Phân loại Một số dạng toán tỉ lệ thức lớp 7A.. đặt vấn đề Qua thực tế giảng dạy và trao đổi cùng các đồng nghiệp tôi nhận thấy các bài toán dùng kiến thức về tỉ lệ thức để giải là một p
Trang 1Phân loại Một số dạng toán tỉ lệ thức lớp 7
A đặt vấn đề
Qua thực tế giảng dạy và trao đổi cùng các đồng nghiệp tôi nhận thấy các bài toán dùng kiến thức về tỉ lệ thức để giải là một phần hay đợc mọi ngời quan tâm cả về phơng pháp giảng dạy, cả về nội dung kiến thức, trong đó việc phân loại bài tập và phơng pháp suy luận tìm tòi lời giải đối với từng dạng, đã đợc chúng tôi đề xuất
đem ra trao đổi ở tổ chuyên môn, rồi đợc áp dụng vào các tiết giảng ở các lớp đại trà và các lớp bồi dỡng HSG đã đạt kết quả tốt, nay chúng tôi đem trình bầy ở đây
hy vọng góp đợc một phần nhỏ bé của mình vào kho tàng kinh nghiệm chung trong việc nâng cao chất lợng dạy học
Các bài toán về tỉ lệ thức là một mảng toán rất rộng nên chúng tôi không có ý định
đề cập tới tất cả các dạng ở các khối lớp mà chỉ hạn chế mức độ toán 7 để sử dụng trong giảng dạy và bồi dỡng học sinh khá, giỏi lớp 7
B.thực trạng dạy học:
Khi giảng dạy phần toán tỉ lệ thức do không phân loại tốt từng dạng bài nên khi
h-ớng dẫn học sinhh giáo viên thờng đan xen các dạng bài tập với nhau, làm cho học sinh bị rối trong trình bầy và t duy tìm tòi lời giải, khi trình bầy lời giải nhiều em còn lẫn lộn giữa các cách giải với nhau
C.điều tra cơ bản
Chúng tôi đã tiến hành khảo sát chất lợng học sinh ở mảng toán tỉ lệ thứckhi cha dạy theo kiểu phân loại bài tập vao cuối năm học 2008- 2009 có kết quả nh sau:
d.giải quyết vấn đề
Chúng tôi đã tóm lợc phần kiến thức cơ bản và phân dạng bài tập giúp cho học
sinh nắm bài đợc dễ dàng hơn
I Kiến thức cơ bản
1 Tỉ lệ thức
Định nghĩa:
Tỉ lệ thức là đẳng thức của hai tỉ số a c
b d .
Tỉ lệ thức a c
b d còn đợc viết là a:b = c:d.
2 Tính chất
Tính chất 1 (tính chất cơ bản của tỉ lệ thức)
Nếu a c
b d thì a.d = b.c
Tính chất 2 (điều kiện để 4 số lập thành tỉ lệ thức)
Nếu ad = bc và a, b, c, d 0 thì ta có các tỉ lệ thức:
a c a, b d, c d, b.
b d c d b a c a
3 Tính chất của dãy tỉ số bằng nhau
Từ dãy tỉ số bằng nhau a c e
b d f ta suy ra:
a c e
b d f =
a c e a c e
b d f b d f
(giả thiết các tỉ số đều có nghĩa)
1
Trang 24 Tổng nquát cho dãy tỉ số bằng nhau:
3
1
n n
a a
a
(n2; nZ)
a c e ma nb he
b d f mb nd hf
Nếu nói: Các sỗ x, y, z tỉ lệ với các số a, b, c ta có thể viết nh sau:
x y z
ab c hoặc x: y: z = a: b: c
II các dạng bài tập và phơng pháp giải
Dạng 1: Nhận biết tỉ lệ thức: chủ yếu là ta dùng phép thử trực tiếp
1) Tìm các tỉ số bằng nhau trong các tỉ số sau rồi lập các tỉ lệ thức: 28:14; 1
2 : 2
2 ; 8: 4;
1 2 :
2 3; 3:10; 2,1: 7; 3: 03.
Giải:
28:14 = 8:4 ; 3 : 10 = 2,1 : 7
2) Từ các tỉ số sau đây có lập đợc tỉ lệ thức không?
a) 3,5: 5,25 và 14:21: b) 3 2
10 5 và 2,1: 3,5;
c) 6,51: 15,19 và 3: 7; d) -7: 2
4
3 và 0,9: (-0,5).
