1. Trang chủ
  2. » Giáo án - Bài giảng

Đề 1-thi toán Casio thị xã 09-10

10 509 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 449,5 KB

Nội dung

2/ Nếu khơng nĩi gì thêm ở mỗi bài hoặc mỗi câu, hãy tính chính xác đến 8 chữ số thập phân... Tính vận tốc của ca nô khi xuôi dòng, biết rằng vận tốc nước chảy là 6km/h.. Vận tốc của ca

Trang 1

PHÒNG GD - ĐT KỲ THI TUYỂN CHỌN HỌC SINH GIỎI THỊ XÃ

THỊ XÃ ĐỒNG XOÀI GIẢI TOÁN TRÊN MÁY TÍNH CẦM TAY

Đề số 1 Lớp 9 THCS - Năm học: 2009 - 2010

Thời gian làm bài: 150 phút – Ngày thi: 8/11/2009

Chú ý: - Đề thi này gồm 4 trang.

- Thí sinh làm bài trực tiếp vào bản đề thi này

(Họ, tên và chữ ký)

SỐ PHÁCH

(Do ban chấm thi ghi )

Giám khảo 2 :

Qui định :

1/ Thí sinh được sử dụng các loại máy tính Casio fx- 500MS, Casio fx – 500 ES,

Casio fx- 570MS và Casio fx – 570 ES.

2/ Nếu khơng nĩi gì thêm ở mỗi bài hoặc mỗi câu, hãy tính chính xác đến 8 chữ số thập

phân.

Bài 1 (5 điểm ):

Tính giá trị của mỗi biểu thức ( chính xác đến 4 chữ số thập phân) rồi điền vào ơ vuơng:

a) A =

4

1, 25 15,37 3,75

b) B = 3 5 3 5 2009 13,3

3 2 5 3 7 2 3 5 4 7

(1 sin 17 34`) (1 25 30`) (1 cos 50 13`) (1 cos 35 25`) (1 cot 25 30`) (1 sin 50 13`)

tg g

A

Bài 2 (5 điểm ):

Đa thức P x( )=x6+ax5+bx4+cx3+dx2+ +ex f cĩ giá trị là 3; 0; 3; 12; 27; 48 khi x lần lượt nhận giá trị là 1; 2; 3; 4; 5; 6

a) Xác định các hệ số a, b, c, d, e, f của P(x) rồi điền kết quả vào bảng

b) Tính giá trị của P(x) với x = 11; 12; 13; 14; 15; 16; 17; 18 rồi điền vào bảng.

Trang 2

P(11) = P(15) =

Bài 3 (5 điểm ):

a) Lúc 7 giờ sáng, một chiếc ca nô xuôi dòng từ bến A đến bến B, cách nhau 36km, rồi ngay lập tức quay trở về và đến bến A lúc 11 giờ 30 phút Tính vận tốc của ca nô khi xuôi dòng, biết rằng vận tốc nước chảy là 6km/h.

Vận tốc của ca nô khi xuôi dòng là:

b) Một trường tổ chức cho các lớp trồng cây Lớp thứ nhất trồng 18 cây và 1

11 số cây còn lại Lớp thứ hai trồng 36 cây và 1

11 số cây còn lại Lớp thứ ba trồng 54 cây và 1

11

số cây còn lại… Cứ như thế các lớp trồng hết số cây và số cây trồng được của các lớp bằng nhau Hỏi trường đó đã trồng được bao nhiêu cây ?

Số cây trường đó trồng được là:

Bài 4 (5 điểm ):

Hình chữ nhật ABCD có độ dài các cạnh AB = m, BC = n

Từ A kẻ AH vuông góc với đường chéo BD (xem hình 1) a) Tính diện tích tam giác ABH theo m, n

b) Cho biết m = 3,15 cm và n = 2,43 cm Tính

( chính xác đến 4 chữ số thập phân) diện tích tam giác ABH

rồi điền vào ô vuông:

Tính theo m, n: S ABH = Tính theo số: S ABH

Bài 5 (5 điểm ):

1 Hình chóp tứ giác đều O ABCD. có độ dài cạnh đáyBC = a,

độ dài cạnh bên OA l= (Hình 2)

a) Tính diện tích xung quanh, diện tích toàn phần và thể tích của

hình chóp O ABCD theo al.

b) Tính ( chính xác đến 2 chữ số thập phân) diện tích xung quanh,

diện tích toàn phần và thể tích của hình chóp O ABCD khi cho biết

a=5,75cm, l=6,15cm.

