1. Trang chủ
  2. » Giáo án - Bài giảng

TOÀN TẬP ÔN TÔT NGHIỆP 2010

14 178 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 877,5 KB

Nội dung

ƠN THI TN THPT 2009-2010 THPT HIỆP ĐỨC- Q NAM Chđ ®Ị 1. §¹o hµm vµ øng dơng cđa ®¹o hµm D¹ng 1. §¹o hµm Bµi 1. TÝnh ®¹o hµm: a.y = cos 2 (x 2 – 2x + 2) b.y = (2- x 2 )cosx + 2x .sinx c.y = 2 ln( 1)x x + + d.y = sin 2 (cosx) Bµi 2. a, Cho 1 ln( ) 1 y x = + . CMR: xy’ + 1 = e y . b, Cho y = 2 / 2 . x x e − . CMR: xy’ = (1- x 2 ).y c, Cho y = (x + 1)e x . CMR: y’ – y = e x d, Cho y = e 4x + 2.e –x . CMR: y’’’ – 13y’ – 12y = 0 e, Cho y = e -x .sinx. CMR: y’’ + 2y’ + 2y = 0 f, Cho y = e sinx . CMR: y’cosx – ysinx – y’’ = 0 Bµi 3. 1.T×m gi¸ trÞ LN vµ NN cđa hµm s« y = x 3 -3x +1 rªn ®o¹n [0; 2] . 2.T×m gi¸ trÞ LN vµ NN cđa hµm s« y = x 3 -8x 2 + 16x – 9 trªn ®o¹n [ 1; 3] 3.T×m gi¸ trÞ LN vµ NN cđa hµm s« y = x 3 – 3x 2 - 4 trªn kho¶ng ( 3; 5) 4.Trong c¸c h×nh ch÷ nhËt cã chu vi b»ng 16, h·y t×m h×nh ch÷ nhËt cã diƯn tÝch lín nhÊt 5. T×m gi¸ trÞ lín nhÊt vµ gi¸ trÞ nhá nhÊt cđa hµm sè: y=x 4 -4x 2 +1 trªn ®o¹n [-1; 2] 6. T×m gi¸ trÞ lín nhÊt vµ gi¸ trÞ nhá nhÊt cđa hµm sè: 2 8 xxy −+= . Dạng 2. KHẢO SÁT HÀM SỐ Bài 4. Kh¶o s¸t vµ vÏ ®å thÞ c¸c hµm sè sau. a) y = x 3 – 6x 2 + 9x –4 y = -x 3 + 3x 2 – 1 y = - x 3 + 3x 2 –5x + 2 b) y = (x-1)(x 2 –2x +2) y = 2x 2 – x 4 y = - x 4 + 4x 2 - 1 c) y = (x 2 –1)(x 2 +2) Bài 5. Khảo sát :a. 1 1 − + = x x y b) 2 32 + − = x x y Dạng 3. BIỆN LUẬN NGHIỆM CỦA PHƯƠNG TRÌNH Bµi1: BiƯn ln theo m sè nghiƯm cđa ph¬ng tr×nh: 3x - 4x 3 = 3m - 4m 3 Bµi2: T×m m ®Ĩ ph¬ng tr×nh: x 3 - 3x + 2 + m = 0 cã 3 nghiƯm ph©n biƯt Bµi3: T×m a ®Ĩ pt: x 3 - 3x 2 - a = 0 cã ba nghiƯm ph©n biƯt trong ®ã cã ®óng 2 nghiƯm lín h¬n 1. Bµi4: BiƯn ln theo b sè nghiƯm cđa ph¬ng tr×nh: x 4 -2x 2 - 2b + 2 = 0 Bµi 5. Cho hàm số y = -x 4 + 2x 2 + 3 (C) a) Kh¶o s¸t vµ vÏ ®å thÞ (C) b) Dùa vµo ®å thÞ (C), biện luận số nghiệm của ptrình x 4 –2x 2 + m = 0 c) ViÕt PT tiÕp tun cđa (C) t¹i A(1; 4). Bài 6. Cho hàm số y = -x 3 + 3mx 2 +3(1-m 2 )x + m 3 –m 2 a)Khảo sát hàm số khi m = 1, có đồ thò (C) b.Tìm k để pt sau có ba nghiệm phân biệt - x 3 +3x 2 + k 3 –3k 2 = 0 c)T×m m ®Ĩ hµm sè ®¹t cùc trÞ t¹i x = 1 Bài 7. Cho hàm số y = x 3 – 3x 2 + 2 a.Khảo sát hàm số (C) b.Tìm a để phương trình x 3 – 3x 2 – a= 0 có ba nghiệm phân biệt. c.ViÕt PT tiÕp tun cđa (C) t¹i t©m ®èi xøng cđa nã . Bài 8. Cho hàm số 1 1 − + = x x y a.Khảo sát và vẽ đồ thò hàm số (C) b.Viết phưong trình tiếp tuyến của đồ thò (C) biết nó song song với đường thẳng (d): 2x + y – 1 = 0 c. Dùng đồ thò biện luận số nghiệm của phương trình (1 – m)x + m + 1 = 0 Bài 9. (TN-2004-2005) Cho hàm số y = x 3 – 3x –2 có đồ thò (C) a.Khảo sát hàm số b.Dựa vào đồ thò (C) hãy biện luận số nghiệm phương trình x 3 – 3x – m = 0 Bài 10. (TN 2001-2002) Cho hàm số y = -x 4 + 2x 2 + 3 (C) a.Khảo sát hàm số Trang 1 ƠN THI TN THPT 2009-2010 THPT HIỆP ĐỨC- Q NAM b.Dựa vào đồ thò (C), hãy xác đònh m để phương trình x 4 – 2x 2 + m = 0 có 4 nghiệm phân biệt. Bài 11. Cho hàm số y = x 4 - 2x 2 a.Khảo sát