Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 28 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
28
Dung lượng
528,1 KB
Nội dung
PHẦN MỘT: ÔN TẬP TÓM TẮT CHƯƠNG TRÌNH THI ĐẠI HỌC MÔN TOÁN I- GIẢI TÍCH TỔ HP 1. Giai thừa : n! = 1.2 n 0! = 1 n! /(n – k)! = (n – k + 1).(n – k + 2) n 2. Nguyên tắc cộng : Trường hợp 1 có m cách chọn, trường hợp 2 có n cách chọn; mỗi cách chọn đều thuộc đúng một trường hợp. Khi đó, tổng số cách chọn là : m + n. 3. Nguyên tắc nhân : Hiện tượng 1 có m cách chọn, mỗi cách chọn này lại có n cách chọn hiện tượng 2. Khi đó, tổng số cách chọn liên tiếp hai hiện tượng là : m x n. 4. Hoán vò : Có n vật khác nhau, xếp vào n chỗ khác nhau. Số cách xếp : P n = n !. 5. Tổ hợp : Có n vật khác nhau, chọn ra k vật. Số cách chọn : )!kn(!k !n C k n − = 6. Chỉnh hợp : Có n vật khác nhau. Chọn ra k vật, xếp vào k chỗ khác nhau số cách : == − kk nn n! A,A (n k)! k nk C.P Chỉnh hợp = tổ hợp rồi hoán vò 7. Tam giác Pascal : 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 4 4 3 4 2 4 1 4 0 4 3 3 2 3 1 3 0 3 2 2 1 2 0 2 1 1 0 1 0 0 CCCCC CCCC CCC CC C Tính chất : k 1n k n 1k n kn n k n n n 0 n CCC CC,1CC + − − =+ === 8. Nhò thức Newton : * n0n n 11n1 n 0n0 n n baC baCbaC)ba( +++=+ − a = b = 1 : 01 n nn n CC C2+++= n Với a, b ∈ {±1, ±2, }, ta chứng minh được nhiều đẳng thức chứa : n n 1 n 0 n C, ,C,C * nn n 1n1 n n0 n n xC xaCaC)xa( +++=+ − Ta chứng minh được nhiều đẳng thức chứa bằng cách : n n 1 n 0 n C, ,C,C - Đạo hàm 1 lần, 2 lần, cho x = ±1, ±2, a = ±1, ±2, TRANG 1-Photocopy-Phc-0939302308 - Nhân với x k , đạo hàm 1 lần, 2 lần, cho x = ±1, ±2, , a = ±1, ±2, - Cho a = ±1, ±2, , hay ∫∫ ±± 2 0 1 0 hay β α ∫ Chú ý : * (a + b) n : a, b chứa x. Tìm số hạng độc lập với x : knkk m n Ca b Kx − = Giải pt : m = 0, ta được k. * (a + b) n : a, b chứa căn . Tìm số hạng hữu tỷ. mr knkk pq n Ca b Kc d − = Giải hệ pt : ⎩ ⎨ ⎧ ∈ ∈ Zq/r Z p / m , tìm được k * Giải pt , bpt chứa : đặt điều kiện k, n ∈ N C,A k n k n * , k ≤ n. Cần biết đơn giản các giai thừa, qui đồng mẫu số, đặt thừa số chung. * Cần phân biệt : qui tắc cộng và qui tắc nhân; hoán vò (xếp, không bốc), tổ hợp (bốc, không xếp), chỉnh hợp (bốc rồi xếp). * Áp dụng sơ đồ nhánh để chia trường hợp , tránh trùng lắp hoặc thiếu trường hợp. * Với bài toán tìm số cách chọn thỏa tính chất p mà khi chia trường hợp, ta thấy số cách chọn không thỏa tính