2 xảy ra được là do tương tác tĩnh điện giữa hai electron và hai proton, nếu coi rằng chúng chuyển động theo các định luật của cơ học lượng tử. Để tạo thành được liên kết, spin của các electron này phải có hướng ngược nhau. Các kết quả tính toán về giá trị năng lượng phân ly và khoảng cách cân bằng giữa các nguyên tử hiđro đều phù hợp với thực nghiệm. Khái niệm về hoá trị có một nội dung sâu xa hơn. Ứng với mỗi đơn vị hoá trị tự do của nguyên tử phải có một electron có spin chưa ghép đôi, eletron này sẽ tạo thành liên kết kiểu Heitler - London với electron của một nguyên tử khác có spin với hướng ngược lại. Người ta đã làm sáng tỏ được vai trò bất đối xứng của đám mây Ψ của electron và hiện tượng lai hoá các trạng thái electron khi hình thành các hoá trị có hướng và đã giải thích được các liên kết đôi, liên kết ba… Nhưng nh ững điều đó không phải là những kết quả nghiêm ngặt rút ra từ cơ học lượng tử, vì chúng được rút ra bằng cách ngoại suy một cách không có đầy đủ cơ sở các kết quả thu được ở phân tử hidro sang những hệ nhiều nguyên tử phức tạp hơn. Tính chất phong phú của liên kết hoá học, cũng như các tính chất hoá lý của phức chất vô cơ không nằm trong những khái niệm thông thường về hoá trị. Để giải thích các tính chất đó phải có những khái niệm mới dựa trên việc áp dụng một cách chính xác các định luật cơ bản của cơ học lượng tử. 3.1.1 Hàm sóng và các trạng thái electron Trạng thái của các hệ nhiều eletron được mô tả bằng những hàm Ψ, chúng là nghiệm của phương trình Schroedinger: 2 N i 12N 12N 12N 2 i1 i h1 U(r ,r , ,r ) (r ,r , ,r ) E (r ,r , ,r ) m 8 = ⎡⎤ ∇+ Ψ = Ψ ⎢⎥ ∑ π ⎢⎥ ⎣⎦ JG JJG JJG JG JJG JJG JG JJG JJG trong đó: h là hằng số Planck (h = 6,624.10 –34 J.s); ∇ là toán tử Laplace 222 2 222 () xyz ∂∂∂ ∇= + + ∂∂∂ ; m i , i r JG là khối lượng và vectơ bán kính của tiểu phân tử i; N là số tiểu phân trong hệ; 12 N U(r ,r , ,r ) JG JJGJJG là toán tử thế năng của hệ. Ý nghĩa vật lý của biểu thức⏐Ψ⏐ 2 là nó cho biết xác suất phân bố các tiểu phân trong không gian. Hiện nay chưa thể giải chính xác phương trình trên đối với một số N lớn, mà phải áp dụng những phương pháp giải gần đúng. Trước hết người ta bỏ qua chuyển động của các hạt nhân trong hệ, chỉ xét chuyển động của các electron, vì tốc độ chuyển động của các hạt nhân là không đáng kể so với tốc độ chuyển động của các electron. Ngoài ra, ng ười ta còn áp dụng sự gần đúng một electron như sau: coi mỗi electron như chuyển động độc lập với các electron khác, ở trong một trường trung bình nào đấy tạo bởi các electron còn lại và tất cả các hạt nhân của hệ. Hàm sóng của các trạng thái một electron trong phân tử được biểu diễn qua các hàm nguyên tử. Đối với các bài toán về nguyên tử, người ta thường áp dụng mô hình trường xuyên tâm, với giả thiết rằng thế nă ng của electron chỉ phụ thuộc vào khoảng cách r từ electron đến tâm (hạt nhân). Trong mô hình trường xuyên tâm người ta phân biệt các trạng thái elecron nguyên tử