1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Các bài toán tích phân hay nhất

13 430 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 108,67 KB

Nội dung

333 BÀI TOÁN TÍCH PHÂN LUYỆN THI ĐẠI HỌC ➤TÍNH : 4/I = 3 2 4 3tg xdx π π ∫ 5/I = 4 2 6 (2cotg x 5)dx π π + ∫ 6/I = 2 0 1 cosx dx 1 cosx π − + ∫ 7/ I = ∫ 2 0 π sin 2 x.cos 2 xdx 8/I = ∫ 3 0 π (2cos 2 x-3sin 2 x)dx 9 / I = 2 2 s i n ( x ) 4 d x s i n ( x ) 4 π − π π − π + ∫ 10 / I = ∫ − 3 6 π π (tgx-cotgx) 2 dx 11/ I = 4 4 0 cos xdx π ∫ 12 / I = 2 3 0 sin xdx π ∫ 13*/ I = 3 3 2 3 sin x sin x cotgxdx sin x π π − ∫ 14/I = 2 4 0 sin xdx π ∫ 15/I = ∫ 3 4 22 2 cos 2 sin 1 π π xx dx 16/I = ∫ 4 6 π π cotg2x dx 17/ I = 2 2 sin x 4 e sin 2x dx π π ∫ 18/ I = ∫ + 4 0 2 2 cos π x e tgx 19/ I = ∫ 2 4 4 sin 1 π π x dx 20/ I = ∫ 4 0 6 cos 1 π x dx 21/I = dxxxnsix )cos(2cos 44 2 0 + ∫ π 22/ I = 2 3 0 cos xdx π ∫ 23/ I = 3 2 0 4sin x dx 1 cosx π + ∫ . 24/ I = 1 3 2 0 x 1 x dx − ∫ 25/I = 1 5 2 0 x 1 x dx + ∫ 26/I = 1 0 x dx 2x 1 + ∫ 27/I = 1 x 0 1 dx e 4 + ∫ 28/I = 2 x 1 1 dx 1 e − − ∫ 29/I = 2x 2 x 0 e dx e 1 + ∫ 30/I = x 1 x 0 e dx e 1 − − + ∫ 31/I = e 2 1 ln x dx x(ln x 1) + ∫ 32/I = 7 3 3 0 x 1 dx 3x 1 + + ∫ 33/I = 2 3 2 0 (x 3) x 6x 8dx − − + ∫ . 49/I = e 1 sin(ln x) dx x ∫ 50/I = 1 3 4 5 0 x (x 1) dx − ∫ 51/I = 1 2 3 0 (1 2x)(1 3x 3x ) dx + + + ∫ 52/I = 2 3 1 1 dx x 1 x + ∫ 53/I = 3 2 2 6 tg x cotg x 2dx π π + − ∫ 54/I = 1 2 3 0 (1 x ) dx − ∫ 34/I = 1 2 2 3 1 dx x 4 x − ∫ 35/I = 4 2 2 1 dx x 16 x − ∫ 36*/I = 6 2 2 3 1 dx x x 9 − ∫ 37/I = 2 2 2 1 x 4 x dx − − ∫ 38/I = 2 2 3 0 x (x 4) dx + ∫ 39/I = 2 4 4 3 3 x 4 dx x − ∫ 40*/I = 2 2 2 2 x 1 dx x x 1 − − + + ∫ 41/I = ln 2 x 0 e 1dx − ∫ 42/I = 1 0 1 dx 3 2x − ∫ 43/I = 2 5 0 sin xdx π ∫ 44*/I = 3 0 1 dx cosx π ∫ 45/I = 2x 1 x 0 e dx e 1 − − + ∫ 46/I = ln3 x 0 1 dx e 1 + ∫ 47/I = 4 2 6 1 dx sin x cotgx π π ∫ 48/I = 3 2 e 1 ln x 2 ln x dx x + ∫ . 