Giải:
a), c) đợc
Dạng 2: Tính số cha biết bằng cách áp dụng tính chất tỉ lệ thức:
Tìm x biết:
a) 2x:6 = 5:3
c) (2 1) 3
x
x
Giải:
a) 2x: 6= 5: 3 => 2x = 6.5 : 3 => 2x = 10 => x = 10 :2 => x = 5
24 7
=> x= (24/7 +2 ):3 = 38
21
c) (2 1) 3
x
x
=> 4x2 -1 = 15 => x2 = 4=> x= 2 hoặc x = -2 Dạng3: Tìm số cha biết (áp dụng tính chất dãy tỉ số bằng nhau):
I Tìm x, y 0 biết:
a) 3
4
x
y và 2x+ 5y = 10
b) 2
3
x
y
1
3 và 2x + 3y = 7
c) 21x = 19y và x- y = 4
d)
x y
và x.y = 84
2
Trang 3e)
x y
và x2 – y2 = 4 (x, y > 0)
Giải:
a) 3
4
x
y => 3 4
x y
=> 2 5
x y
Ta có 2 5 2 5 10
x y x y
x= 15
13; y =
20 13
b), c) giải tơng tự
d) Do x 0 Nên từ
x y
=>
x xy x xy x
10x2 = 3x2 +252 => x2 = 36 => x = 6 hoặc x = -6
e) Từ
x y
=>
x y x y
=>x= 5
2 và y=
3
2 hoặc x=
-5
2 và y= -
3 2
II Tính x, y, z biết rằng:
x y y z
x y z
b) 2x = 3y = 5z, x+y-z = 95
c)
x y z
Giải:
a)Biến đổi ;
x y y z
x y y z
Kết hợp với x + y + z = 92 ta đợc x= 20; y = 30; z = 42
b) Từ 2x = 3y = 5z ta có 2 3 5
tức là
x y z
kết hợp với x+y-z = 95
Ta đợc x= 75 ; y = 50 ; z = 30
c) Từ :
x y z
áp dụng tính chất dãy tỉ số bằng nhau cho ba tỉ số đầu ta đợc:
x y z
x y z
x y z
Nếu x+y+z = 0 thì từ (1) ta suy ra x= y = z = 0
Nếu x +y +z 0 thì từ (2) suy ra 1
2 = x + y+ z Khi đó (1) trở thành 1
2x = 3
2 x x=
1
2
2y = 3
2 y => y =
1 2
2z = - 3
2 z z =
-1 2
Vậy (x, y, z) = ( 0, 0, 0) hoặc (x, y, z) = (1
2,
1
2 ,-
1
2)
3
Trang 4Dạng4: Chứng minh tỉ lệ thức:Đây là một phần khó trong các bài toán ti lệ thức, khi chúng tôi giảng dạy phần này, nhiều học sinh ngạc nhiên không biết do đâu mà thầy ,cô lại có đợc lời giải nh vậy, do đó chúng tôi đã cố gắng giúp cho học sinh nắn đợc một số cách giải và phơng pháp cơ bản để tìm tòi lời giải, đó là:
Cách1 -Phân tích ngợc để phát hiện biểu thức cần thêm hoặc bớt vào đẳng thức đã cho để suy ra biểu thức cần chứng minh
Cách 2 -Đặt ẩn phụ rồi chỉ ra hai vế của đẳng thức cần phải chứng minh cùng bằng một biểu thức thứ ba
Cách3- Lập các tích trung tỉ và các tích ngoại tỉ rồi so sánh chúng kết hợp với đẳng thức suy ra đợc từ giả thiết
Ví dụ1 Cho tỉ lệ thức a c
b d Chứng minh rằng ta có các tỉ lệ thức sau( giả thiết
các tỉ lệ thức phải chứng minh đều có nghĩa):
a) a b c d;
a b c d
b)2 5 2 5
;
a b c d
a b c d
c)
2 2
ab a b
cd c d
Câu a) Tìm tòi lời giải:
;
a b c d
a b c d
<= (a-b)(c+d) = (c-d)(a+b) <= ac +ad – bc- bd = ac + bc –ad –bd <= ad – bc = bc – ad <= 2ad = 2bc <= ad = bc <= a c
b d
Giải:
Cách 1 a c
b d => ad = bc => 2ad = 2bc => ad – bc = bc – ad
ac + ad – bc – bd = ac + bc – ad – bd => (a-b)(c+d) = (c-d)(a+b)
a b c d;
a b c d
Cách 2 : Dùng ẩn phụ
Đặt a c
b d = k => a = bk ; c = dk =>
a b bk b b k k
a b bk b b k k
c d dk d d k k
a b bk b d k k
Từ (1) và (2) ta có đẳng thức cần phải chứng minh
Câu b)
Cách thứ nhất là ta có thể so sánh tích các trung tỉ và tích các ngoại tỉ
Giải:
Xét tích A = (2a + 5b)(3c – 4d) = 6ac – 8ad + 15bc – 20bd
B = (3a – 4b)(2c + 5d) = 6ac +15ad – 8bc – 20bd
Mặt khác theo giả thiết ta lại có: a c
b d => ad = bc
Nên B = 6ac + 15bc – 8ad – 20bd = A => 2 5 2 5
;
a b c d
a b c d
Cách 2: làm tơng tự cách 2 của câu a) Chỉ ra 2 vế của đẳng thức cần chứng minh
đều bằng 2 5
k
k
từ đó suy ra điều phải chứng minh
4
Trang 5Ví dụ2: Cho tỉ lệ thức: a c
b d Chứng minh rằng
ac a c
bd b d
Giải:Cách1: Đặt a c
b d = k => a = bk; c = dk Ta có:
ac bk dk.