s, p, d,… ứng với số lượng tử phụ l = 0, 1, 2,…Các trạng thái này có sự phân bố góc đặc trưng trong không gian, sự phân bố này là như nhau đối với mọi số lượng tử chính n. 37 37 Trong hệ toạ độ cầu (hình 3) hàm sóng của electron được biểu diễn dưới dạng: (r, , ) R(r). ( , )Ψθϕ= Θθϕ trong đó R(r) phụ thuộc vào khoảng cách r từ electron đến hạt nhân (được gọi là phần bán kính của hàm sóng); còn Θ (θ,ϕ) là sự phụ thuộc toạ độ góc (θ và ϕ) của electron (được gọi là phần góc của hàm sóng). Đối với trạng thái s: ns ns 1 R(r) 4 Ψ= π Hàm s không phụ thuộc vào các góc θ và ϕ, đó là hàm đối xứng cầu. Đối với các hàm p có ba hướng trong không gian, dọc theo ba hướng của trục tọa độ Đêcac: x np np 3 R(r)sincos 4 Ψ= θϕ π y np np 3 R(r)sinsin 4 Ψ= θϕ π z np np 3 R(r)cos 4 Ψ= θ π Cả ba trạng thái p ở nguyên tử tự do đều có năng lượng như nhau, nên ở đây có sự suy biến bội ba. Đối với mỗi giá trị của l có (2l + 1) hàm sóng, chúng mô tả các trạng thái suy biến của nguyên tử tự do. Với l = 2 có 5 hàm d: 2 z 2 dnd 51 R(r)(3cos ) 16 2 Ψ= θ− π 22 xy 2 dnd 15 R(r)sin cos2 16 − Ψ= θϕ π xy 2 dnd 15 R(r)sin sin 4 Ψ= θ ϕ π xz dnd 15 R(r)sincoscos 4 Ψ= θθϕ π yz dnd 15 R (r)sin cos sin 4 Ψ= θ θ ϕ π Hình 4 là sơ đồ phân bố không gian phần phụ thuộc góc: x z 0 y ϕ θ r Hình 3. Sơ đồ biến đổi sang tọa độ cầu 38 x s z x y p x z x y p y z x y p z z y x d z 2 z x y d x 2 -y 2 z x y d xy z x y d yz z y z d xz x y Hình 4. Sơ đồ phân bố không gian của các obitan s, p, d 3.1.2 Các số hạng nguyên tử Khi có mặt một số electron trong nguyên tử, hình ảnh cấu tạo electron sẽ phức tạp hơn nhiều. Với sự gần đúng một electron, thì các hàm nhiều electron bao gồm các hàm một electron theo những quy tắc xác định. Các quy tắc này phụ thuộc vào tương tác spin - obitan và lực đẩy giữa các electron. Nếu không tính đến những tương tác này thì các electron được xếp vào các trạng thái một electron với các số lượng tử n, l, m, s theo quy tắc Pauli. Nhưng ở nguyên tử nhiều electron, ứ ng với một cấu hình electron có thể có nhiều trạng thái khác nhau về năng lượng, hàm sóng, spin v.v… Để xác định các trạng thái đó cần xét mối tương quan giữa tương tác spin - obitan và tương tác giữa các electron. 1. Khi tương tác spin - obitan là tương tác yếu, vai trò quyết định là tương tác tĩnh điện giữa các electron, thì các trạng thái của nguyên tử (hoặc ion) tự do được đặc trưng bằng số lượng tử L của momen động lượng và số lượng t ử spin tổng cộng S của tất cả các electron đối với nhân. Kiểu tương tác này được gọi là kiểu tương tác Ratxen - Xonđơc (Russel-Saunders) hay kiểu liên kết L S. Trường hợp này xảy ra đối với nguyên tử của các nguyên tố nhẹ, có số thứ tự Z ≤ 30. Có thể coi số lượng tử L là tổng vectơ momen góc của các electron riêng biệt: 123 Ll l l =+++ JG JJGJJG và coi spin tổng cộng S là tổng vectơ spin của các electron: 123 Ss s s =+++ JJGJJGJJG Đại lượng L đặc trưng cho năng lượng cơ bản của nguyên tử và của ion. Nó họp các