chất p ít trường hợp hơn, ta làm như sau : số cách chọn thỏa p. = số cách chọn tùy ý - số cách chọn không thỏa p. Cần viết mệnh đề phủ đònh p thật chính xác. * Vé số, số biên lai, bảng số xe : chữ số 0 có thể đứng đầu (tính từ trái sang phải). * Dấu hiệu chia hết : - Cho 2 : tận cùng là 0, 2, 4, 6, 8. - Cho 4 : tận cùng là 00 hay 2 chữ số cuối hợp thành số chia hết cho 4. - Cho 8 : tận cùng là 000 hay 3 chữ số cuối hợp thành số chia hết cho 8. - Cho 3 : tổng các chữ số chia hết cho 3. - Cho 9 : tổng các chữ số chia hết cho 9. - Cho 5 : tận cùng là 0 hay 5. - Cho 6 : chia hết cho 2 và 3. - Cho 25 : tận cùng là 00, 25, 50, 75. II- ĐẠI SỐ 1. Chuyển vế : a + b = c ⇔ a = c – b; ab = c ⇔ ⎢ ⎢ ⎣ ⎡ ⎩ ⎨ ⎧ = ≠ == b/ca 0b 0cb a/b = c ⇔ ; ⎩ ⎨ ⎧ ≠ = 0b bca 1n2 1n2 baba + + =⇔= TRANG 2 2n 2n 2n 2n b a aba b, ab a0 ⎧ = =⇔=± = ⇔ ⎨ ≥ ⎩ ⎩ ⎨ ⎧ α=⇔= ≥ ±= ⇔= α a bbloga, 0a ab ba ⎩ ⎨ ⎧ > < ⎩ ⎨ ⎧ < > > = ⇔<−<⇔<+ b/ca 0b b/ca 0b 0c,0b cab;bcacba 2. Giao nghiệm : ⎩ ⎨ ⎧ <⇔ < < ⎩ ⎨ ⎧ >⇔ > > }b,amin{x bx ax ;}b,amax{x bx ax ⎧ ⎨ Γ ⎧ >∨ << < ⎧ ⎩ ⇔⇔ ⎨⎨ <Γ ≥ ⎧ ⎩ ⎩ ⎨ Γ ⎩ p xa pq axb(nếuab) ; xb VN(nếua b) q Nhiều dấu v : vẽ trục để giao nghiệm. 3. Công thức cần nhớ : a. : chỉ được bình phương nếu 2 vế không âm. Làm mất phải đặt điều kiện. ⎩ ⎨ ⎧ ≤≤ ≥ ⎩ ⎨ ⎧ ⇔≤ = ≥ ⇔= 22 ba0 0b ba, ba 0b ba ⎩ ⎨ ⎧ ≥ ≥ ⎩ ⎨ ⎧ ∨ ≥ < ⇔≥ 2 ba 0b 0a 0b ba )0b,anếu(b.a )0b,anếu(b.a ab <−− ≥ = b. . : phá . bằng cách bình phương : 2 2 aa = hay bằng đònh nghóa : )0anếu(a )0anếu(a a <− ≥ = baba; ba 0b ba ±=⇔= ⎩ ⎨ ⎧ ±= ≥ ⇔= ab b a ≤⇔− ≤ ≤b b0 a b b 0hay aba ≥ ⎧ ≥⇔ < ⎨ ≤− ∨ ≥ ⎩ b 0baba 22 ≤−⇔≤ c. Mũ : .1a0nếuy,1anếuy,0y,Rx,ay x <<↓>↑>∈= TRANG 3 0m/n mmnmn n mn mn mn m.n nn n nn n m n a1;a 1/a;a.aa a/a a ;(a) a ;a/b (a/b) a .b (ab) ; a a (m n,0 a 1) a = 1 −+ − == = === ==⇔=<≠∨ α =α <<> >< ⇔< a log nm a, )1a0nếu(nm )1anếu(nm aa d. log : y = log a x , x > 0 , 0 < a ≠ 1, y ∈ R y ↑ nếu a > 1, y↓ nếu 0 < a < 1, α = log a a α log a (MN) = log a M + log a N ( ⇐ ) log a (M/N) = log a M – log a N ( ⇐ ) 2 aaa 2 a MlogMlog2,Mlog2Mlog == (⇒) log a M 3 = 3log a M, log a c = log a b.log b c log b c = log a c/log a b, Mlog 1 Mlog a a α = α log a (1/M) = – log a M, log a M = log a N ⇔ M = N aa 0MN(nếua1) logM logN MN0(nếu0a1 << > <⇔ >> << ) Khi làm toán log, nếu miền xác đònh nới rộng : dùng điều kiện chặn lại, tránh dùng công thức làm thu hẹp miền xác đònh. Mất log phải có điều kiện. 4. Đổi