1. Trang chủ
  2. » Giáo Dục - Đào Tạo

PHÉP QUAY VÀ PHÉP ĐỐI XỨNG TÂM docx

10 2,8K 4

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 254,5 KB

Nội dung

CÁC DẠNG BÀI TẬP CƠ BẢN VÀ PHÁT TRIỂN:  Phương pháp: Sử dụng biểu thức tọa độ của phép đối xứng tâm, từ phương trình của hình đã cho suy ra phương trình ảnh của hình cần tìm..  Phương

Trang 1

PHÉP QUAY VÀ PHÉP ĐỐI XỨNG TÂM

I KIẾN THỨC CẦN NHỚ:

1 Phép quay: Trong mặt phẳng cho một điểm O cố định và góc lượng giác không đổi Phép biến hình biến điểm O thành O, biến mỗi điểm M khác O thành điểm M’ sao cho OM = OM’ và (OM,OM’) = được gọi là phép quay tâm O và góc quay là

2 Phép quay là một phép dời hình

3 Phép đối xứng tâm: Phép đối xứng qua điểm O là một phép biến hình biến mỗi điểm M thành điểm M’ đối xứng với M qua O, có nghĩa là:

4 Biểu thức tọa độ: Trong mặt phẳng Oxy cho I(a;b) Nếu phép đối xứng tâm ĐI biến điểm M(x;y) thành điểm M’(x’;y’) thì :

II CÁC DẠNG BÀI TẬP CƠ BẢN VÀ PHÁT TRIỂN:

Phương pháp:

Sử dụng biểu thức tọa độ của phép đối xứng tâm, từ phương trình của hình đã cho suy ra phương trình ảnh của hình cần tìm

Bài tập ví dụ:

Bài 1: Trong mặt phẳng tọa độ Oxy, cho phép đối xứng tâm I(1;2) Phép đối xứng tâm I biến đường

thẳng : x – y + 3 = 0 thành đường thẳng Hãy xác định phương trình của

Bài 2: Trong mặt phẳng tọa độ Oxy, cho phép đối xứng tâm I(-2;3) Phép đối xứng tâm I biến đường

tròn : (x-2)2 + (y+4)2 = 16 thành đường tròn Hãy xác định phương trình của

 Phương pháp:

Xác định phép quay; phép đối xứng tâm , thiết lập mối quan hệ giữa các yếu tố cần chứng minh

 Bài tập ví dụ:

Bài 3: Cho hai tam giác vuông cân OAB và OA’B’ có chung đỉnh O

sao cho O nằm trên đoạn thẳng AB’ và nằm ngoài đoạn A’B ( hình bên)

Gọi G và G’ lần lượt là trọng tâm của các tam giác OAA’ và OBB’

Chứng minh GOG’ lần lượt là trọng tâm các tam giác vuông cân

Bài 4: Hình bình hành MNPQ nội tiếp trong hình bình hành

ABCD (M AB, N BC, P CD, Q DA)

Chứng minh rằng hai hình bình hành đó có cùng tâm

Phương pháp:

Xác định phép quay, phép đối xứng tâm cho phép tìm tạo ảnh của điểm cần tìm, tập hợp điểm qua phép quay, phép đối xứng tâm đó Từ sự di chuyển của tạo ảnh suy ra tập hợp điểm cần tìm

Bài tập ví dụ:

Dạng 1: XÁC ĐỊNH ẢNH CỦA MỘT PHÉP ĐỐI XỨNG TÂM

TRONG MẶT PHẲNG TỌA ĐỘ

Dạng 2: DÙNG PHÉP QUAY, PHÉP ĐỐI XỨNG TÂM ĐỂ GIẢI

MỘT SỐ BÀI TOÁN CHỨNG MINH

B’

A’

