1. Trang chủ
  2. » Thể loại khác

Toan ve TICH PHAN hay nhat hien nay doc

12 407 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 893 KB

Nội dung

333 BÀI TOÁN TÍCH PHÂN LUYỆN THI ĐẠI HỌC 1/ Cho hàm số : f(x)= x.sinx+x 2 . Tìm nguyên hàm của hàm số g(x)= x.cosx biết rằng nguyên hàm này triệt tiêu khi x=k π 2/Định m để hàm số: F(x) = mx 3 +(3m+2)x 2 -4x+3 là một nguyên hàm của hàm số: f(x) = 3x 2 +10x-4. 3/Tìm họ nguyên hàm của hàm số: f(x)= cos 3 x.sin8x. TÍNH : 4/I = 3 2 4 3tg x dx π π ∫ 5/I = 4 2 6 (2cotg x 5)dx π π + ∫ 6/I = 2 0 1 cos x dx 1 cosx π − + ∫ 7/ I = ∫ 2 0 π sin 2 x.cos 2 xdx 8/I = ∫ 3 0 π (2cos 2 x-3sin 2 x)dx 9 / I = 2 2 sin( x) 4 dx sin( x) 4 π −π π − π + ∫ 10 / I = ∫ − 3 6 π π (tgx-cotgx) 2 dx 11/ I = 4 4 0 cos x dx π ∫ 12 / I = 2 3 0 sin x dx π ∫ 13*/ I = 3 3 2 3 sin x sin x cot gx dx sin x π π − ∫ 14/I = 2 4 0 sin x dx π ∫ 15/I = ∫ 3 4 22 2 cos 2 sin 1 π π xx dx 16/I = ∫ 4 6 π π cotg2x dx 17/I = 2 2 sin x 4 e sin 2x dx π π ∫ 18/ I = ∫ + 4 0 2 2 cos π x e tgx . 34/I = 1 2 2 3 1 dx x 4 x− ∫ 19/ I = ∫ 2 4 4 sin 1 π π x dx 20/ I = ∫ 4 0 6 cos 1 π x dx 21/I = dxxxnsix )cos(2cos 44 2 0 + ∫ π 22/ I = 2 3 0 cos xdx π ∫ 23/ I = 3 2 0 4sin x dx 1 cosx π + ∫ 24/ I = 1 3 2 0 x 1 x dx− ∫ 25/I = 1 5 2 0 x 1 x dx+ ∫ 26/I = 1 0 x dx 2x 1+ ∫ 27/I = 1 x 0 1 dx e 4+ ∫ 28/I = 2 x 1 1 dx 1 e − − ∫ 29/I = 2x 2 x 0 e dx e 1+ ∫ 30/I = x 1 x 0 e dx e 1 − − + ∫ 31/I = e 2 1 ln x dx x(ln x 1)+ ∫ 32/I = 7 3 3 0 x 1 dx 3x 1 + + ∫ 33/I = 2 3 2 0 (x 3) x 6x 8dx− − + ∫ . 35/I = 4 2 2 1 dx x 16 x− ∫ 36*/I = 6 2 2 3 1 dx x x 9− ∫ 37/I = 2 2 2 1 x 4 x dx − − ∫ 38/I = 2 2 3 0 x (x 4) dx+ ∫ 39/I = 2 4 4 3 3 x 4 dx x − ∫ 40*/I = 2 2 2 2 x 1 dx x x 1 − − + + ∫ 41/I = ln 2 x 0 e 1dx− ∫ 42/I = 1 0 1 dx 3 2x− ∫ 43/I = 2 5 0 sin xdx π ∫ 44*/I = 3 0 1 dx cos x π ∫ 45/I = 2x 1 x 0 e dx e 1 − − + ∫ 46/I = ln3 x 0 1 dx e 1+ ∫ 47/I = 4 2 6 1 dx sin x cot gx π π ∫ 48/I = 3 2 e 1 ln x 2 ln x dx x + ∫ . 