biến : a. Đơn giản : Rxlogt,0at,0xt,0xt,0xt,Rbaxt a x2 ∈=>=≥=≥=≥=∈+= Nếu trong đề bài có điều kiện của x, ta chuyển sang điều kiện của t bằng cách biến đổi trực tiếp bất đẳng thức. b. Hàm số : t = f(x) dùng BBT để tìm điều kiện của t. Nếu x có thêm điều kiện, cho vào miền xác đònh của f. c. Lượng giác : t = sinx, cosx, tgx, cotgx. Dùng phép chiếu lượng giác để tìm điều kiện của t. d. Hàm số hợp : từng bước làm theo các cách trên. 5. Xét dấu : a. Đa thức hay phân thức hữu tỷ, dấu A/B giống dấu A.B; bên phải cùng dấu hệ số bậc cao nhất; qua nghiệm đơn (bội lẻ) : đổi dấu; qua nghiệm kép (bội chẵn) : không đổi dấu. b. Biểu thức f(x) vô tỷ : giải f(x) < 0 hay f(x) > 0. c. Biểu thức f(x) vô tỷ mà cách b không làm được : xét tính liên tục và đơn điệu của f, nhẩm 1 nghiệm của pt f(x) = 0, phác họa đồ thò của f , suy ra dấu của f. 6. So sánh nghiệm phương trình bậc 2 với α : f(x) = ax 2 + bx + c = 0 (a ≠ 0) * S = x 1 + x 2 = – b/a ; P = x 1 x 2 = c/a TRANG 4 Dùng S, P để tính các biểu thức đối xứng nghiệm. Với đẳng thức g(x 1 ,x 2 ) = 0 không đối xứng, giải hệ pt : ⎪ ⎩ ⎪ ⎨ ⎧ = += = 21 21 x.xP xxS 0 g Biết S, P thỏa S 2 – 4P ≥ 0, tìm x 1 , x 2 từ pt : X 2 – SX + P = 0 * Dùng Δ, S, P để so sánh nghiệm với 0 : x 1 < 0 < x 2 ⇔ P < 0, 0 < x 1 < x 2 ⇔ ⎪ ⎩ ⎪ ⎨ ⎧ > > >Δ 0S 0P 0 x 1 < x 2 < 0 ⇔ ⎪ ⎩ ⎪ ⎨ ⎧ < > >Δ 0S 0P 0 * Dùng Δ, af(α), S/2 để so sánh nghiệm với α : x 1 < α < x 2 ⇔ af(α) < 0 α < x 1 < x 2 ⇔ ; x ⎪ ⎩ ⎪ ⎨ ⎧ <α >α >Δ 2/S 0)(f.a 0 1 < x 2 < α ⇔ ⎪ ⎩ ⎪ ⎨ ⎧ α< >α >Δ 2/S 0)(f.a 0 α < x 1 < β < x 2 ⇔ a.f( ) 0 a.f( ) 0 β < ⎧ ⎪ α > ⎨ ⎪ α<β ⎩ ; x 1 < α < x 2 < β ⇔ ⎪ ⎩ ⎪ ⎨ ⎧ β<α >β <α 0)(f.a 0)( f .a 7. Phương trình bậc 3 : a. Viête : ax 3 + bx 2 + cx + d = 0 x 1 + x 2 + x 3 = – b/a , x 1 x 2 + x 1 x 3 + x 2 x 3 = c/a , x 1 .x 2 .x 3 = – d/a Biết x 1 + x 2 + x 3 = A , x 1 x 2 + x 1 x 3 + x 2 x 3 = B , x 1 .x 2 .x 3 = C thì x 1 , x 2 , x 3 là 3 nghiệm phương trình : x 3 – Ax 2 + Bx – C = 0 b. Số nghiệm phương trình bậc 3 : • x = α ∨ f(x) = ax 2 + bx + c = 0 (a ≠ 0) : 3 nghiệm phân biệt ⇔ ⎩ ⎨ ⎧ ≠α >Δ 0)(f 0 2 nghiệm phân biệt ⇔ ⎩ ⎨ ⎧ ≠α =Δ ∨ ⎩ ⎨ ⎧ =α >Δ 0)(f 0 0)(f 0 1 nghiệm ⇔ () Δ ⎧ Δ ⎨ α ⎩ = 0 < 0hay f = 0 • Phương trình bậc 3 không nhẩm được 1 nghiệm, m tách được sang 1 vế : dùng sự tương giao giữa (C) : y = f(x) và (d) : y = m. • Phương trình bậc 3 không nhẩm được 1 nghiệm, m không tách được sang 1 vế : dùng sự tương giao