trạng thái của nguyên tử hoặc của ion có năng lượng gần nhau lại thành một nhóm. Các trị số L được ký hiệu bằng các chữ in hoa S, P, D, F,… ứng với L = 0, 1, 2, 3,… (giống như các trị số l của electron ứng với các chữ cái thường s, p, d, f,…). Vì tổng các vectơ là tổng các hình chiếu của chúng trên một hướng nào đó, nên ứng vớ i mỗi trị số L có 2L + 1 trị số của số lượng tử từ M L của nguyên tử (từ –L đến +L) và 2L + 1 trị số của hàm sóng. Mỗi số hạng của nguyên tử sẽ là một mức suy biến bội 2L + 1. Thật vậy, khi 22 xy d − 39 39 đặt ion hoặc nguyên tử trong từ trường thì mức suy biến bị giảm đi và tiến tới giới hạn có thể làm xuất hiện 2L +1 cấu tử của số hạng L. Tương tự, nếu đối với một electron riêng biệt thì spin bằng 1/2 có hai hướng là +1/2 và – 1/2, thì đối với số lượng tử spin S của nguyên tử có 2S +1 hướng từ –S đến +S. Hình chiếu S trên một hướng nào đó trong nguyên tử (hoặc ion) được kí hiệ u là M S . M S có các trị số từ –S đến +S, cách nhau một đơn vị: S, S – 1, S – 2, , –S (tức có 2S + 1 trị số). Tương tự như với trạng thái một electron, nếu giữa l và s có một tương tác làm xuất hiện một momen góc toàn phần j đối với electron, thì ở đây giữa L và S cũng có một tương tác làm xuất hiện một momen góc toàn phần J đối với nguyên tử (hoặc ion): JLS=+ JG JG J có tất cả các trị số từ L + S đến L – S (nếu L > S) cách nhau một đơn vị. Như vậy, đại lượng J có 2S + 1 trị số, điều đó có nghĩa là nguyên tử hoặc ion với spin tổng cộng S được đặc trưng bằng sự có mặt 2S + 1 mức năng lượng nằm gần nhau. Số mức năng lượng được gọi là độ bội của trạng thái và được kí hiệu b ằng một chỉ số nằm phía trên, bên trái đại lượng L. Ví dụ 2 D, 3 F, 1 S,… (đọc là bội hai D, bội ba F, bội một S…). Đây là độ bội theo spin, kí hiệu là c. Tổ hợp các trạng thái với các trị số L như nhau và S như nhau, nhưng khác nhau về M L và M S được gọi là số hạng của nguyên tử. Như vậy, số hạng 2 D (L = 2, S =1/2, J = 5/2 và 3/2) có hai trạng thái gần nhau về năng lượng; số hạng 3 F (L = 3, S = 1, J = 4, 3 và 2) có ba trạng thái gần nhau về năng lượng v.v… Những trạng thái này được kí hiệu dưới dạng chỉ số ở phía dưới, bên phải, ví dụ 2 D 5/2 , 2 D 3/2 , 3 F 4 , 3 F 3 , 3 F 2 , hoặc 2 D 5/2, 3/2 và 3 F 4, 3, 2 . Tóm lại, năng lượng của nguyên tử phụ thuộc vào độ bội c (c = 2S + 1). Ở một trị số c đã cho năng lượng phụ thuộc vào L, còn ở một trị số c và L đã cho thì năng lượng phụ thuộc vào J. Đối với một cấu hình electron đã cho nào đó của nguyên tử hoặc ion, người ta đã biết được một tập hợp các số hạng. Ở đây không trình bày cách tìm các số hạ ng đó mà chỉ rút ra kết quả (bảng 2). Bảng 2. Tập hợp các số hạng đối với những cấu hình khác nhau của nguyên tử hoặc ion (số hạng có ghi chữ đậm là số hạng cơ bản) Cấu hình electron Các số hạng s 1 s 2 p 1 hoặc p 5 p 2 hoặc p 4 p 3 p 6 d 1 hoặc d 9 2 S 1 S 2 P 1 S, 1 D, 3 P 2 P, 2 D, 4 S 1 S 2 D 40 d 2 hoặc d 8 d 3 hoặc d 7 d 4 hoặc d 6 d 5 1 (S P G), 3 (P F) 2 