O

B

A

Dạng 3: DÙNG PHÉP QUAY, PHÉP ĐỐI XỨNG TÂM ĐỂ GIẢI

MỘT SỐ BÀI TOÁN TÌM TẬP HỢP ĐIỂM

Trang 2

Bài 5: Cho nửa đường tròn đường kính AB Điểm C chuyển động trên nửa đường tròn Tìm tập hợp

các điểm I trên tia AC sao cho AI = BC

Bài 6: Cho điểm C thay đổi trên đường tròn có đường kính AOB cố định Trên tia AC lấy điểm P sao

cho AC = CP

a) Tìm tập hợp các điểm Q là đỉnh của hình bình hành có hai cạnh PA, PB

b) Tìm tập hợp các điểm R là đỉnh của hình bình hành mà có hai cạnh AB, AP

Phương pháp:

Dựa vào các yếu tố cố định, đại lượng không đổi để tìm góc quay, tâm đối xứng, từ đó xác định tạo ảnh của hình cần dựng để suy ra cách dựng

Bài tập ví dụ:

Bài 7: Dựng hình vuông ABCD biết ba điểm, tâm hình vuông và hai điểm M AB, N BC.

Bài 8: Qua điểm A là giao điểm củahai đường tròn dựng đường thẳng d cắt hai đường tròn thành hai

dây cung bằng nhau

BÀI TẬP:

Bài 9: Trong mặt phẳng với hệ tọa độ Oxy cho phép đối xứng tâm I(2;-2), phép đối xứng tâm I biến

đường tròn : (x-2)2 + (y+5)2 =16 thành đường tròn Hãy xác định phương trình

Bài 10: Trong mặt phẳng với hệ tọa độ Oxy Cho phép đối xứng tâm I(4;-3), phép đối xứng tâm I biến

(P): y = x2 – 2x +1 thành parabol (P’) Hãy xác định phương trình của (P’)

Bài 11: Cho ba đường tròn bằng nhau (O1;R), (O2;R), (O3;R) đôi một tiếp xúc nhau (O1) tiếp xúc (O2)

tại A, (O2) tiếp xúc (O3) tại B, (O3) tiếp xúc (O1) tại C Gọi M1=ĐA(M), M2=ĐB(M1),

M3=ĐC(M2) Chứng minh rằng nếu M (01;R) thì M3 là điểm đối xứng với M qua O1

Bài 12: Từ các cạnh của ABC, dựng ra ngoài nó các tam giác đều ABC1, BCA1, CAB1 Chứng minh

các đoạn thẳng AA1, BB1,CC1 bằng nhau và đồng qui

Bài 13: Trong ABC, tìm điểm M để tổng MA + MB + MC nhỏ nhất.

Bài 14: Cho A, B cố định trên đường tròn (O;R) Dựng tiếp tuyến với đường tròn sao cho khoảng cách

từ A tới tiếp tuyến bằng khoảng cách từ A tới đường vuông góc kẻ từ B tới tiếp tuyến

HAI HÌNH BẰNG NHAU

I KIẾN THỨC CẦN NHỚ:

1 Định lý: Nếu ABC và A’B’C’ là hai tam giác bằng nhau thì có phép dời hình biến tam giác ABC thành tam giác A’B’C’

2 Hai hình gọi là bằng nhau nếu có phép dời hình biến hình này thành hình kia

3 Nếu hình H1 bằng hình H2 và hình H2 bằng hình H3 thì hình H1 bằng hình H3

II CÁC DẠNG BÀI TẬP CƠ BẢN VÀ PHÁT TRIỂN:

Phương pháp:

- Thực hiện một phép dời hình thích hợp.’

- Sử dụng các tính chất của phép dời hình để giải quyết các yêu cầu bài toán

Dạng 4: DÙNG PHÉP QUAY, PHÉP ĐỐI XỨNG TÂM ĐỂ GIẢI

MỘT SỐ BÀI TOÁN DỰNG HÌNH

Dạng 1: CHỨNG MINH HAI HÌNH BẰNG NHAU

Trang 3

Bài tập ví dụ:

Bài 1: Hình H1 gồm ba đường tròn (O;r1), (O;r2), (O;r3) đôi một tiếp xúc ngoài với nhau Hình H2 gồm

ba đường tròn (I1;r1), (I2;r2), (I3;r3) đôi một tiếp xúc ngoài với nhau Chứng tỏ rằng hai hình H1 và