Trang 3

Diện tích xung quanh S xq = S xq =

2 Người ta cắt hình chóp O ABCD. cho trong câu 1 bằng mặt phẳng song song với đáy ABCD sao cho diện tích xung quanh của hình chóp

O MNPQ được cắt ra bằng diện tích xung quanh của hình chóp cụt đều

MNPQ ABCD được cắt ra Tính thể tích hình chóp cụt đều được cắt ra ( chính xác đến 2 chữ số thập phân ) rồi điền vào ô vuông:

MNPQABCD

Bài 6 ( 5 điểm ):

Cho dãy số: ( 1 2 ) ( 1 2 ) , 1, 2,3, , ,

2 2

n

1 Chứng minh rằng: U n+1=2U n+U n−1 với ∀ ≥n 1

Nội dung phần chứng minh ghi vào bảng sau:

Chứng minh:

2 Lập quy trình ấn phím liên tục tính U n+1 theo U nU n−1 với U1 =1,U2 =2 trên máy

tính cầm tay rồi ghi vào bảng sau:

Lập quy trình:

Trang 4

3 Tính các giá trị từ U17 đến U20

Bài 7 ( 5 điểm ):

1 Số chính phương P có dạng P=17712 81ab Tìm các chữ số a b, biết rằng a b+ = 13

2 Số chính phương Q có dạng Q=15 26849cd Tìm các chữ số c d, biết rằng

2 2

58

c +d =

Kết quả bài toán ghi vào bảng sau:

Bài 8 ( 5 điểm ):

Dân số của một thành phố năm 2009 là 330.000 người

a) Hỏi năm học 2009-2010, dự báo có bao nhiêu học sinh lớp 1 đến trường, biết trong 10 năm trở lại đây tỉ lệ tăng dân số mỗi năm của thành phố là 1,5% và thành phố thực hiện tốt chủ trương 100% trẻ em đúng độ tuổi đều đến lớp 1 ? (Kết quả làm tròn đến hàng đơn vị)

b) Nếu đến năm học 2017-2018, thành phố chỉ đáp ứng được 120 phòng học cho học sinh lớp 1, mỗi phòng dành cho 35 học sinh thì phải kiềm chế tỉ lệ tăng dân số mỗi năm là bao nhiêu, bắt đầu từ năm 2009 ? (Kết quả lấy với 2 chữ số ở phần thập phân)

a) Số học sinh lớp 1 đến trường năm học 2009-2010 là :

b) Tỉ lệ tăng dân số phải là : ………

Bài 9 ( 5 điểm ):

Cho dãy số xác định bởi công thức :

2

3 13 1

n n

n

x x

x

+

+

= + với x1=0, 09, n = 1,2,3,…, k,…

a) Viết quy trình bấm phím liên tục tính x n+1 theo x n.

b) Tính x x x x x2, , , ,3 4 5 6( với đủ 10 chữ số trên màn hình )

c) Tính x100,x200 ( với đủ 10 chữ số trên màn hình )

Quy trình ấn phím liên tục:

x2 =

x3 =

100 =

Trang 5

x5 =

200 =

Bài 10 ( 5 điểm ):

Tìm n nhỏ nhất sao cho 4 chữ số tận cùng của số 2n là 7776

Cách giải:

Kết quả:

n =

Hết

-H

H

ƯỚNG DẪN CHẤM THANG ĐIỂM:

Bài 1 (5 điểm ) :