D, 2 (P D F G H), 4 (P F) 1 (S D G) 3 (P F) 1 (S D F G I) 3 (P D F G H) 5 D 2 D 2 (P D F G H) 4 (D F) 4 (S D F G I) 4 (D G) 6 S Trong một tập hợp các số hạng có một số hạng cơ bản, nghĩa là số hạng ứng với giá trị năng lượng thấp nhất. Muốn tìm số hạng cơ bản chúng ta áp dụng quy tắc Hund. Quy tắc này như sau: a) Số hạng cơ bản phải có độ bội lớn nhất. b) Nếu có nhiều số hạng với cùng độ bội lớn nh ất thì năng lượng lớn nhất ứng với trị số L cực đại. c) Trong số các số hạng có cùng L và S thì: – Khi cấu hình có ít hơn một nửa số electron trong phân lớp thì bền nhất là số hạng có trị số J nhỏ nhất. – Khi cấu hình có nhiều hơn một nửa số electron trong phân lớp thì bền nhất là số hạng có trị số J lớn nhất. Để minh hoạ chúng ta đưa ra đây các mứ c năng lượng đối với cấu hình np 2 (hình 5). Hình 5 cho thấy rằng số hạng cơ bản của cấu hình np 2 là 3 P O . 2. Trong nguyên tử của các nguyên tố nặng, kiểu liên kết LS nói chung không xảy ra, vì tương tác spin của mỗi electron với chuyển động obitan của nó mạnh hơn tương tác tĩnh điện của các electron với nhau. Khi đó tương tác chủ yếu là tương tác giữa vectơ l i và s i của mỗi electron, sinh ra vectơ j i rồi các vectơ j i tổ hợp lại thành vectơ J toàn phần của nguyên tử. Trường hợp này gọi là liên kết j – j . Hình 5. Các mức năng lượng của cấu hình np 2 Liên kết LS và liên kết j – j là hai trường hợp giới hạn của sự tương tác giữa các electron. Trên thực tế, nhiều nguyên tử có kiểu liên kết trung gian giữa hai kiểu trên. Kiểu liên kết j – j ít gặp trong các phức chất, nên chúng ta chỉ quan tâm tới kiểu liên kết LS. 1 S 1 S O 1 D 2 3 P 2 3 P 1 3 P O M ứ c đơ n M ứ c b ộ i ba 3 P 1 D np 2 2S + 1 = 3 2S + 1 = 1 41 41 3.1.3 Sự hình thành liên kết hoá học Khi các nguyên tử đến gần nhau thì phát sinh ra liên kết hoá học. Để thuận tiện, chúng ta minh hoạ các kiểu liên kết hoá học trên, ví dụ về một phân tử hai nguyên tử. Khi hai nguyên tử kết hợp với nhau thì hàm sóng của các electron sẽ xen phủ nhau. Điều đó có nghĩa là mật độ electron tăng lên ở vùng không gian giữa hai nguyên tử và như vậy có tương tác giữa hai electron của hai nguyên tử. Khi xen phủ nhau, các electron chịu một sự nhiễu loạn khá mạnh. Kết qu ả là tạo thành một obitan mới. Nói cách khác, muốn biết rõ sự phân bố mật độ electron thì không thể dùng một hàm sóng chỉ mô tả sự phân bố mật độ electron ở gần nguyên tử này hay nguyên tử kia. Thực chất của vấn đề liên kết hoá học là phải tìm được một hàm sóng thích hợp mô tả sự phân bố mật độ electron trong phân tử. Đối với một hệ phức tạp như phân tử, ngay cả phân tử ch ỉ gồm hai nguyên tử, việc giải phương trình sóng cũng gặp nhiều khó khăn. Hiện nay có hai phương pháp cho phép tìm gần đúng mật độ electron trong phân tử: đó là phương pháp liên kết hoá trị và phương pháp obitan phân tử. Cả hai phương pháp này đều được dùng để mô tả liên kết cộng hoá trị. Trong một số trường hợp, mây electron của liên kết dịch chuyển hẳn về phía