49/I = e 1 sin(ln x) dx x ∫ 50/I = 1 3 4 5 0 x (x 1) dx− ∫ 51/I = 1 2 3 0 (1 2x)(1 3x 3x ) dx+ + + ∫ 52/I = 2 3 1 1 dx x 1 x+ ∫ 53/I = 3 2 2 6 tg x cot g x 2dx π π + − ∫ 54/I = 1 2 3 0 (1 x ) dx− ∫ 55*/I = 1 2x 0 1 dx e 3+ ∫ 56/I = x ln3 x 3 0 e dx (e 1)+ ∫ 57/I = 0 2x 3 1 x(e x 1)dx − + + ∫ 58/I = 2 6 3 5 0 1 cos x sin x.cos xdx π − ∫ 59*/I = 2 3 2 5 1 dx x x 4+ ∫ 60/I = 4 0 x dx 1 cos2x π + ∫ 61/I = 2x ln5 x ln 2 e dx e 1− ∫ 62/I = 2 e 1 x 1 .ln xdx x + ∫ 63/I = 2 1 0 x dx (x 1) x 1+ + ∫ 64/I = 2 0 sin x.sin 2x.sin3xdx π ∫ 65/I = 2 4 4 0 cos2x(sin x cos x)dx π + ∫ 66*/I = 2 3 3 0 ( cosx sin x)dx π − ∫ 67/I = 7 3 8 4 2 x dx 1 x 2x+ − ∫ 68*/I = 2 0 4cos x 3sin x 1 dx 4sin x 3cos x 5 π − + + + ∫ 69/I = 9 3 1 x. 1 xdx− ∫ 70/I = 2 3 0 x 1 dx 3x 2 + + ∫ 71*/I = 6 0 x sin dx 2 π ∫ 72*/I = 2 0 x dx 2 x 2 x+ + − ∫ 73/I = 3 3 2 0 x . 1 x dx+ ∫ 74**/I = 1 2 0 ln(1 x) dx x 1 + + ∫ 75/I = 2 0 sin x dx sin x cos x π + ∫ 76/I = e 1 cos(ln x)dx π ∫ 77*/I = 2 2 0 4 x dx+ ∫ 78/I = 2 1 x dx 1 x 1+ − ∫ . 79/I = e 1 1 3ln x ln x dx x + ∫ 80/I = 3 2 2 ln(x x)dx− ∫ 81/I = e 2 1 (ln x) dx ∫ 82/I = 2 e e ln x dx x ∫ 83/I = 2 e 1 ln x dx ln x ∫ 84/I = 2 2 1 x ln(x 1)dx+ ∫ 85/I = 3 2 3 1 dx x 3+ ∫ 86/I = 1 2 0 1 dx 4 x− ∫ 87/I = 2 4 0 sin xdx π ∫ 88/I = 3 2 6 ln(sin x) dx cos x π π ∫ 89/I = 2 1 cos(ln x)dx ∫ 90*/I = 2 2 0 ln( 1 x x)dx+ − ∫ 91*/I = 3 2 2 1 dx x 1− ∫ 92/I = 3 8 1 x 1 dx x + ∫ 93/I = 3 3 2 1 x dx x 16− ∫ . 94/I = 6 2 0 cos x dx 6 5sin x sin x π − + ∫ 95*/I = 2 e 2 e 1 1 ( )dx ln x ln x − ∫ 96/I = 3 2 4 x 4 dx − − ∫ 97/I = 2 3 2 1 x 2x x 2 dx − − − + ∫ 98/I = 3 4 4 cos2x 1dx π π + ∫ 99/I = 0 cosx sin xdx π ∫ 100/I = 2 0 1 sin xdx π + ∫ 101/I = 3 4 4 sin 2x dx π π ∫ 102/I = 0 1 sin xdx π − ∫ 103/I = 1 3 2 1 ln(x x 1) dx −   + +     ∫ 104*/I = 2 0 xsin x dx 1 cos x π + ∫ 105*/I = 1 2 x 1 1 dx (x 1)(4 1) − + + ∫ 106*/I = 4 1 x 1 x dx 1 2 − + ∫ 107/I = 2 4 0 xsin xdx π ∫ 108/I = 2 4 0 x cos xdx π ∫ 109/I = 6 2 0 x.sin xcos xdx π ∫ 110*/I = 2 x 1 2 0 x e dx (x 2)+ ∫ 111/I = 2x 2 0 e sin xdx π ∫ 112/I = 2 2 1 1 x ln(1 )dx x + ∫ 113/I = e 2 1 e ln x dx (x 1)+ ∫ 114/I = 1 2 0 1 x x.ln dx 1 x + − ∫ 115/I = 2 t 1 ln x dx I 2 x   ⇒ <  ÷   ∫ 116/I = 3 0 sin x.ln(cosx)dx π ∫ 117/I = 2 e 2 1 cos (ln x)dx π ∫ 118/I = 4 0 1 dx cos x π ∫ 119*/I = 4 3 0 1 dx cos x π ∫ 120/I = 2 1 3 x 0 x e dx ∫ 121/I = 2 2 sin x 3 0 e .sin x cos xdx π ∫ 122/I = 2 4 0 sin 2x dx 1 cos x π + ∫ 123/I = 1 2 0 3 dx x 4x 5− − ∫ 124/I = 2 2 1 5 dx x 6x 9− + ∫ 125/I = 1 2 5 1 dx 2x 8x 26 − + + ∫ 126/I = 1 0 2x 9 dx x 3 + + ∫ 127/I = 4 2 1 1 dx x (x 1)+ ∫ 128*/I = 0 2 2 sin 2x dx (2 sin x) −π + ∫ 129/I = 1 2 0 x 3 dx (x 1)(x 3x 2) − + + + ∫ 130/I = 1 3 0 4x dx (x 1)+ ∫ 131/I = 1 4 2 0 1 dx (x 4x 3)+ + ∫ 132/I = 3 3 2 0 sin x dx (sin x 3) π + ∫ 133/I = 3 3 6 4sin x dx 1 cos x π π − ∫ 134/I = 3 2 6 1 dx cos x.sin x π π ∫ 135/I = 3 0 sin x.tgxdx π ∫ 136/I = 3 4 1 dx sin 2x π π ∫ . 137/I = 3 4 2 2 5 0 sin x dx (tg x 1) .cos x π + ∫ 138/I = 3 2 2 3 1 dx sin x 9cos x π π − + ∫ 139/I = 2 2 cosx 1 dx cos x 2 π π − − + ∫ 140/I = 2 0 1 sin x dx 1 3cos x π + + ∫ 141/I = 2 0 cos x dx sin x cos x 1 π + + ∫ 142/I = 4 2 1 1 dx x (x 1)+ ∫ 143/I = 1 3 3 1 dx x 4 (x 4) − + + + ∫ 144/I = 3 3 0 sin x dx cos x π ∫ 145/I = 1 0 x 1 xdx− ∫ 146/I = 6 4 x 4 1 . dx x 2 x 2 − + + ∫ 147/I = 0 2 1 1 dx x 2x 9 − + + ∫ 148/I = 3 2 1 1 dx 4x x− ∫ 149/I = 2 2 1 4x x 5 dx − − + ∫ 150/I = 2 2 2 2x 5 dx x 4x 13 − − + + ∫ 151/I = 1 x 0 1 dx 3 e+ ∫ 152/I = 1 4x 2x 2 2x 0 3e e dx 1 e + + ∫ 153/I = 4 2 7 1 dx x 9 x+ ∫ 154/I = 2 x 2 0 e sin xdx π ∫ 155/I = 4 2 4 4 0 cos x dx cos x sin x π + ∫ 156/I = 1 0 3 dx x 9 x+ − ∫ 157/I = 0 xsin xdx π ∫ 158/I = 2 2 0 x cos xdx π ∫ 159/I = 1 0 cos x dx ∫ 160/I = 1 0 sin x dx ∫ 161/I = 2 4 0 xsin x dx π ∫ 162/I = 2 4 0 x cos x dx π ∫ 163/I = 2 0 x cos xsin xdx π ∫ 164/I = 6 2 0 x cos xsin xdx π ∫ 165/I = 4 x 1 e dx ∫ 166/I = 4 3x 0 e sin 4x dx π ∫ 167/I = 2x 2 0 e sin xdx π ∫ 168/I = 2 x 1 2 0 x e dx (x 2)+ ∫ 169/I = e 1 (1 x)ln x dx+ ∫ 170/I = e 2 1 x ln x dx ∫ 171/I = 1 e 2 1 ln xdx ∫ 172/I = e 1 x(2 ln x)dx− ∫ 173/I = 2 e 2 e 1 1 ( )dx ln x ln x − ∫ 174/I = 2 2 1 (x x)ln x dx+ ∫ 175/I = 2 2 1 1 x ln(1 )dx x + ∫ 176/I = 2 5 1 ln x dx x ∫ 177/I = e 2 1 e ln x dx (x 1)+ ∫ 178/I = 1 2 0 1 x x ln dx 1 x + − ∫ 179/I = 2 3 cos x.ln(1 cos x)dx π π − ∫ 180/ 2 2 sin x 3 0 e sin x cos x dx π ∫ 181/I= 2 4 0 sin 2x dx 1 sin x π + ∫ . 182/I = 2 4 0 sin 2x dx 1 cos x π + ∫ 183/I = 2 2 1 5 dx x 6x 9− + ∫ 184/I = 2 1 0 x 3x 2 dx x 3 + + + ∫ 185/I = 4 2 1 1 dx x (x 1)+ ∫ 186/I = 1 2 0 ln(1 x) dx x 1 + + ∫ 187/I 4 1 6 0 1 x dx 1 x + + ∫ 188/I = 1 15 8 0 x 1 x dx+ ∫ 189/I = x 1 x x 0 e dx e e − + ∫ 190/I= e 1 e ln x dx ∫ 191/I = 2 sin x 0 (e cos x)cos x dx π + ∫ 192/I = 2 0 sin 2x.cos x dx 1 cos x π + ∫ 193/I = 2 0 sin 2x sin x dx 1 3cos x π + + ∫ 194/I = 2 4 0 1 2sin x dx 1 sin 2x π − + ∫ 195/I = 5 3 3 2 0 x 2x dx x 1 + + ∫ 196/I = 3 2 4 tgx dx cos x 1 cos x π π + ∫ 197/I = 2 2 1 x 1 ( ) dx x 2 − − + ∫ 198/I = 4 2 0 x.tg x dx π ∫ 199/I = 5 3 ( x 2 x 2 )dx − + − − ∫ 200/I = 4 1 2 dx x 5 4 − + + ∫ 201/I = 2 1 x dx x 2 2 x+ + − ∫ 202/I = 2 2 1 ln(1 x) dx x + ∫ 203/I = 2 0 sin 2x dx 1 cosx π + ∫ 204/I = 2008 2 2008 2008 0 sin x dx sin x cos x π + ∫ 205/I = 2 0 sin x.ln(1 cos x)dx π + ∫ 206/I = 2 3 2 1 x 1 dx x + ∫ 207/I = 3 4 2 0 sin x dx cos x π ∫ 208/I = 2 2 0 cos x.cos4x dx π ∫ 209/I = 1 2x x 0 1 dx e e+ ∫ 210/I = e 2 1 e ln x dx (x 1)+ ∫ 211/I = 1 0 1 dx x 1 x+ + ∫ 212/I = 2 1 2 0 x dx 4 x− ∫ 213/I = 1 2 0 x dx 4 x− ∫ 214/I = 1 4 2 2 0 x dx x 1− ∫ 215/I = 2 0 sin3x dx cos x 1 π + ∫ 216/I = 2 2 2 2 0 x dx 1 x− ∫ 217/I = 2 2 4 1 1 x dx 1 x − + ∫ 218/I = 3 7 3 2 0 x dx 1 x+ ∫ 219/I = x ln 2 x 0 1 e dx 1 e − + ∫ 220/I = 1 0 x 1 x dx− ∫ 221/I = 1 2 0 x 1dx+ ∫ 222/I = 2 3 3 0 (cos x sin x)dx π + ∫ 223/I = 2 3 0 x 1 dx x 1 + + ∫ 224/I = 1 2 2x 0 (1 x) .e dx+ ∫ 225/I = 2 2 0 cosx dx cos x 1 π + ∫ 226/I = 7 3 3 0 x 1 dx 3x 1 + + ∫ . 