H2 bằng nhau

Bài 2: Chứng minh rằng nếu ba trung tuyến của tam giác ABC lần lượt bằng ba trung tuyến của tam

giác A’B’C’ thì hai tam giác đó bằng nhau

Phương pháp:

Sử dụng biểu thức tọa độ của phép dời hình ( phép đối xứng trục, phép đối xứng tâm, phép tịnh tiến, phép quay), từ phương trình của hình đã cho, suy ra ảnh của hình cần tìm

Bài tập ví dụ:

Bài 3: Trong hệ trục tọa độ vuông góc Oxy cho hai parabol(P) và (P’) lần lượt có phương trình

y=2007x2 và y=2007x2+2008x Chứng minh rằng hai parabol đó bằng nhau

Bài 4: Cho hai đường tròn (C ) và (C’ ) lần lượt có phương trình:

(x-1)2 + (y-3)2 = 9; (x+1)2 + (y-2)2 = 9 Chứng minh rằng hai đường tròn đó bằng nhau

Phương pháp:

Nếu có một phép dời hình f xác định , biến một điểm M di động thành một điểm M’ và nếu

ta tìm được tập hợp (H) của các điểm M thì tập hợp các điểm M’ là ảnh của H qua phép dời hình f

Bài tập ví dụ:

Bài 5: Hình bình hành ABCD có cạnh AB cố định và có đường chéo AC=m không đổi Hãy tìm tập

hợp các đỉnh D của hình bình hành đó

Bài 6: Cho hình vuông ABCD có tâm I Trên tia BC lấy điểm E sao cho BE = AI.

a) Xác định phép dời hình biến A thành B và I thành E

b) Dựng ảnh của hình vuông ABCD trong phép dời hình ấy

BÀI TẬP:

Bài 7: Cho hai đường elip (E) và (E’) lần lượt có phương trình:

Chứng minh rằng hai elip (E) và (E’) bằng nhau

Bài 8: Chứng minh rằng nếu ba đường cao của tam giác ABC lần lượt bằng ba đường cao của tam

giác A’B’C’ thì hai tam giác này bằng nhau

Bài 9: Cho tam giác ABC và D, E, F lần lượt là trung điểm các cạnh BC, CA, AB Từ một điểm K

tùy ý ta gọi các điểm đối xứng của K lần lượt qua tâm D, E, F là M, N, P Chứng minh rằng hai tam giác ABC và MNP bằng nhau

Dạng 2: CHỨNG MINH HAI HÌNH BẰNG NHAU

TRONG MẶT PHẲNG TỌA ĐỘ

Dạng3: TÌM TẬP HỢP ĐIỂM

Trang 4

Bài 10: Trong mặt phẳng Oxy, cho phép dời hình f biến điểm M có tọa độ (x;y) thành điểm M’ =

f(M) có tọa độ (x’;y’) thỏa mãn hệ thức:

Tìm ảnh của đường tròn ( C) có phương trình : x2 + y2 - 2x + 4y – 31 = 0 qua phép dời hình f đã cho trên

Bài 11: Cho hai tứ giác lồi ABCD và A’B’C’D’ có tam giác ABC bằng tam giác A’B’C’ và tam

giác ACD bằng tam giác A’C’D’ Hai tứ giác này có phải hai hình bằng nhau không?

Bài 12: Hãy dựng một hình vuông có bốn đỉnh nằm trên bốn cạnh của một hình bình hành cho

trước

PHÉP VỊ TỰ

1 Định nghĩa: Cho điểm O cố định và một số k không đổi, Phép biến hình biến mỗi điểm M thành điểm M’ sao cho được gọi là phép vị tự tâm O tỉ số k Kí hiệu

V(O;k)

2 Tính chất:

 Nếu phép vị tự tỉ số k biến hai điểm M và N thành hai điểm M’ và N’ thì

 Phép vị tự biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi vị trí của ba điểm thẳng hàng đó