một nguyên tử. Khi đó một nguyên tử sẽ có đ iện tích hiệu dụng âm, còn điện tích hiệu dụng của nguyên tử kia là dương: liên kết giữa chúng mang tính chất ion. Rất ít khi gặp trường hợp liên kết ion thuần tuý, mà thường gặp các liên kết có tính chất gần ion. Trở lại sự xen phủ các hàm sóng, chúng ta thấy rằng đại lượng xen phủ là một đặc trưng quan trọng của liên kết. Đại lượng này được xác định bằng tích phân xen phủ AB dΨΨ τ ∫ (trong đó Ψ A và Ψ B là hàm sóng của các nguyên tử tương tác A và B, dτ là yếu tố thể tích). Đại lượng xen phủ càng lớn thì liên kết tạo thành càng bền vững. 3.2 Thuyết liên kết hoá trị Thuyết liên kết hoá trị được áp dụng có hiệu quả khi giải thích liên kết hoá học trong các hợp chất hữu cơ. Năm 1931, L. Paulinh áp dụng nó vào lĩnh vực phức chất của các kim loại chuyển tiếp. Đây là sự phát triển quan điểm của Heitler - London đối với các phân tử nhiều nguyên tử. Thuyết liên kết hoá trị là thuyết lượng tử đầu tiên giải thích bản chất của liên kết hoá học trong ph ức chất. 3.2.1 Sự lai hoá các obitan nguyên tử Cơ sở của thuyết liên kết hóa trị là như sau: liên kết hoá học trong phức chất vô cơ gồm những liên kết hai electron kiểu Heitler - London giữa nguyên tử trung tâm và các phối tử. Số các liên kết đó bằng số phối trí của nguyên tử trung tâm. Khi trong cầu nội phức chỉ chứa một loại phối tử, ví dụ [Co(NH 3 ) 6 ] 3+ , [PtCl 6 ] 2– , [Ni(CO) 4 ] v.v…, thì các liên kết giữa nguyên tử (hoặc ion) trung tâm và phối tử phải hoàn toàn như nhau. Vì trong nhiều trường hợp ion trung tâm kim loại phải dùng các obitan không tương đương về mặt năng lượng để tạo liên kết, cho nên muốn có các liên kết như nhau thì phải có sự lai hoá các obitan nguyên tử (AO) của ion trung tâm. Sự lai hoá là sự tổ hợp các AO tham gia tạo thành liên kết ban đầu khác nhau về năng lượng, để tạo ra một tập hợp mới gồm các obitan lai hóa t ương đương. Số phối trí của ion Hình 6. Dạng của một obitan lai hoá d 2 sp 3 định hướng theo trục Oz z 42 trung tâm bằng số obitan lai hóa tham gia tạo thành liên kết. Điểm khác của các obitan lai hóa là chúng có tính định hướng rõ rệt trong không gian. Tuỳ thuộc vào obitan nào được dùng cho liên kết mà phức chất tạo thành có cấu trúc này hay cấu trúc khác. Ví dụ, để có sự phối trí bát diện, nguyên tử trung tâm phải có sáu liên kết hướng đến sáu đỉnh của một hình bát diện mà nguyên tử trung tâm nằm ở tâm của nó. Muốn có sáu liên kết như thế phải có sự lai hoá sáu hàm sóng AO một electron kiểu d 2 sp 3 : một hàm Ψ s , ba hàm Ψ p ( ) xyz ppp ,,ΨΨΨ và hai hàm Ψ d 22 2 xy z dd , − ⎛⎞ ΨΨ ⎜⎟ ⎝⎠ . Các hàm sóng này có đối xứng cầu (hàm s) hoặc có mật độ electron định hướng trên các trục tọa độ hướng đến sáu phối tử (các hàm còn lại). Về mặt toán học có thể coi sự lai hoá là tổ hợp tuyến tính các hàm sóng AO riêng biệt với các hệ số chuẩn hoá tương ứng. Điều kiện để các AO có thể lai hoá được là chúng phải có năng lượng gần nhau. Điều này có thể thực hiện