giữa (C m ) : y = f(x, m) và (Ox) : y = 0 TRANG 5 3 nghiệm ⇔ ⎩ ⎨ ⎧ < >Δ 0y.y 0 CTCĐ 'y 2 nghiệm ⇔ ⎩ ⎨ ⎧ = >Δ 0y.y 0 CTCĐ 'y 1 nghiệm ⇔ Δ y' ≤ 0 ∨ ⎩ ⎨ ⎧ > >Δ 0y.y 0 CTCĐ 'y c. Phương trình bậc 3 có 3 nghiệm lập thành CSC : ⇔ ⎩ ⎨ ⎧ = >Δ 0y 0 uốn 'y d. So sánh nghiệm với α : • x = x o ∨ f(x) = ax 2 + bx + c = 0 (a ≠ 0) : so sánh nghiệm phương trình bậc 2 f(x) với α. • Không nhẩm được 1 nghiệm, m tách được sang 1 vế : dùng sự tương giao của f(x) = y: (C) và y = m: (d) , đưa α vào BBT. • Không nhẩm được 1 nghiệm, m không tách được sang 1 vế : dùng sự tương giao của (C m ) : y = ax 3 + bx 2 + cx + d (có m) ,(a > 0) và (Ox) α < x 1 < x 2 < x 3 ⇔ y' CĐ CT CĐ 0 y.y 0 y( ) 0 x Δ> ⎧ ⎪ < ⎪ ⎨ α< ⎪ ⎪ α< ⎩ α x 1 x 1 < α < x 2 < x 3 ⇔ ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ <α >α < >Δ CT CTCĐ 'y x 0)(y 0y.y 0 α x 1 x x x 1 < x 2 < α < x 3 ⇔ ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ α< <α < >Δ CĐ CTCĐ 'y x 0)(y 0y.y 0 α x 1 x x x 1 < x 2 < x 3 < α ⇔ y' CĐ CT CT 0 y.y 0 y( ) 0 x Δ> ⎧ ⎪ < ⎪ ⎨ α> ⎪ ⎪ <α ⎩ α x 1 x x 8. Phương trình bậc 2 có điều kiện : TRANG 6 f(x) = ax 2 + bx + c = 0 (a ≠ 0), x ≠ α 2 nghiệm ⇔ , 1 nghiệm ⇔ ⎩ ⎨ ⎧ >Δ ≠α 0 0)(f ⎩ ⎨ ⎧ ≠α =Δ ⎩ ⎨ ⎧ =α > Δ 0)(f 0 0)(f 0 Vô nghiệm ⇔ Δ < 0 ∨ ⎩ ⎨ ⎧ =α =Δ 0)(f 0 Nếu a có tham số, xét thêm a = 0 với các trường hợp 1 nghiệm, VN. 9. Phương trình bậc 4 : a. Trùng phương : ax 4 + bx 2 + c = 0 (a ≠ 0) ⇔ ⎩ ⎨ ⎧ = ≥= 0)t(f 0xt 2 t = x 2 ⇔ x = ± t 4 nghiệm ⇔ ; 3 nghiệm ⇔ ⎪ ⎩ ⎪ ⎨ ⎧ > > >Δ 0S 0P 0 ⎩ ⎨ ⎧ > = 0S 0P 2 nghiệm ⇔ ; 1 nghiệm ⇔ ⎩ ⎨ ⎧ > =Δ < 02/S 0 0P ⎩ ⎨ ⎧ = =Δ ⎩ ⎨ ⎧ < = 02/S 0 0S 0P VN ⇔ Δ < 0 ∨ ⇔ Δ < 0 ∨ ⎪ ⎩ ⎪ ⎨ ⎧ < > ≥Δ 0S 0P 0 0 0 P S ⎧ ⎪ > ⎨ ⎪ < ⎩ 4 nghiệm CSC ⇔ ⎩ ⎨ ⎧ = << 12 21 t3t tt0 Giải hệ pt : ⎪ ⎩ ⎪ ⎨ ⎧ = += = 21 21 12 t.tP ttS t9t b. ax 4 + bx 3 + cx 2 + bx + a = 0. Đặt t = x + x 1 . Tìm đk của t bằng BBT : 2t ≥ c. ax 4 + bx 3 + cx 2 – bx + a = 0. Đặt t = x – x 1 . Tìm đk của t bằng BBT : t ∈ R. d. (x + a)(x + b)(x + c)(x + d) = e với a + b = c + d. Đặt : t = x 2 + (a + b)x. Tìm đk của t bằng BBT. e. (x + a) 4 + (x + b) 4 = c. Đặt : 2 ba xt + += , t ∈ R. TRANG 7 10. Hệ phương trình bậc 1 : ⎩ ⎨ ⎧ =+ =+ 'cy'bx'a cb y ax . Tính : D = 'b b 'a a , D x = 'b b 'c c , D y = 'c c 'a a D ≠ 0 : nghiệm duy nhất x = D x /D , y = D y /D. D = 0, D x ≠ 0 ∨ D y ≠ 0 : VN D = D x = D y = 0 : VSN hay VN (giải hệ với m đã biết). 