55*/I = 1 2x 0 1 dx e 3 + ∫ 56/I = x ln3 x 3 0 e dx (e 1)+ ∫ 57/I = 0 2x 3 1 x(e x 1)dx − + + ∫ 58/I = 2 6 3 5 0 1 cos x sin x.cos xdx π − ∫ 59*/I = 2 3 2 5 1 dx x x 4 + ∫ 60/I = 4 0 x dx 1 cos2x π + ∫ 61/I = 2x ln5 x ln 2 e dx e 1 − ∫ 62/I = 2 e 1 x 1 .ln xdx x + ∫ 63/I = 2 1 0 x dx (x 1) x 1 + + ∫ 79/I = e 1 1 3ln x ln x dx x + ∫ 80/I = 3 2 2 ln(x x)dx − ∫ 81/I = e 2 1 (lnx) dx ∫ 82/I = 2 e e ln x dx x ∫ 83/I = 2 e 1 ln x dx ln x ∫ 84/I = 2 2 1 xln(x 1)dx + ∫ 64/I = 2 0 sin x.sin2x.sin3xdx π ∫ 65/I = 2 4 4 0 cos2x(sin x cos x)dx π + ∫ 66*/I = 2 3 3 0 ( cosx sin x)dx π − ∫ 67/I = 7 3 8 4 2 x dx 1 x 2x+ − ∫ 68*/I = 2 0 4cosx 3sin x 1 dx 4sinx 3cosx 5 π − + + + ∫ 69/I = 9 3 1 x. 1 xdx − ∫ 70/I = 2 3 0 x 1 dx 3x 2 + + ∫ 71*/I = 6 0 x sin dx 2 π ∫ 72*/I = 2 0 x dx 2 x 2 x + + − ∫ 73/I = 3 3 2 0 x . 1 x dx + ∫ 74**/I = 1 2 0 ln(1 x) dx x 1 + + ∫ 75/I = 2 0 sin x dx sin x cosx π + ∫ 76/I = e 1 cos(ln x)dx π ∫ 77*/I = 2 2 0 4 x dx + ∫ 78/I = 2 1 x dx 1 x 1 + − ∫ . 85/I = 3 2 3 1 dx x 3 + ∫ 86/I = 1 2 0 1 dx 4 x − ∫ 87/I = 2 4 0 sin xdx π ∫ 88/I = 3 2 6 ln(sin x) dx cos x π π ∫ 89/I = 2 1 cos(ln x)dx ∫ 90*/I = 2 2 0 ln( 1 x x)dx + − ∫ 91*/I = 3 2 2 1 dx x 1 − ∫ 92/I = 3 8 1 x 1 dx x + ∫ 93/I = 3 3 2 1 x dx x 16 − ∫ . 109/I = 6 2 0 x.sin xcos xdx π ∫ 110*/I = 2 x 1 2 0 x e dx (x 2)+ ∫ 111/I = 2x 2 0 e sin xdx π ∫ 112/I = 2 2 1 1 x ln(1 )dx x + ∫ 113/I = e 2 1 e lnx dx (x 1)+ ∫ 94/I = 6 2 0 cosx dx 6 5sin x sin x π − + ∫ 95*/I = 2 e 2 e 1 1 ( )dx ln x ln x − ∫ 96/I = 3 2 4 x 4 dx − − ∫ 97/I = 2 3 2 1 x 2x x 2 dx − − − + ∫ 98/I = 3 4 4 cos2x 1dx π π + ∫ 99/I = 0 cosx sin xdx π ∫ 100/I = 2 0 1 sin xdx π + ∫ 101/I = 3 4 4 sin2x dx π π ∫ 102/I = 0 1 sin xdx π − ∫ 103/I = 1 3 2 1 ln(x x 1) dx −   + +     ∫ 104*/I = 2 0 xsin x dx 1 cos x π + ∫ 105*/I = 1 2 x 1 1 dx (x 1)(4 1) − + + ∫ 106*/I = 4 1 x 1 x dx 1 2 − + ∫ 107/I = 2 4 0 xsin xdx π ∫ 108/I = 2 4 0 xcos xdx π ∫ 114/I = 1 2 0 1 x x.ln dx 1 x + − ∫ 115/I = 2 t 1 lnx dx I 2 x   ⇒ <     ∫ 116/I = 3 0 sin x.ln(cosx)dx π ∫ 117/I = 2 e 2 1 cos (ln x)dx π ∫ 118/I = 4 0 1 dx cosx π ∫ 119*/I = 4 3 0 1 dx cos x π ∫ 120/I = 2 1 3 x 0 x e dx ∫ 121/I = 2 2 