nếu các obitan d có số lượ ng tử chính bằng hoặc nhỏ hơn một đơn vị so với số lượng tử chính của các obitan s và p. Hình 6 là dạng của một obitan lai hoá kiểu d 2 sp 3 . Ngoài kiểu lai hoá bát diện d 2 sp 3 , đối với các phức chất còn có nhiều kiểu lai hóa khác nhau tương ứng với các cấu trúc không gian khác nhau của phức chất (bảng 3). Bảng 3. Kiểu lai hoá và cấu trúc không gian của các phức chất S.p.t. Các obitan lai hóa Cấu trúc của các phức chất tạo thành Ví dụ 2 3 4 5 6 sp sp 2 sp 3 , d 3 s dsp 2 dsp 3 d 4 s d 2 sp 3 đường thẳng tam giác tứ diện vuông phẳng lưỡng chóp tam giác chóp tứ phương bát diện [Ag(NH 3 ) 2 ] + , [Ag(CN) 2 ] – NO 3 – [Cd(NH 3 ) 4 ] 2+ , CrO 4 2– [PtCl 4 ] 2– , [Ni(CN) 4 ] 2– [Fe(CO) 5 ] [Co(CN) 5 ] 3– , [[MnCl 5 ] 2– [Co(NH 3 ) 6 ] 3+ , [Fe(CN) 6 ] 3– 3.2.2 Liên kết σ cộng hoá trị cho - nhận Để tạo thành liên kết nguyên tử trung tâm - phối tử, mỗi obitan lai hoá của nguyên tử trung tâm sẽ tổ hợp với một obitan nào đó của phối tử có mật độ electron cùng nằm trên trục liên kết. Sự xen phủ các obitan ở đây sẽ xảy ra tương tự như sự xen phủ các obitan trong phân tử hiđro. Nếu vùng xen phủ các obitan liên kết đối xứng với trục liên kết (đường nối hai hạt nhân của hai nguyên tử tương tác) thì liên kết đó được gọi là liên kết σ (xich-ma). Nhưng liên kết σ ở đây (hình 7) khác với liên kết σ thông thường trong phân tử hiđro ở chỗ là không phải mỗi nguyên tử đóng góp một electron cho liên kết, mà các electron liên kết chỉ là của phối tử. [...]... 19200 - - - - 3d4 Cr(II) - - 139 00 - - - Mn(III) - - 21000 - - - Mn(II) - - 7800 - 9100 - Fe(III) - - 137 00 - - - Fe(II) - - 10400 - - 33 000 Co(III) - - 18600 230 00 233 00 34 000 4d6 Rh(III) 18900 2 030 0 27000 33 900 34 400 - 5d6 Ir(III) 231 00 24900 - 41000 41200 - Pt(IV) 24000 29000 - - - - hình tâm 3d5 3d6 53 3d7 Co(II) - - 930 0 10100 11000 - 3d8 Ni(II) 7000 730 0 8500 10800 10800 - 3d9 Cu(II) - - 12600 15100... học I– < Br– . lục Chương 3 LIÊN KẾT HÓA HỌC TRONG PHỨC CHẤT 3 3. 1 Một số khái niệm rút ra từ hóa học lượng tử 3 3. 1.1 Hàm sóng và các trạng thái electron 4 3. 1.2 Các số hạng nguyên tử 38 3. 1 .3 . 51 Chương 3. Liên kết hóa học tron g phức chất Lê Chí Kiên 3. 3.4 Tính chất của phức chất 56 3. 3.5 Đánh giá thuyết trường tinh thể 73 3. 4 Thuyết trường phối tử 73 3. 4.1 Đối. 45 45 FeF 6 3- Ni(NH 3 ) 6 2+ 4d 4s 4p 3d 4d 4s 4p 3d sp 3 d 2 S = 5 2 S = 1 Hiện nay người ta gọi các phức chất có kiểu lai hoá trong, ví dụ [Co(NH 3 ) 6 ] 3+ (lai hoá 3d 2 4s 4p 3 ), là phức chất

Ngày đăng: 12/07/2014, 02:21

HÌNH ẢNH LIÊN QUAN

Hình 4. Sơ đồ phân bố không gian của các obitan s, p, d - Hóa học phức chất - Chương 3 doc
Hình 4. Sơ đồ phân bố không gian của các obitan s, p, d (Trang 6)
Bảng 2. Tập hợp các số hạng đối với những cấu hình khác nhau của nguyên tử hoặc - Hóa học phức chất - Chương 3 doc
Bảng 2. Tập hợp các số hạng đối với những cấu hình khác nhau của nguyên tử hoặc (Trang 7)