11. Hệ phương trình đối xứng loại 1 : Từng phương trình đối xứng theo x, y. Đạt S = x + y, P = xy. ĐK : S 2 – 4P ≥ 0. Tìm S, P. Kiểm tra đk S 2 – 4P ≥ 0; Thế S, P vào pt : X 2 – SX + P = 0, giải ra 2 nghiệm là x và y. (α, β) là nghiệm thì (β, α) cũng là nghiệm; nghiệm duy nhất ⇒ α = β ⇒ m = ? Thay m vào hệ, giải xem có duy nhất nghiệm không. 12. Hệ phương trình đối xứng loại 2 : Phương trình này đối xứng với phương trình kia. Trừ 2 phương trình, dùng các hằng đẳng thức đưa về phương trình tích A.B = 0. Nghiệm duy nhất làm như hệ đối xứng loại 1. 13. Hệ phương trình đẳng cấp : ⎩ ⎨ ⎧ =++ =++ 'dy'cxy'bx'a dcybxyax 22 22 Xét y = 0. Xét y ≠ 0 : đặt x = ty, chia 2 phương trình để khử t. Còn 1 phương trình theo y, giải ra y, suy ra t, suy ra x. Có thể xét x = 0, xét x ≠ 0, đặt y = tx. 14. Bất phương trình, bất đẳng thức : * Ngoài các bất phương trình bậc 1, bậc 2, dạng cơ bản của ., , log, mũ có thể giải trực tiếp, các dạng khác cần lập bảng xét dấu. Với bất phương trình dạng tích AB < 0, xét dấu A, B rồi AB. * Nhân bất phương trình với số dương : không đổi chiều số âm : có đổi chiều Chia bất phương trình : tương tự. * Chỉ được nhân 2 bất pt vế theo vế , nếu 2 vế không âm. * Bất đẳng thức Côsi : a, b ≥ 0 : ab 2 ba ≥ + Dấu = xảy ra chỉ khi a = b. a, b, c ≥ 0 : 3 abc 3 cba ≥ + + Dấu = xảy ra chỉ khi a = b = c. * Bất đẳng thức Bunhiacốpxki : a, b, c, d (ac + bd) 2 ≤ (a 2 + b 2 ).(c 2 + d 2 ); Dấu = xảy ra chỉ khi a/b = c/d 15. Bài toán tìm m để phương trình có k nghiệm : TRANG 8 Nếu tách được m, dùng sự tương giao của (C) : y = f(x) và (d) : y = m. Số nghiệm bằng số điểm chung. Nếu có điều kiện của x ∈ I, lập BBT của f với x ∈ I. 16. Bài toán tìm m để bất pt vô nghiệm, luôn luôn nghiệm, có nghiệm x ∈ I : Nếu tách được m, dùng đồ thò, lập BBT với x ∈ I. f(x) ≤ m : (C) dưới (d) (hay cắt) f(x) ≥ m : (C) trên (d) (hay cắt) III- LƯNG GIÁC + 2 π 0 2−π 1. Đường tròn lượng giác : Trên đường tròn lượng giác, góc α đồng nhất với cung AM, đồng nhất với điểm M. Ngược lại, 1 điểm trên đường tròn lượng giác ứng với vô số các số thực x + k2π. 2−π 2 π 0 Trên đường tròn lượng giác, nắm vững các góc đặc biệt : bội của 6 π ( 3 1 cung phần tư) và 4 π ( 2 1 cung phần tư) α 0 A x+k2 π M x = α + n k 2 π : α là 1 góc đại diện, n : số điểm cách đều trên đường tròn lượng giác. 2. Hàm số lượng giác : 3. Cung liên kết : * Đổi dấu, không đổi hàm : đối, bù, hiệu π (ưu tiên không đổi dấu : sin bù, cos đối, tg cotg hiệu π). cot g chiếu xu y ên tâm t g M cos chiếu ⊥ sin M * Đổi hàm, không đổi dấu : phụ * Đổi dấu, đổi hàm : hiệu 2 π (sin lớn = cos nhỏ : không đổi dấu). 