sin x 3 0 e .sin xcos xdx π ∫ 122/I = 2 4 0 sin 2x dx 1 cos x π + ∫ 137/I = 3 4 2 2 5 0 sin x dx (tg x 1) .cos x π + ∫ 138/I = 3 2 2 3 1 dx sin x 9cos x π π − + ∫ 139/I = 2 2 cosx 1 dx cosx 2 π π − − + ∫ 140/I = 2 0 1 sin x dx 1 3cosx π + + ∫ 123/I = 1 2 0 3 dx x 4x 5 − − ∫ 124/I = 2 2 1 5 dx x 6x 9 − + ∫ 125/I = 1 2 5 1 dx 2x 8x 26 − + + ∫ 126/I = 1 0 2x 9 dx x 3 + + ∫ 127/I = 4 2 1 1 dx x (x 1) + ∫ 128*/I = 0 2 2 sin 2x dx (2 sin x) −π + ∫ 129/I = 1 2 0 x 3 dx (x 1)(x 3x 2) − + + + ∫ 130/I = 1 3 0 4x dx (x 1) + ∫ 131/I = 1 4 2 0 1 dx (x 4x 3) + + ∫ 132/I = 3 3 2 0 sin x dx (sin x 3) π + ∫ 133/I = 3 3 6 4sin x dx 1 cosx π π − ∫ 134/I = 3 2 6 1 dx cosx.sin x π π ∫ 135/I = 3 0 sin x.tgxdx π ∫ 136/I = 3 4 1 dx sin 2x π π ∫ . 141/I = 2 0 cosx dx sin x cosx 1 π + + ∫ 142/I = 4 2 1 1 dx x (x 1) + ∫ 143/I = 1 3 3 1 dx x 4 (x 4) − + + + ∫ 144/I = 3 3 0 sin x dx cosx π ∫ 145/I = 1 0 x 1 xdx − ∫ 146/I = 6 4 x 4 1 . dx x 2 x 2 − + + ∫ 147/I = 0 2 1 1 dx x 2x 9 − + + ∫ 148/I = 3 2 1 1 dx 4x x − ∫ 149/I = 2 2 1 4x x 5dx − − + ∫ 150/I = 2 2 2 2x 5 dx x 4x 13 − − + + ∫ 151/I = 1 x 0 1 dx 3 e + ∫ 167/I = 2x 2 0 e sin xdx π ∫ 168/I = 2 x 1 2 0 x e dx (x 2)+ ∫ 169/I = e 1 (1 x)ln xdx + ∫ 170/I = e 2 1 xln xdx ∫ 171/I = 1 e 2 1 ln xdx ∫ 152/I = 1 4x 2x 2 2x 0 3e e dx 1 e + + ∫ 153/I = 4 2 7 1 dx x 9 x + ∫ 154/I = 2 x 2 0 e sin xdx π ∫ 155/I = 4 2 4 4 0 cos x dx cos x sin x π + ∫ 156/I = 1 0 3 dx x 9 x + − ∫ 157/I = 0 xsin xdx π ∫ 158/I = 2 2 0 x cos xdx π ∫ 159/I = 1 0 cos x dx ∫ 160/I = 1 0 sin x dx ∫ 161/I = 2 4 0 xsin x dx π ∫ 162/I = 2 4 0 xcos x dx π ∫ 163/I = 2 0 xcos xsin xdx π ∫ 164/I = 6 2 0 xcos xsin xdx π ∫ 165/I = 4 x 1 e dx ∫ 166/I = 4 3x 0 e sin4xdx π ∫ 172/I = e 1 x(2 ln x)dx − ∫ 173/I = 2 e 2 e 1 1 ( )dx ln x ln x − ∫ 174/I = 2 2 1 (x x)ln xdx + ∫ 175/I = 2 2 1 1 x ln(1 )dx x + ∫ 176/I = 2 5 1 ln x dx x ∫ 177/I = e 2 1 e lnx dx (x 1) + ∫ 178/I = 1 2 0 1 x xln dx 1 x + − ∫ 179/I = 2 3 cosx.ln(1 cosx)dx π π − ∫ 180/ 2 2 sin x 3 0 e sin xcos xdx π ∫ 181/I= 2 4 0 sin 2x dx 1 sin x π + ∫ . 