227/I = 2 6 1 sin 2x cos2x dx cos x sin x π π + + + ∫ 228/I = x 2 1 2x 0 (1 e ) dx 1 e + + ∫ 229/I = 3 2 3 0 x (1 x) dx− ∫ 230/I = 3 2 2 0 sin x.cos x dx cos x 1 π + ∫ 231/I = 1 2 2 0 4x 1 dx x 3x 2 − − + ∫ 232*/I = 2 0 xsin x.cos xdx π ∫ 233/I = 2 0 cos x dx cos2x 7 π + ∫ 234/I = 4 2 1 1 dx x (x 1)+ ∫ 235/I = 2 2 3 0 sin 2x(1 sin x) dx π + ∫ 236/I = 2 3 0 x 1 dx 3x 2 + + ∫ 237/I = 4 2 7 1 dx x x 9+ ∫ 238/I = 3 4 0 xsin xcos xdx π ∫ 239/I = 2 3 2 cos x cos x cos xdx π π − − ∫ 240*/I = 1 2 1 ln( x a x)dx − + + ∫ 241/I = 2 x 0 1 sin x dx (1 cos x)e π − + ∫ 242/I = 2 0 sin 2x sin x dx cos3x 1 π + + ∫ 243/I = 4 2 2 0 sin 2x dx sin x 2cos x π + ∫ 244/I = 2 3 2 2 0 x dx 1 x− ∫ 245/I = 2 3 2 2 0 x dx 1 x− ∫ 246/I = 2 1 2 2 2 1 x dx x − ∫ 247/I = 2 1 2 0 x dx 4 x− ∫ 248/I = 2 2 2 3 1 dx x x 1− ∫ 249/I = 1 5 3 6 0 x (1 x ) dx− ∫ 250/I = 2 0 sin x dx 1 sin x π + ∫ 251/I = 2 0 cos x dx 7 cos2x π + ∫ 252/I = 4 2 1 1 dx (1 x)x+ ∫ 253/I = 2 3 0 x 1 dx 3x 2 + + ∫ 254*/I = 3 4 cos x sin x dx 3 sin 2x π π + + ∫ . 255/I = 2 3 2 cos x cosx cos xdx π π − − ∫ 256/I = 3 4 4 tg xdx π π ∫ 257*/I = 2 x 0 1 sin x e dx 1 cosx π + + ∫ 258/I = 1 2 3 0 (1 x ) dx− ∫ 259/I = 4 2 0 x.tg xdx π ∫ 260/I= 2 2 2 0 1 dx (4 x )+ ∫ 261/I = 2 1 3 0 3x dx x 2+ ∫ 262*/I = 5 2 5 1 1 x dx x(1 x ) − + ∫ 263/I = 3 2 0 cos x dx 1 sin x π − ∫ 264/I = 2 3 6 0 sin x dx cos x π ∫ 265/I = 3 6 0 sin x sin x dx cos2x π + ∫ 265/I = 2 3 1 dx sin x 1 cosx π π + ∫ 266/I = 3 6 2 1 1 dx x (1 x )+ ∫ . 267/I = 2 2 0 sin x dx cos x 3 π + ∫ 268/I = 2 0 sin x dx x π ∫ 269/I = 2 2 0 sin xcosx(1 cos x) dx π + ∫ 270/I = 4 4 4 0 sin x cos x dx sin x cos x 1 π − + + ∫ 271/I = 4 4 4 0 sin x cos x dx sin x cos x 1 π − + + ∫ 272/I = 2 0 sin xcosx cosx dx sin x 2 π + + ∫ 273/I = 1 1 x 3 a e dx x ∫ 274/I = 3 2 1 2 0 x 2x 10x 1 dx x 2x 9 + + + + + ∫ 275/I = 3 1 2 3 0 x dx (x 1)+ ∫ 276/I = 1 3 0 3 dx x 1+ ∫ 277*/I = 4 1 6 0 x 1 dx x 1 + + ∫ 278/I = 1 3 0 x dx (2x 1)+ ∫ 279/I = 7 2 1 dx 2 x 1+ + ∫ 280/I = 3 2 2 1 2 1 dx x 1 x− ∫ .

Ngày đăng: 06/07/2014, 12:21

TỪ KHÓA LIÊN QUAN

w