Mỗi biểu thức A, B, C cĩ thể tính trực tiếp hoặc tính từng phần (tử, mẫu) rồi phối

hợp các phép tính Riêng biểu thức C cĩ thể rút gọn rồi tính Kết quả:

a) A≈516,9043

b) B≈5,5464

c) C ≈0,0157

Bài 2 (5 điểm ) :

Giải bằng phương pháp đồng nhất thức, ta được:

P(x) = (x – 1)(x – 2)(x – 3)(x – 4)(x – 5)(x – 6) + 3(x – 1)(x – 2) -3(x – 1) +3

Thu gọn lại được:

P(x) = x6 – 21x5 + 175x4 - 735x3 +1627x2 – 1776x + 732

Từ đĩ suy ra:

Bài 3 (5 điểm ):

a) Gọi x (km/h) là vận tốc của ca nơ đi xuơi dịng ( ĐK: x > 12)

- Vận tốc thực của ca nô khi nước yên lặng: x - 6 (km/h)

- Vận tốc của ca nô khi ngược dòng: x - 12 (km/h)

- Thời gian ca nơ xuơi dịng từ A đến B là 36

x (giờ)

- Thời gian ca nơ ngược dịng từ B đến A là 36

12

x− (giờ)

1,5 đ 1,5 đ 2,0

đ

1,5 đ 1,5 đ

0,5

đ 0,5

đ 0,5

đ 0,5

đ

Trang 6

- Ta có phương trình: 36 36 4,5

12

− Trên máy giải ra được: 4 và 24, nghiệm 4 ta loại do không thoà ĐK, chỉ nhận x = 24

Vận tốc của ca nô khi xuôi dòng là: 24 km/h

b) Gọi x là số cây của trường đó trồng được (x nguyên dương)

- Số cây lớp thứ nhất trồng là 18 1 ( 18)

11 x

- Số cây lớp thứ hai trồng là 36 1 10( 18) 36

11 11 x

- Vì số cây trồng của các lớp bằng nhau, nên ta có PT:

1

18 ( 18)

11 x

+ − = 36 1 10( 18) 36

11 11 x

Trên máy giải ra được: x = 1800

Số cây trường đó trồng được là: 1800 cây

Bài 4 (5 điểm ):

a) BD= m2+n2

2 2

+ :

1

2

BDC

2

2

ABH

BDC

b) thay số: m = 3,15; n = 2,43 được S ABH =2,399376279 2,3994≈

Tính theo m, n: S ABH = 23 2

m n

m +n

Tính theo số: S ABH ≈ 2,3994

Bài 5 (5 điểm ):

2 2

4

xq

a

S = AB OE= a l

2

2 2 2

tp

a

S =a + a l

3 ñ

2 ñ

a) 3,5 ñ b) 1,5 đ

Trang 7

2 2

1

a

2

4

xq

a

S = AB OE= a lS xq =62,52 (cm

2)

2 2 2

4

tp

a

S =a + a lS tp =95,58 (cm

2)

2 2 1

a

2)

2

MNPQABCD

Bài 6 ( 5 điểm ):

Cho dãy số: ( 1 2 ) ( 1 2 ) , 1, 2,3, , ,

2 2

n

1 Chứng minh rằng: U n+1 =2U n+U n−1 với ∀ ≥n 1

Nội dung phần chứng minh ghi vào bảng sau:

Chứng minh:

Nhập công thức U nvào máy, và ấn Calc 1, 2, 3, 4, 5, 6 sẽ được 6 số

hạng đầu tiên của dãy số:

1 1; 2 2 ; 3 5 ; 4 12 ; 5 29 ; 6 70

Gọi công thức truy hồi tính U n+ 2 theo U n+ 1 và U n có dạng:

n n

U +2 = +1+ Với n=1 ⇒ U3 =aU2+bU1 ⇒ 2.a+1.b=5 (1)

n= ⇒ U =aU +bUa+ b= (2) Từ (1) và (2) ta có hệ phương trình sau:  + =25a a b+ =2b 512

Giải hệ ta được:  =b a=12

Suy ra: U n+1=2U n+U n−1 với ∀ ≥n 1

2

Lập quy trình:

0.75 + 0,75

0,75 + 0,5 0,75 + 0,5

1 đ

2 đ

2 đ

Trang 8

Ấn 2 SHIFT STO X (nhớ chỉ số của U2 )

1 SHIFT STO A (nhớ U1 vào ô A)

2 SHIFT STO B (nhớ U2 vào ô B)

Lập dãy các phép tính liên tiếp :

X = X +1 : A = 2B + A : B = 2A + B

Sau đó ấn = = …

3.Tính các giá trị từ U17 đến U20

Bài 7 ( 5 điểm ):

1 P=17712 81ab = k 2 , biết rằng a b+ = 13

4 a 9 ; 4 b 9

( ; ) (4;9),(5;8).(6;7),(7;6), (8;5),(9; 4)a b

Ta tính k= p với các cặp (a ; b) tương ứng, chỉ có 177129481 13309=

Suy ra a = 9 ; b = 4

2 Q=15 26849cd = m 2 , biết 2 2

58

c +d =

Từ

2 2

58

c

 ≤ ≤

 ≤ ≤ ⇒ < <

 + =

Từ c2 = 58 – d2 , lập: 0 →D ; D D= +1:C= 58−D2 ấn = = …

c = 3 ; d = 7 và c = 7 ; d = 3

Thử lại trên máy Q = 157326849 thỏa mãn Vậy c = 7 ; d = 3

Kết quả bài toán ghi vào bảng sau:

Bài 8 ( 5 điểm ):

a) Số dân năm 2002 là 7

330000 1,015

Số trẻ em tăng năm 2003, đến năm 2009 tròn 6 tuổi vào lớp 1:

7

330000

0,015 4460 1,015 × ≈

b) Số HS đủ độ tuổi vào lớp 1 năm học 2017-2018 sinh vào năm 2011:

Tỉ lệ tăng dân số cần khống chế ở mức x%:

330000 1 35 120

100 100

  Giải pt ta có: x≈1, 25

Bài 9 ( 5 điểm ):

0,25 x4 đ

1,25 x 4ñ

3 đ

2 ñ

Trang 9

Quy trình ấn phím liên tục: (máy 570 MS)

1 SHIFT STO X

0,09 SHIFT STO A

Lập dãy liên tiếp các phép tính:

X = X + 1 : B = (3 + 13A2 ) ÷(1+A2 ) :

X = X + 1 : A = (3 + 13B2 ) ÷(1+B2 )

Ấn = liên tiếp, cho ta i và giá trị của xi

x2 = 3,080349172

x3 = 12,04657946

x4 = 12,93156313

x5 =12,94055592

x6 = 12,94063802

x100 = 12,94063877

x200 =12,94063877

Bài 10 ( 5 điểm ):

Tìm n nhỏ nhất sao cho 4 chữ số tận cùng của số 2n là 7776

Cách giải:

Ta cĩ 2n = 10000.Y +7776 ĐK: 2n > 7776 ⇒ ≥n 13

và 2 7776

10000

n

Vào máy: 570 MS

12 SHIFT STO X ( gán chỉ số của n)

Lập dãy các phép tính:

X = X + 1 : 2 7776

10000

X

Ấn = liên tiếp, cho ta n = 40 và giá trị của thương Y= 109951162

Kết quả:

n = 40

HẾT

Trên đây là hướng dẫn giải, trường hợp học sinh có các lời giải khác đúng vẫn

cho điểm tối đa, giám khảo có thể chia điểm chi tiết từng phần và cho điểm phù

hợp

3

đ

1

đ + 1 đ

2 đ

3 đ

Ngày đăng: 08/07/2014, 18:00

HÌNH ẢNH LIÊN QUAN

1. Hình chóp tứ giác đều  O ABCD . có độ dài cạnh đáy BC     = a , - Đề 1-thi toán Casio thị xã 09-10
1. Hình chóp tứ giác đều O ABCD . có độ dài cạnh đáy BC = a , (Trang 2)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w