197/I = 2 2 1 x 1 ( ) dx x 2 − − + ∫ 198/I = 4 2 0 x.tg xdx π ∫ 199/I = 5 3 ( x 2 x 2)dx − + − − ∫ 200/I = 4 1 2 dx x 5 4 − + + ∫ 201/I = 2 1 x dx x 2 2 x + + − ∫ 182/I = 2 4 0 sin2x dx 1 cos x π + ∫ 183/I = 2 2 1 5 dx x 6x 9 − + ∫ 184/I = 2 1 0 x 3x 2 dx x 3 + + + ∫ 185/I = 4 2 1 1 dx x (x 1) + ∫ 186/I = 1 2 0 ln(1 x) dx x 1 + + ∫ 187/I 4 1 6 0 1 x dx 1 x + + ∫ 188/I = 1 15 8 0 x 1 x dx + ∫ 189/I = x 1 x x 0 e dx e e − + ∫ 190/I= e 1 e lnx dx ∫ 191/I = 2 sin x 0 (e cosx)cosxdx π + ∫ 192/I = 2 0 sin 2x.cosx dx 1 cosx π + ∫ 193/I = 2 0 sin 2x sin x dx 1 3cosx π + + ∫ 194/I = 2 4 0 1 2sin x dx 1 sin 2x π − + ∫ 195/I = 5 3 3 2 0 x 2x dx x 1 + + ∫ 196/I = 3 2 4 tgx dx cosx 1 cos x π π + ∫ 202/I = 2 2 1 ln(1 x) dx x + ∫ 203/I = 2 0 sin 2x dx 1 cosx π + ∫ 204/I = 2008 2 2008 2008 0 sin x dx sin x cos x π + ∫ 205/I = 2 0 sin x.ln(1 cosx)dx π + ∫ 206/I = 2 3 2 1 x 1 dx x + ∫ 207/I = 3 4 2 0 sin x dx cos x π ∫ 208/I = 2 2 0 cos x.cos4xdx π ∫ 209/I = 1 2x x 0 1 dx e e + ∫ 210/I = e 2 1 e lnx dx (x 1) + ∫ 211/I = 1 0 1 dx x 1 x + + ∫ 227/I = 2 6 1 sin 2x cos2x dx cosx sin x π π + + + ∫ 228/I = x 2 1 2x 0 (1 e ) dx 1 e + + ∫ 229/I = 3 2 3 0 x (1 x) dx − ∫ 230/I = 3 2 2 0 sin x.cos x dx cos x 1 π + ∫ 212/I = 2 1 2 0 x dx 4 x − ∫ 213/I = 1 2 0 x dx 4 x − ∫ 214/I = 1 4 2 2 0 x dx x 1 − ∫ 215/I = 2 0 sin3x dx cosx 1 π + ∫ 216/I = 2 2 2 2 0 x dx 1 x − ∫ 217/I = 2 2 4 1 1 x dx 1 x − + ∫ 218/I = 3 7 3 2 0 x dx 1 x + ∫ 219/I = x ln 2 x 0 1 e dx 1 e − + ∫ 220/I = 1 0 x 1 x dx − ∫ 221/I = 1 2 0 x 1dx + ∫ 222/I = 2 3 3 0 (cos x sin x)dx π + ∫ 223/I = 2 3 0 x 1 dx x 1 + + ∫ 224/I = 1 2 2x 0 (1 x) .e dx + ∫ 225/I = 2 2 0 cosx dx cos x 1 π + ∫ 226/I = 7 3 3 0 x 1 dx 3x 1 + + ∫ . 