4. Công thức : a. Cơ bản : đổi hàm, không đổi góc. b. Cộng : đổi góc a ± b, ra a, b. c. Nhân đôi : đổi góc 2a ra a. d. Nhân ba : đổi góc 3a ra a. e. Hạ bậc : đổi bậc 2 ra bậc 1. Công thức đổi bậc 3 ra bậc 1 suy từ công thức nhân ba. f. Đưa về 2 a tgt = : đưa lượng giác về đại số. g. Tổng thành tích : đổi tổng thành tích và đổi góc a, b thành (a ± b) / 2. h. Tích thành tổng : đổi tích thành tổng và đổi góc a, b thành a ± b. TRANG 9 5. Phương trình cơ bản : sinα = 0⇔ cosα = – 1 hay cosα = 1⇔ α = kπ, sinα = 1 ⇔ α = 2 π + k2π; sinα = –1 ⇔ α = – 2 π + k2π, cosα = 0 ⇔ sinα = –1 hay sinα = 1 ⇔ α = 2 π + kπ, cosα = 1 ⇔ α = k2π, cosα = – 1 ⇔ α = π + k2π sinu = sinv ⇔ u = v + k2π ∨ u = π – v + k2π cosu = cosv ⇔ u = ± v + k2π tgu = tgv ⇔ u = v + kπ cotgu = cotgv ⇔ u = v + kπ 6. Phương trình bậc 1 theo sin và cos : asinu + bcosu = c * Điều kiện có nghiệm : a 2 + b 2 ≥ c 2 * Chia 2 vế cho 22 ba + , dùng công thức cộng đưa về phương trình cơ bản. (cách khác : đưa về phương trình bậc 2 theo 2 u tgt = ) 7. Phương trình đối xứng theo sin, cos : Đưa các nhóm đối xứng về sin + cos và sin.cos. Đặt : t = sinu + cosu = 2 t1 2sin u , 2 t 2,sinu.cosu 42 π − ⎛⎞ +−≤≤ = ⎜⎟ ⎝⎠ 8. Phương trình chứa ⏐sinu + cosu⏐ và sinu.cosu : Đặt : 2 1 202 42 t t sinu cosu sin u , t ,sinu.cosu π − ⎛⎞ =+ = + ≤≤ = ⎜⎟ ⎝⎠ 9. Phương trình chứa sinu – cosu và sinu.cosu : Đặt : π − ⎛⎞ =− = −−≤≤ = ⎜⎟ ⎝⎠ 2 1t t sin u cosu 2 sin u , 2 t 2,sin u.cosu 42 10. Phương trình chứa ⏐sinu – cosu⏐ và sinu.cosu : Đặt : 2 1 202 42 t t sinu cosu sin u , t ,sinu.cosu π − ⎛⎞ =−= − ≤≤ = ⎜⎟ ⎝⎠ 11. Phương trình toàn phương (bậc 2 và bậc 0 theo sinu và cosu) : Xét cosu = 0; xét cosu ≠ 0, chia 2 vế cho cos 2 u, dùng công thức 1/cos 2 u = 1 + tg 2 u, đưa về phương trình bậc 2 theo t = tgu. 12. Phương trình toàn phương mở rộng : * Bậc 3 và bậc 1 theo sinu và cosu : chia 2 vế cho cos 3 u. * Bậc 1 và bậc – 1 : chia 2 vế cho cosu. 13. Giải phương trình bằng cách đổi biến : Nếu không đưa được phương trình về dạng tích, thử đặt : * t = cosx : nếu phương trình không đổi khi thay x bởi – x. * t = sinx : nếu phương trình không đổi khi thay x bởi π – x. * t = tgx : nếu phương trình không đổi khi thay x bởi π + x. * t = cos2x : nếu cả 3 cách trên đều đúng TRANG 10 [...]