Như vậy: phép vị tự tỉ số k biến đường thẳng thành đường thẳng song song (hoặc trùng) với đường thẳng đó, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng mà độ dài được nhân lên với , biến tam giác thành tam giác đồng dạng với tỉ số đồng dạng là , biến góc thành góc bằng nó

 Phép vị tự tỉ số k biến đường tròn có bán kính R thành đường tròn có bán kính R

3 Phép vị tự tâm O biến đường tròn này thành đường tròn kia thì O được gọi là tâm vị tự của hai đường tròn đó Nếu phép vị tự có tỉ số dương thì O gọi là tâm vị tự ngoài, nếu phép vị

tự đó có tỉ số âm thì điểm O gọi là tâm vị tự trong

II CÁC DẠNG BÀI TẬP CƠ BẢN VÀ PHÁT TRIỂN:

Phương pháp:

Xác lập phép vị tự ( tâm và tỉ số k) để tìm mối liên hệ giữa các yếu tố cần chứng minh

Bài tập ví dụ:

Bài 1: Cho hai đường tròn (O) và (O’) có bán kính khác nhau, tiếp xúc ngoài với nhau tại A Một

đường tròn (O’’) thay đổi, luôn tiếp xúc ngoài với (O) và (O’) lần lượt tại B và C Chứng minh rằng đường thẳng BC luôn đi qua một điểm cố định

Dạng 1: DÙNG PHÉP VỊ TỰ ĐỂ CHỨNG MINH

MỘT SỐ BÀI TOÁN

Trang 5

Bài 2: Cho tam giác ABC và A’, B’, C’ lần lượt là trung điểm của các cạnh BC, CA, AB Gọi G là

trọng tâm của tam giác ABC, O là tâm của đường tròn ngoại tiếp tam giác ABC và H là trực tâm tam giác ABC Chứng minh rằng ba điểm G, O, H thẳng hàng

Phương pháp:

Dựa vào các yếu tố cố định, đại lượng không đổi để tìm ra tâm và tỉ số vị tự, từ đó xác định ảnh của hình cần dựng để suy ra hình cần dựng

Bài tập ví dụ:

Bài 3: Cho hai đường tròn (O) và (O’) cắt nhau tại A và B Hãy dựng qua A một đường thẳng d cắt

(O) tại M và cắt (O’) tại N sao cho M là trung điểm của AN

Bài 4: Cho góc nhọn và một điểm A nằm trong góc đó Hãy dựng đường tròn đi qua A và đồng thời tiếp xúc với hai cạnh Ox và Oy

Phương pháp:

Xác định phép vị tự cho phép tìm ảnh của điểm cần tìm, tập hợp điểm qua phép vị tự đó Từ

sự di chuyển của tạo ảnh, suy ra tập hợp điểm cần tìm

Bài tập ví dụ:

Bài 5: Cho đường tròn (O;R) và điểm I cố định khác O Một điểm m thay đổi trên đường tròn Tia

phân giác của góc MOI cắt IM tại N Tìm quĩ tích điểm N

Bài 6: Cho góc cố định Trên tia Oy lấy một điểm A cố định và trên tia Ox có một điểm B chuyển động Tìm tập hợp trọng tâm G của tam giác OAB

Phương pháp:

- Sử dụng biểu thức tọa độ sau: M(x;y), M’(x’;y’), I(a;b)

Giả sử điểm M’ là ảnh của điểm M qua phép vị tự V tâm I, tỉ số k Khi đó

Bài tập ví dụ:

Bài 7: Trong mặt phẳng tọa độ Oxy cho đường thẳng có phương trình : 2x +y – 1 = 0

Hãy viết phương trình đường thẳng là ảnh của đường thẳng đã cho qua phép vị tự tâm là gốc tọa độ

và tỉ số vị tự k=3

Bài 8: Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình : y = x2 + 4x

Hãy viết phương trình parabol là ảnh của (P) đã cho qua phép vị tự tâm I(1;2), tỉ số k=2

BÀI TẬP:

Bài 9: Hãy xác định phép vị tự trong mỗi trường hợp sau:

a) Biết tâm vị tự, biết một điểm A và ảnh A’ của nó

Dạng 3:DÙNG PHÉP VỊ TỰ ĐỂ GIẢI MỘT SỐ BÀI

TOÁN TÌM TẬP HỢP ĐIỂM

Dạng :DÙNG PHÉP VỊ TỰ ĐỂ GIẢI MỘT SỐ BÀI

TOÁN DỰNG HÌNH

Dạng 4: XÁC ĐỊNH ẢNH CỦA PHÉP VỊ TỰ TRONG

MẶT PHẲNG TỌA ĐỘ

Trang 6

b) Biết hai điểm A, B và hai ảnh tương ứng của chúng là A’ và B’.

Bài 10: Dựng tam giác ABC biết và biết và cạnh BC = m cho trước

Bài 11: Tìm tập hợp các trọng tâm G của tam giác ABC cân tại A có AB cố định.

Bài 12: Cho hình thang ABCD có AB//CD và AD=a, DC=b, còn A và B là hai đỉnh cố định Gọi I

là giao điểm hai đường chéo

a) Tìm tập hợp các điểm C khi D thay đổi

b) Tìm tập hợp các điểm I khi C và D thay đổi

Bài 13: Hãy dựng một hình vuông có hai đỉnh nằm trên một nửa đường tròn cho trứơc và hai đỉnh

còn lại nằm trên đường kính của nửa đường tròn đo

Bài 14: Trong mặt phẳng tọa độ Oxy cho elip (E) có phương trình :

Hãy tìm phương trình của (E’) là ảnh của (E) qua phép vị tự tâm O (gốc tọa độ), tỉ số k = 2

PHÉP ĐỒNG DẠNG

I KIẾN THỨC CẦN NHỚ:

1 Định nghĩa: Phép biến hình F gọi là phép đồng dạng với tỉ số k (k > 0) nếu với hai điểm bất kỳ

M, N và ảnh M’, N’ của chúng, ta có M’N’= k.MN

2 Tính chất:

 Mọi phép đồng dạng F tỉ số k đều là hợp thành của một phép vị tự V tỉ số k và một phép dời hình D

 Phép đồng dạng biến ba điểm thẳng hàng thành ba điểm thẳng hàng ( và không làm thay đổi thứ tự ba điểm đó), biến đường thẳng thành đường thẳng , biến tia thành tia, biến đoạn thẳng thành đoạn thẳng mà độ dài được nhân lên với k ( k là tỉ số phép đồng dạng ), biến tam giác thành tam giác đồng dạng với tỉ số k, biến đường tròn có bán kính R thành đường tròn có bán kính kR, biến góc thành góc bằng nó

3 Hai hình được gọi là đồng dạng với nhau nếu có phép đồng dạng biến hình này thành hình kia

II CÁC DẠNG BÀI TẬP CƠ BẢN VÀ PHÁT TRIỂN:

Phương pháp:

- Thực hiện phép đồng dạng thích hợp ( tỉ số đồng dạng)

- Sử dụng các tính chất của phép đồng dạng để giải quyết yêu cầu của bài toán

Bài tập ví dụ:

Bài 1: Chứng minh rằng nếu phép đồng dạng F biến tam giác ABC thành tam giác A’B’C’ thì trọng

tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC lần lượt biến thành trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác A’B’C’

Bài 2: Chứng minh rằng hai đường tròn bất kỳ là hai hình đồng dạng

Phương pháp:

Dạng 1: DÙNG PHÉP ĐỒNG DẠNG ĐỂ GIẢI MỘT

SỐ BÀI TOÁN CHỨNG MINH

Dạng 2:DÙNG PHÉP ĐỒNG DẠNG ĐỂ GIẢI MỘT

SỐ BÀI TOÁN DỰNG HÌNH

Trang 7

Xác định phép đồng dạng (tìm tỉ số đồng dạng) để tìm ảnh của điểm cần tìm Từ sự di chuyển của tạo ảnh, suy ra tập hợp các điểm cần tìm

Bài tập ví dụ:

Bài 3: Dựng tam giác ABC nếu biết hai góc và một trong các yếu tố sau:

a) Đường cao AH:

b) Đường trung tuyến AM=m;

c) Bán kính R của đường tròn ngoại tiếp

Bài 4: Dựng tam giác BAC vuông cân tại A, có C là một điểm cho trước còn hai đỉnh A, B lần lượt

thuộc hai đường thẳng a, b song song với nhau cho trước

Phương pháp:

Do mọi phép đồng dạng là hợp thành của phép vị tự V và phép dời hình D, do vậy ta:

+ Sử dụng biểu thức tọa độ của phép vị tự

+ Sử dụng biểu thức tọa độ của phép dời hình

Bài tập ví dụ:

Bài 5: Trong hệ trục tọa độ Oxy Xét phép biến hình f cho ứng với mỗi điểm M(x;y), ta xác định

một điểm M’(3x;-3y)

a) Chứng minh f là phép đồng dạng

b) Tìm ảnh của tam giác ABC qua phép đồng dạng f, biết A(3;4), B(-4;2), C(2;4)

Bài 6: Trong mặt phẳng Oxy cho hai tam giác ABC và A’B’C’ đồng dạng có tọa độ các đỉnh là

A(0;0), B(0;2), C(4;0) và A’(3;8), B’(0;5), C’(9;2) Hãy xác định phương trình của phép đồng dạng

f sao cho f(A) = A’, f(B) = B’, f(C) = C’

BÀI TẬP:

Bài 7:

Cho tam giác ABC vuông tại A, AH là đường cao kẻ từ A xuống BC (H BC) Chứng minh rằng có một phép đồng dạng biến tam giác HBA thành tam giác ABC

Bài 8:

Cho tam giác ABC vuông tại B, BE là đường cao kẻ từ B xuống AC (E AC) Chứng minh rằng

có một phép đồng dạng biến tam giác AEB thành tam giác BEC

Bài 9:

Cho hai tam giác ABC và A’B’C’ đồng dạng với nhau theo tỉ số

Hãy xác định phép đồng dạng biến tam giác ABC thành tam giác A’B’C’

Bài 10:

Trên hai đường tròn (O;R) và (O’;R’) cho trước ta lần lượt lấy hai điểm A, A’ Cho A di động trên đường tròn (O;R) Tìm tập hợp các điểm M là trung điểm của đoạn AA’

Bài 11:

Cho hai đường tròn (O;R) và (O’;R’) ngoài nhau Hãy xác định phép đồng dạng biến đường tròn này thành đường tròn kia

Bài 12:

Dạng 3: XÁC ĐỊNH ẢNH CỦA PHÉP ĐỒNG DẠNG

TRONG MẶT PHẲNG TỌA ĐỘ

Trang 8

Trong hệ trục tọa độ Oxy Xét phép biến hình f cho ứng với mỗi điểm M(x;y), ta xác định điểm M(2x+1;2y)

a) Chứng minh f là phép đồng dạng

b) Tìm phương trình của đường tròn (C) qua phép đồng dạng f biết (C) có phương trình :

(x -1)2 + (y +2)2 = 9

Trang 9

Chương II: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG

GIAN-QUAN HỆ SONG SONG ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG

I.KIẾN THỨC CẦN NHỚ:

1 Môn học nghiên cứu các tính chất của những hình mà các điểm của nó có thể không nằm trong cùng một mặt phẳng gọi là hình học không gian

2 Một số tính chất của hình học không gian:

a) Tính chất thừa nhận:

1/ Có một và chỉ một đường thẳng đi qua hai điểm phân biệt cho trước

2/ Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng cho trước

3/ Tồn tại bốn điểm không cùng nằm trên một mặt phẳng

4/ Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất chứa tất cả các điểm chung của mặt phẳng đó

5/ Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng đều đúng

b) Định lý:

Nếu một đường thẳng đi qua hai điểm phân biệt của một mặt phẳng thì mọi điểm của đường thẳng đó đều nằm trong mặt phẳng đó

3.Điều kiện xác định mặt phẳng:

Một mặt phẳng được xác định nếu biết nó đi qua ba điểm không thẳng hàng

4 Định nghĩa:

Hình gồm n tam giác SA1A2, SA2A3, …, SAnA1 và đa giác A1A2…An gọi là hình chóp và được kí hiệu là SA1A2…An.