bd bd = k
2 (1)
2
a c bk dk k b d
k
Từ (1) và (2) ta suy ra điều phải chứng minh
Cách 2:
Từ: a c
b d =>
.
, do đó
a c ac
b d bd (1)
Theo tính chất dãy tỉ số bằng nhau, ta có:
Từ (1) và (2) Ta suy ra điều phải chứng minh
Cách 3: Xét tích ac(b2 + d2) và bd(a2 + c2), ta có:
ac(b2 +d2) = ab2c+ acd2 =ab.bc + ad.cd (1)
bd(a2+ c2) = a2bd + bc2d = ab.ad = bc.cd (2)
Mặt khác ta lại có: a c
b d => ad = bc
Kết hợp với (1) và (2) suy ra:
ac(b2 +d2) = bd(a2+ c2) Suy ra điều phải chứng minh
Bài tập tự giải
Bài1 Cho bốn số khác không a1, a2 , a3, a4 thỏa mản điều kiện a2 = a1.a3 và a3 =
a2.a4 Chứng minh:
Gợi ý cách giải: Từ điều kiện đã cho, áp dụng tính chất tỉ lệ thức để có đợc dãy tỉ
số bằng nhau 1 2 3
a
a a
a a a
Bài 2 Cho bốn số nguyên dơng a, b, c, d trong đó b là trung bình cộng của a và c
2
c b d .
Chứng minh bốn số đã cho lập thành một tỉ lệ thức
Gợi ý cách giải: Chỉ ra tồn tại đẳng thức ad = bc
Dạng 5: Một số bài toán thờng quy về tỉ lệ thức để giải: Đối với dạng toán này ta thờng tiến hành theo 3 bớc đó là :
-Xác định xem đây là bài toán tỉ lệ thuận hay tỉ lệ nghịch
-Xác định các đại lợng và dựa vào tính chất để lập tỉ lệ thức
-áp dụng các cánh giải đã nêu trên để tính các đại lợng phải tìm
Bài 1:Bài toán tỉ lệ thuận
Ba lớp 7A, 7B, 7C có số học sinh giỏi phân bố theo tỉ lệ 3, 5, 7 Tính số học sinh gỏi của cả ba lớp, biết rằng lớp 7C có số học sinh giỏi nhiều hơn lớp 7A là 12 em Giải:
Gọi số học sinh giỏi của các lớp 7A,7B, 7C lần lợt là x, y, z Theo bài ra ta có:
x y z
và z – x = 12
Từ:
x y z
z x
=> x = 3.3 = 9
y = 5.3 = 15
z = 7.3 = 21
5
Trang 6Vởy lớp 7A, 7B, 7C lần lợt có 9, 15, 21 học sinh giỏi và số học sinh giỏi ở cả 3 lớp
là 9 + 15 + 21 = 45 (em)
Bài 2: Bài toán tỉ lệ thuận
Biết rằng hiện giờ là 3 giờ, với giả thiết rằng các kim đồng hồ chạy đúng Hãy tính xem sau bao nhiêu phút nữa thìkim phút đuổi kịp kim giờ
Giải:
Gọi x, y là số vòng mà kim phút và kim giờ đã quay đợc khi kim phút đuổi kịp kim giờ Ta có x- y = 1
4 vòng (1)
Mặt khác vì khoảng các tỉ lên thuận với khoảng cách mà vận tốc kim phút gấp 12 lần vận tốc kim giờ nên: 12
y
(2) Thay (1) vào (2) Tính đợc x = 3
11 (vòng) ứng với
.60 16
11 11 (phút)
Vậy sau 4
16
11phút thì kim phút đuổi kịp kim giờ.