... cotg ⎧ F(x ) ± F( y) = m (1) Dùng công thức đổi + thành nhân, a Dạng 1 : ⎨ (2 ) ⎩x±y = n ⎧x+y =a thế (2) vào (1) đưa về hệ phương trình : ⎨ ⎩x−y = b ⎧ F(x ).F(y) = m Tương tự dạng 1, dùng công thức đổi nhân thành b Dạng 2 : ⎨ ⎩x±y=n + ⎧ F(x ) / F(y) = m c Dạng 3 : ⎨ ⎩x±y=n a c a+c a−c biến đổi phương trình (1) rồi dùng Dùng tỉ lệ thức : = ⇔ = b d b+d b−d công thức đổi + thành x d Dạng khác : tìm... P a Phân thức hữu tỷ : lim = lim 1 (dạng 0 / 0) = lim x →a Q ( x ) x →a ( x − a)Q1 ( x ) x →a Q1 f (x) sin u (dạng 0 / 0), dùng công thức lim =1 b Hàm lg : lim x → a g( x ) u→ 0 u f (x) c Hàm chứa căn : lim (dạng 0 / 0) , dùng lượng liên hiệp : x →a g ( x ) 1 Tìm lim dạng a2 – b2 = (a – b)(a + b) để phá , a3 – b3 = (a – b)(a2 + ab + b2) để phá 3 d Hàm chứa mũ hay log (dạng 1∞) : dùng công thức lim... ta cắt D bằng các đường ngang ngay chỗ gãy Chọn tính ∫ theo dx hay dy để ∫ dễ tính toán hay D ít bò chia cắt Cần giải các hệ phương trình tọa độ giao điểm Cần biết vẽ đồ thò các hình thường gặp : các hàm cơ bản, các đường tròn, (E) , (H), (P), hàm lượng giác, hàm mũ, hàm Cần biết rút y theo x hay x theo y từ công thức f(x,y) = 0 và biết chọn + (y = + hay − : trên, y = − : dưới, x = + 6 Tính thể... b2 + c2 – 2bc.cosA 1 abc 1 * S = ah a = ab sin C = = pr 2 2 4R = p( p − a)( p − b)( p − c) 1 * Trung tuyến : m a = 2 b 2 + 2 c2 − a 2 2 A 2 bc cos 2 * Phân giác : ℓa = b+c IV- TÍCH PHÂN 1 Đònh nghóa, công thức, tính chất : * F là 1 nguyên hàm của f ⇔ f là đạo hàm của F Họ tất cả các nguyên hàm của f : ∫ f (x)dx = F(x) + C (C ∈ R) uα+1 +C, α ≠ – 1 * ∫ du = u + C ; ∫ u du = α +1 du u u u u ∫ u = ln u +... tổng các phân thức đơn giản, dựa vào các thừa số của Q : A A A2 An x+a→ , (x + a)n → 1 + + + 2 x+a x + a (x + a) (x + a)n ax 2 + bx + c(Δ < 0) → A(2ax + b) B dx ⎛ ⎞ (Δ < 0) = ∫ du /( u2 + a2 ) : đặt u = atgt ⎟ + 2 ⎜∫ 2 2 ax + bx + c ax + bx + c ⎝ ax + bx + c ⎠ TRANG 13 5 Tính diện tích hình phẳng : b a D giới hạn bởi x = a, x = b, (Ox), (C) : y = f(x) : SD = ∫ f (x ) dx a f(x) : phân thức hữu tỉ :... b2) để phá 3 d Hàm chứa mũ hay log (dạng 1∞) : dùng công thức lim (1 + u)1/ u = e u→ 0 2 Đạo hàm : f (x) − f (x o ) x→xo x − xo a Tìm đạo hàm bằng đònh nghóa : f ' (x 0 ) = lim Tại điểm xo mà f đổi công thức, phải tìm đạo hàm từng phía : / / / / f+ (x o ) = lim , f− ( x o ) = lim Nếu f+ (x o ) = f− (x o ) thì f có đạo hàm tại xo + x →x o − x →x o b Ý nghóa hình học : α TRANG 15 f(x) M k = tgα = f/(xM)... : f lồi ⎧ f / (x ) = 0 d f đạt CĐ tại M ⇔ ⎨ // M ⎩ f (x M ) < 0 ⎧ f / (x ) = 0 f đạt CT tại M ⇔ ⎨ // M ⎩ f (x M ) > 0 M là điểm uốn của f ⇔ f//(xM) = 0 và f// đổi dấu khi qua xM e Tính đạo hàm bằng công thức : C/ = 0, (xα)/ = αxα–1 , (lnx)/ = 1/x , 1 , (ex)/ = ex ( loga x )′ = x ln a x / x (a ) = a lna, (sinx)/ = cosx , (cosx)/ = – sinx, (tgx)/ = 1/cos2x, (cotgx)/ = –1/sin2x, (ku)/ = ku/ , (u ±v)/... c Dạng 3 : ⎨ ⎩x±y=n a c a+c a−c biến đổi phương trình (1) rồi dùng Dùng tỉ lệ thức : = ⇔ = b d b+d b−d công thức đổi + thành x d Dạng khác : tìm cách phối hợp 2 phương trình, đưa về các pt cơ bản 16 Toán Δ : * Luôn có sẵn 1 pt theo A, B, C : A + B + C = π * A + B bù với C, (A + B)/2 phụ với C/2 * A, B, C ∈ (0, π) ; A/2, B/2, C/2 ∈ (0, π/2) A + B ∈ (0, π) ; (A + B)/2 ∈ (0, π/2) ; A – B ∈ (– π, π) ,... x = a khi Q(a) = 0, P(a) ≠ 0 • Có tcn khi bậc P ≤ bậc Q : với x → ∞, tìm lim y bằng cách lấy số hạng bậc cao nhất của P chia số hạng bậc cao nhất của Q P (x) • Có tcx khi P hơn Q 1 bậc, khi đó chia đa thức ta có : f (x ) = ax + b + 1 , tcx Q( x ) là y = ax + b Nếu Q = x – α, có thể chia Honer * Biện luận tiệm cận hàm bậc 2 / bậc 1 : c (d≠0) y = ax + b + dx + e • a ≠ 0, c ≠ 0 : có tcđ, tcx • a = 0, c... trình đk tx = số lượng tiếp tuyến) TRANG 18 * // (Δ) : y = ax + b : (d) // (Δ) ⇒ (d) : y = ax + m Tìm m nhờ đk tx 1 * ⊥ (Δ) : y = ax + b (a ≠ 0) : (d) ⊥ (Δ) ⇒ (d) : y = − x + m Tìm m nhờ đk tx a / c Bài toán số lượng tiếp tuyến : tìm M ∈ (C ) : g(x, y) = 0 sao cho từ M kẻ được đến (C) đúng n tiếp tuyến (n = 0, 1, 2, ), M(xo,yo) ∈ (C/) ⇔ g(xo,yo) = 0; (d) qua ⎧y = y d (1) Thế k vào (1) được phương trình . ⎩ ⎨ ⎧ =± =± )2(nyx )1(m) y (F)x(F . Dùng công thức đổi + thành nhân, thế (2) vào (1) đưa về hệ phương trình : ⎩ ⎨ ⎧ =− =+ byx a y x b. Dạng 2 : ⎩ ⎨ ⎧ =± = nyx m) y (F).x(F . Tương tự dạng 1, dùng công thức đổi nhân. tỉ lệ thức : db ca db ca d c b a − − = + + ⇔= biến đổi phương trình (1) rồi dùng công thức đổi + thành x. d. Dạng khác : tìm cách phối hợp 2 phương trình, đưa về các pt cơ bản. 16. Toán. (dạng 1 ∞ ) : dùng công thức e)u1(lim u/1 0u =+ → 2. Đạo hàm : a. Tìm đạo hàm bằng đònh nghóa : o o o xx 0 xx )x( f )x( f lim)x('f − − = → Tại điểm x o mà f đổi công thức, phải tìm đạo