231/I = 1 2 2 0 4x 1 dx x 3x 2 − − + ∫ 232*/I = 2 0 xsinx.cos xdx π ∫ 233/I = 2 0 cosx dx cos2x 7 π + ∫ 234/I = 4 2 1 1 dx x (x 1) + ∫ 235/I = 2 2 3 0 sin 2x(1 sin x) dx π + ∫ 236/I = 2 3 0 x 1 dx 3x 2 + + ∫ 237/I = 4 2 7 1 dx x x 9 + ∫ 238/I = 3 4 0 xsin xcos xdx π ∫ 239/I = 2 3 2 cosx cosx cos xdx π π − − ∫ 240*/I = 1 2 1 ln( x a x)dx − + + ∫ 241/I = 2 x 0 1 sin x dx (1 cosx)e π − + ∫ 255/I = 2 3 2 cosx cosx cos xdx π π − − ∫ 256/I = 3 4 4 tg xdx π π ∫ 257*/I = 2 x 0 1 sin x e dx 1 cosx π + + ∫ 242/I = 2 0 sin 2x sin x dx cos3x 1 π + + ∫ 243/I = 4 2 2 0 sin2x dx sin x 2cos x π + ∫ 244/I = 2 3 2 2 0 x dx 1 x − ∫ 245/I = 2 3 2 2 0 x dx 1 x − ∫ 246/I = 2 1 2 2 2 1 x dx x − ∫ 247/I = 2 1 2 0 x dx 4 x − ∫ 248/I = 2 2 2 3 1 dx x x 1 − ∫ 249/I = 1 5 3 6 0 x (1 x ) dx − ∫ 250/I = 2 0 sin x dx 1 sin x π + ∫ 251/I = 2 0 cosx dx 7 cos2x π + ∫ 252/I = 4 2 1 1 dx (1 x)x+ ∫ 253/I = 2 3 0 x 1 dx 3x 2 + + ∫ 254*/I = 3 4 cosx sin x dx 3 sin 2x π π + + ∫ . 258/I = 1 2 3 0 (1 x ) dx − ∫ 259/I = 4 2 0 x.tg xdx π ∫ 260/I= 2 2 2 0 1 dx (4 x )+ ∫ 261/I = 2 1 3 0 3x dx x 2 + ∫ 262*/I = 5 2 5 1 1 x dx x(1 x ) − + ∫ 263/I = 3 2 0 cosx dx 1 sin x π − ∫ 264/I = 2 3 6 0 sin x dx cos x π ∫ 265/I = 3 6 0 sin x sin x dx cos2x π + ∫ 265/I = 2 3 1 dx sin x 1 cosx π π + ∫ 266/I = 3 6 2 1 1 dx x (1 x ) + ∫ . 281*/I = 2 1 2 0 xln(x 1 x ) dx 1 x + + + ∫ 282/I = 4 2 1 (x 1) ln xdx − ∫ 283/I = 3 2 0 x ln(x 1)dx + ∫ 284/I = 3 2 2 1 3x dx x 2x 1 + + ∫ 267/I = 2 2 0 sin x dx cos x 3 π + ∫ 268/I = 2 0 sin x dx x π ∫ 269/I = 2 2 0 sin xcosx(1 cosx) dx π + ∫ 270/I = 4 4 4 0 sin x cos x dx sin x cosx 1 π − + + ∫ 271/I = 4 4 4 0 sin x cos x dx sin x cosx 1 π − + + ∫ 272/I = 2 0 sin xcosx cosx dx sin x 2 π + + ∫ 273/I = 1 1 x 3 a e dx x ∫ 274/I = 3 2 1 2 0 x 2x 10x 1 dx x 2x 9 + + + + + ∫ 275/I = 3 1 2 3 0 x dx (x 1)+ ∫ 276/I = 1 3 0 3 dx x 1 + ∫ 277*/I = 4 1 6 0 x 1 dx x 1 + + ∫ 278/I = 1 3 0 x dx (2x 1)+ ∫ 279/I = 7 2 1 dx 2 x 1 + + ∫ 280/I = 3 2 2 1 2 1 dx x 1 x− ∫ . . 333 BÀI TOÁN TÍCH PHÂN LUYỆN THI ĐẠI HỌC ➤TÍNH : 4/I = 3 2 4 3tg xdx π π ∫ 5/I = 4 2 6 (2cotg. x dx x − ∫ 330/I = x ln3 x x 0 e dx (e 1) e 1 + − ∫ 331/I = 1 4 e 2 1 e 1 dx xcos (ln x 1) π − + ∫ 333* /I = 4 0 ln(1 tgx)dx π + ∫ 334/ ∫ = 4 6 7 2sin tan π π dx x x I 335/ ∫ +++ = 63 0 3 11

Ngày đăng: 07/01/2015, 20:23

TỪ KHÓA LIÊN QUAN

w