Bài 3 Bài toán tỉ lệ nghịch
Một tàu thủy chậy từ bến sông A đến bến sông B vói vận tốc 20km/h và quay về
A với vận tốc 24km/h Thời gian cả đi lẫn về mất 5h30phút Tìm chiều dài quãng sông từ A đến B
Giải:
Gọi Vận tốc V1 = 20 km/h và t1 là thời gian tàu thủy đi từ bến A đến bến B , vận tốc V2 = 24 km/h và thời gian t2 của tàu thủy đi tứ bến B về bến A
Ta có: V1t1 = V2t2 => 1 2 1 2
20 24 5,5
V V V V
t t t t
5,5
Ta có t1= V2 : 44
5,5 = 24 :
44 5,5 = 3 (h)
Chiều dài quãng sông từ A đến B là:
S = V1t1 = 20.3 = 60 (km)
Các bài tập tự giải:
Bài 1: Đội I có 10 công nhân mỗi ngời làm 18 ngày đào đắp đợc 648 m3 đất Hỏi 8 công nhân của đội II mỗi ngời lam 25 ngày đào đắp đợc bao nhiêu m3 đất? (giả thiết rằng năng suất của mỗi công nhân là nh nhau)
Bài 2*: Lúc rời nhà đi học bạn Tùng xem giờ thấy kim đồng hồ chỉ hơn 1 giờ và khi đến trờng thấy hai kim đồng hồ đã đổi vị trí cho nhau (trong thời gian này hai kim đồng hồ không chập với nhau lần nào) Tính thời gian Tùng đi từ nhà đến tr-ờng? Xác định thời điểm Tùng xuất phát từ nhà và đến trtr-ờng?
Bài 3: Độ dài các cạnh của một tam giác tỉ lệ với nhau theo 2: 3: 4 Hỏi các chiều cao tơng ứng của các cạnh trong tam giác đó tỉ lệ với nhau theo tỉ số nào?
e Kết quả thực nghiệm:
Sau một số năm chúng tôi đã cho tiến hành kiểm chứng trên các nhóm học sinh
có lực học nh nhau ở khối 7, thì nhóm học sinh khi học đợc phân dạng bài tập bao giờ cũng có kết quả bài làm tốt hơn về dung lợng, sáng sủa hơn về nội dung
Kết quả khảo sát năm hoc 2009-2010
Khi cha dạy phân loại bài tập:
Số học
Sau khi dạy phân loại bài tập:
Số học
6
Trang 740 5 10 20 5 0
g bài học kinh nghiệm:
Trong khi giảng dạy toán nói chung, đặc biệt là dạy các tiết luyện tập và bồi dỡng học sinh giỏi thì việc phân dạng các bài tập là rất cần thiết, nó vừa gúp cho học sinh nắm bài một cách rõ ràng, vừa rèn luyện cho học sinh thói quen thờng xuyên tổng hợp lại các đơn vị kiến thức đã học theo các nhiệm vụ, điều này không chỉ là một thói quen tốt trong học tập mà còn là một phẩm chất tốt trong cuộc sống
*
***
Trên đây chỉ là một phần nhỏ trong các dạng toán về tỉ lệ thức và các bài toán có liên quan thờng gặp ở lớp 7 và một số kết quả thu đợc trong quá trình giảng dạy, chúng tôi xin đợc mạnh dạn trình bày, mặc dù đã cố gắng nhiều nhng cắc chắn vẫn còn nhiều khiếm khuyết Rất mong đợc sợ góp ý của các đồng nghiệp
Tài liệu tham khảo:
-Toán bồi dỡng học sinh lớp 7 (Vũ Hữu Bình- Tôn Thân- Đỗ Quang Thiều)
-Toán nâng cao và các chuyên đề đại số 7 (Vũ Dơng Thụy- Nguyễn Ngọc Đạm) -Tuyển tập 306 bài tập toán đại số lớp 7 (Phan Hoàng Ngân)
-Một số vấn đề phát triển đại số 7 (Vũ Hữu Bình )
Hoàn chỉnh ngày 14/4/2010
7