II CÁC DẠNG BÀI TẬP CƠ BẢN VÀ PHÁT TRIỂN:

 Phương pháp:

Muốn tìm giao điểm của đường thẳng d và mặt phẳng , người ta thường khéo léo chọn một mặt phẳng phụ (P) chứa d sao cho giao tuyến của (P) và dễ xác định Trong mặt phẳng phụ (P) này, đường thẳng d cắt tại A (nếu có), đó chính là giao điểm cần tìm

 Bài tập ví dụ:

Bài 1: Cho bốn điểm A, B, C, D không đồng phẳng Gọi M, N lần lượt là trung điểm của AC và BC Trên đoạn đường BD lấy điểm P sao cho BP = 2PD Tìm giao điểm của đường thẳng C D với mặt phẳng (MNP)

Bài 2: Cho hình bình hành ABCD nằm trong (P) và một điểm S nằm ngoài (P) Gọi M là điểm nằm giữa S và A; N là điểm nằm giữa S và B; giao điểm của hai đường thẳng AC và BD là O Tìm giao điểm của SO và mặt phẳng (CMN)

Dạng 1:XÁC ĐỊNH GIAO ĐIỂM CỦA ĐƯỜNG

THẲNG VÀ MẶT PHẲNG

Dạng 2:XÁC ĐỊNH GIAO TUYẾN CỦA HAI MẶT PHẲNG

Trang 10

 Phương pháp:

Muốn tìm giao tuyến của hai mặt phẳng nào đó, chúng ta cần tìm hai điểm chung của chúng Giao tuyến cần tìm là đường thẳng đi qua hai điểm chung đó

 Bài tập ví dụ:

Bài 3: Cho hình chóp SABCD Gọi M là một điểm trong của tam giác SCD Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)

Bài 4: Cho bốn điểm A, B, C, D không đồng phẳng Gọi M, N lần lượt là trung điểm của AD và BC

a) Tìm giao tuyến của hai mặt phẳng (MBC) và (NAD)

b) Gọi P, Q là hai điểm lần lượt trên hai đoạn AB và AC Tìm giao tuyến của hai mặt phẳng (MBC) và (DPQ)

 Phương pháp:

Để xác định thiết diện của một mặt phẳng nào đó với mặt hình chóp nào đó ta tìm các đoạn giao tuyến của mặt phẳng với các mặt của hình chóp, khi đó thiết diện tìm được là một đa giác

 Bài tập ví dụ:

Bài 5: Cho hình chóp tứ giác SABCD Ba điểm A’, B’, C’ lần lượt nằm trên ba cạnh SA, SB, SC không trùng với S, A, B, C Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (A’B’C’) Bài 6: Cho hình chóp SABCD có đáy ABCD là một hình bình hành Trong mặt phẳng (ABCD) vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành Gọi M là một điểm nằm trên cạnh SC Tìm thiết diện của hình chóp cắt bởi mặt phẳng (d, M)

 Phương pháp:

Để chứng minh ba điểm thẳng hàng ta chứng tỏ rằng ba điểm đó là những điểm chung của hai mặt phẳng phân biệt

Để chứng minh ba đường thẳng đồng quy, ta chứng minh cho ba đường thẳng đó không đồng phẳng và đôi một cắt nhau hoặc ta chứng minh hai đường thẳng tùy ý trong ba đường thẳng đã cho cắt nhau tại một điểm mà điểm đó là duy nhất

Dạng 3:XÁC ĐỊNH THIẾT DIỆN CỦA HÌNH CHÓP BỊ CẮT

BỞI MẶT PHẲNG

Dạng 4: TOÁN CHỨNG MINH BA ĐIỂM THẲNG HÀNG,

BA ĐƯỜNG THẲNG ĐỒNG QUY

Ngày đăng: 11/07/2014, 01:21

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w