Hình 5 cho thấy rằng số hạng cơ bản của cấu hình np 2  là  3 P O . - Hóa học phức chất - Chương 3 doc
Hình 5 cho thấy rằng số hạng cơ bản của cấu hình np 2 là 3 P O (Trang 8)
Hình 5. Các mức năng lượng của cấu hình np 2 - Hóa học phức chất - Chương 3 doc
Hình 5. Các mức năng lượng của cấu hình np 2 (Trang 8)
Bảng 3. Kiểu lai hoá và cấu trúc không gian của các phức chất - Hóa học phức chất - Chương 3 doc
Bảng 3. Kiểu lai hoá và cấu trúc không gian của các phức chất (Trang 10)
Hình 8. Sự tạo thành liên kết π khi xen phủ           các obitan nguyên tử d xz  và p z - Hóa học phức chất - Chương 3 doc
Hình 8. Sự tạo thành liên kết π khi xen phủ các obitan nguyên tử d xz và p z (Trang 13)
Hình 11. Tách mức d bởi các trường phối tử có đối xứng khác nhau - Hóa học phức chất - Chương 3 doc
Hình 11. Tách mức d bởi các trường phối tử có đối xứng khác nhau (Trang 16)
Hình 13. Sự tách mức d của ion trung tâm trong các trường đối xứng khác nhau - Hóa học phức chất - Chương 3 doc
Hình 13. Sự tách mức d của ion trung tâm trong các trường đối xứng khác nhau (Trang 17)
Bảng 5. Cấu hình electron ở trạng thái cơ  bản của các phức chất bát diện trong - Hóa học phức chất - Chương 3 doc
Bảng 5. Cấu hình electron ở trạng thái cơ bản của các phức chất bát diện trong (Trang 19)
Bảng 6. Năng lượng tách Δ O  (theo đơn vị cm –1 )  (*)  của một số phức chất - Hóa học phức chất - Chương 3 doc
Bảng 6. Năng lượng tách Δ O (theo đơn vị cm –1 ) (*) của một số phức chất (Trang 21)
Bảng 6 đưa ra các giá trị thông số tách Δ O  (bằng cm –1 ) của một số phức chất. - Hóa học phức chất - Chương 3 doc
Bảng 6 đưa ra các giá trị thông số tách Δ O (bằng cm –1 ) của một số phức chất (Trang 22)
Hình 14. Thông số tách và năng lượng bền hóa bởi trường tinh thể: - Hóa học phức chất - Chương 3 doc
Hình 14. Thông số tách và năng lượng bền hóa bởi trường tinh thể: (Trang 23)
Bảng 7 đưa ra năng lượng bền hoá bởi các trường khác nhau đối với các phức chất chứa  ion trung tâm với cấu hình electron khác nhau - Hóa học phức chất - Chương 3 doc
Bảng 7 đưa ra năng lượng bền hoá bởi các trường khác nhau đối với các phức chất chứa ion trung tâm với cấu hình electron khác nhau (Trang 24)
Hình 15. Sơ  đồ  điền 6 electron d của ion Co 3+  trong các phức chất [CoF 6 ] 3–  và  [Co(NH 3 ) 6 ] 3+ - Hóa học phức chất - Chương 3 doc
Hình 15. Sơ đồ điền 6 electron d của ion Co 3+ trong các phức chất [CoF 6 ] 3– và [Co(NH 3 ) 6 ] 3+ (Trang 26)
Hình 17. Năng lượng hiđrat hoá của một số ion hai điện tích: - Hóa học phức chất - Chương 3 doc
Hình 17. Năng lượng hiđrat hoá của một số ion hai điện tích: (Trang 27)
Hình 20.  Sự  lệch cấu hình xuất hiện khi tách electron  d x 2 − y 2     (a)                         và electron  d z 2  (b) ra khỏi vỏ kín d 10 - Hóa học phức chất - Chương 3 doc
Hình 20. Sự lệch cấu hình xuất hiện khi tách electron d x 2 − y 2 (a) và electron d z 2 (b) ra khỏi vỏ kín d 10 (Trang 30)
Hình 21. Cấu trúc của CuF 2  (kiểu rutin) - Hóa học phức chất - Chương 3 doc
Hình 21. Cấu trúc của CuF 2 (kiểu rutin) (Trang 30)
Hình 24. Phổ hấp thụ của ion phức [Ti(H 2 O) 6 ] 3+ - Hóa học phức chất - Chương 3 doc
Hình 24. Phổ hấp thụ của ion phức [Ti(H 2 O) 6 ] 3+ (Trang 34)
Hình 25. Giản đồ Orgel về các mức năng lượng của ion Ni 2+  (d 8 ) trong trường bát  diện - Hóa học phức chất - Chương 3 doc
Hình 25. Giản đồ Orgel về các mức năng lượng của ion Ni 2+ (d 8 ) trong trường bát diện (Trang 36)
Hình 26. Giản đồ các mức năng lượng đối với ion Co 2+   (d 7 ) - Hóa học phức chất - Chương 3 doc
Hình 26. Giản đồ các mức năng lượng đối với ion Co 2+ (d 7 ) (Trang 37)
Hình 27. Giản đồ các mức năng lượng đối với ion Mn 2+  (d 5 ) - Hóa học phức chất - Chương 3 doc
Hình 27. Giản đồ các mức năng lượng đối với ion Mn 2+ (d 5 ) (Trang 38)
Hình 29. Giản đồ minh họa sự mở rộng dải phổ do dao động của các nguyên tử phối - Hóa học phức chất - Chương 3 doc
Hình 29. Giản đồ minh họa sự mở rộng dải phổ do dao động của các nguyên tử phối (Trang 40)
Hình 30. Sáu obitan σ  của nguyên tử kim loại                         và các obitan σ nhóm của các phối tử có kiểu đối xứng tương ứng - Hóa học phức chất - Chương 3 doc
Hình 30. Sáu obitan σ của nguyên tử kim loại và các obitan σ nhóm của các phối tử có kiểu đối xứng tương ứng (Trang 45)
Hình 31.    Dạng của MO liên kết (a), MO phản liên kết (b) tạo  thành - Hóa học phức chất - Chương 3 doc
Hình 31. Dạng của MO liên kết (a), MO phản liên kết (b) tạo thành (Trang 47)
Hình 32.  Sơ  đồ  tạo thành các MO trong phức chất bát diện - Hóa học phức chất - Chương 3 doc
Hình 32. Sơ đồ tạo thành các MO trong phức chất bát diện (Trang 48)
Hình 33. Obitan d xz   của ion kim loại (a) và obitan π p   nhóm                         của các phối tử có đối xứng tương ứng (b) và có thể xen phủ tối ưu - Hóa học phức chất - Chương 3 doc
Hình 33. Obitan d xz của ion kim loại (a) và obitan π p nhóm của các phối tử có đối xứng tương ứng (b) và có thể xen phủ tối ưu (Trang 51)
Hình 34. Ảnh hưởng của các liên kết π đến đại lượng Δ O : - Hóa học phức chất - Chương 3 doc
Hình 34. Ảnh hưởng của các liên kết π đến đại lượng Δ O : (Trang 52)
Hình 36 là giản đồ mức năng lượng của các MO - σ có tính đến sự hình thành các MO - π  đối với các phức chất bát diện kiểu MX 6  (X là halogen) - Hóa học phức chất - Chương 3 doc
Hình 36 là giản đồ mức năng lượng của các MO - σ có tính đến sự hình thành các MO - π đối với các phức chất bát diện kiểu MX 6 (X là halogen) (Trang 53)
Hình 37 đưa ra giản đồ gần đúng các mức năng lượng của ion phức PtCl 4 2–  (không cần  chính xác hoá vị trí của tất cả các mức năng lượng) - Hóa học phức chất - Chương 3 doc
Hình 37 đưa ra giản đồ gần đúng các mức năng lượng của ion phức PtCl 4 2– (không cần chính xác hoá vị trí của tất cả các mức năng lượng) (Trang 56)
Hình 38. Mức năng lượng các obitan của VCl 4 - Hóa học phức chất - Chương 3 doc
Hình 38. Mức năng lượng các obitan của VCl 4 (Trang 58)

TỪ KHÓA LIÊN QUAN