hàm số b.Biện luận theo k số nghiệm phương trình x 4 – 2x 2 – k = 0. Bµi 12. (TN 2006-2007) Cho hµm sè 3 2 3y x x= − + (C) a.Kh¶o s¸t vµ vÏ ®å thÞ (C) b.Dùa vµo ®å thÞ (C), biƯn ln theo m sè nghiƯm cđa pt: -x 3 +3x 2 - m =0 c.TÝnh diƯn tÝch h×nh ph¼ng giíi h¹n bëi (C) vµ trơc hoµnh DẠNG 4. SỰ TƯƠNG GIAO CỦA CÁC ĐỒ THỊ Bài 14. Cho hàm số y = x 3 – 3x + 2 a.Khảo sát sự biến thiên và vẽ đồ thò (C) hàm số đã cho. bGọi d là đường thẳng đi qua điểm A(3; 2) và có hệ số góc m. Tìm m để đt d cắt đồ thò (C) tại ba điểm phân biệt. Bài 15. Cho hàm số y = (x-1)(x 2 +mx + m) a.Tìm m để đồ thò hàm số cắt trục hoành tại ba điểm phân biệt. b.Khảo sát hàm số khi m = 4 Bài 16. Cho hàm số y = x 3 – 3mx + m có đồ thò (Cm) a) Khảo sát sự biến thiên và vẽ đồ thò (C) hàm số đã cho với m = 1 b) Tìm m để đồ thò (Cm) cắt trục hoành tại ba điểm phân biệt. Bài 17. a.Khảo sát hàm số 1 2 + − = x x y b.Chứng minh rằng đường thẳng 2x +y + m = 0 luôn cắt đồ thò hàm số tại hai điểm phân biệt A và B thuộc hai nhánh của đồ thò. Đònh m để khoảng cách AB ngắn nhất. Bài 18. a) Khảo sát hàm số y – x 3 + 3x + 2 b)Tìm m để phương trình x 3 – 3x + 2 m – 6 = 0 có ba nghiệm phân biệt. Bài 19. a.Khảo sát hàm số y = 1 2 + + x x (C) b.Tìm m để đường thẳng y = mx + m + 3 cắt (C) tại hai điểm phân biệt. Bài 20. Cho hàm số y = x 3 –3x + 2. a.Khảo sát hàm số b.Gọi d là ®êng thẳng qua A(2; 2) và có hệ số góc k. Bluận theo k số giao điểm hai đồ thò. Bài 21. Cho hàm số y = x 3 – 3x 2 + 9x + m . Tìm m để đồ thò hsố cắt trục hoành tại ba điểm phân biệt Bµi 22. Cho hàm số y = x 3 – 3mx 2 + 4m 3 (C m ). Viết pttt của đồ thò (C 1 ) tại điểm có hoành độ x = 1. Bµi 23. Cho hàm số y = 3 1 x 3 –3x có đồ thò (C). Cho điểm M thuộc (C) có hoành độ x = 2 3 . Viết phương trình tiếp tuyến của (C) t¹i M. Bµi 24. Cho hàm số y = x 3 + 3x 2 +mx + m –2 có đồ thò (C m ) Khi m= 3.Gọi A là giao điểm của đồ thò với trục tung. Viết phương trình tiếp tuyến của đồ thò tại A. Bµi 25. Cho hàm số y = 3 1 23 1 23 +− x m x . Gọi M thuộc đồ thò (C m ) của hàm số có hoành độ bằng –1. Tìm m để tiếp tuyến của (C m ) tại điểm M song song với đường thẳng 5x – y = 0. Bµi 26. Cho hàm số y = 3 1 x 3 –2x 2 + 3x có đồ thò (C). Viết pt tiÕp tuyến của (C) tại t©m ®èi xøng. Bµi 27. Cho hàm số 3 4 2 2 1 3 1 23 −−+= xxxy . Viết phương trình tiếp tuyến của ®å thÞ hµm sè biÕt tiÕp tun ®ã song song víi ®êng th¼ng (d) y = 4x + 2. Bµi 28. ViÕt ph¬ng tr×nh tiÕp tun cđa ®å thÞ hµm sè y = x 4 – 2x 2 + 1 t¹i ®iĨm cùc ®¹i. Bµi 29. Cho hµm sè : 2 1 1 x y x + = − (C) a.Kh¶o s¸t vµ vÏ ®å thÞ (C) b.ViÕt PT tiÕp tun cđa (C) t¹i giao ®iĨm cđa (C) víi Ox c.T×m ®iĨm M thc ®å thÞ (C) ®Ĩ tỉng kho¶ng c¸ch tõ M ®Õn 2 tiƯm cËn cđa (C) b»ng 4. B µi 30. Cho hàm số y = x 3 + 3x 2 + 1. a.Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số . b.Dựa vào đồ thị (C), biện luận số nghiệm của phương trình sau theo m: x 3 + 3x 2 + 1 = 2 m Chđ ®Ị 2 : Ph¬ng tr×nh vµ bÊt pt mò - logarit I. PHƯƠNG TRÌNH MŨ Trang 2 ÔN THI TN THPT 2009-2010 THPT HIỆP ĐỨC- Q NAM 1. Dạng ( ) ( ) 0 1, ( ) ( ) f x g x a a a f x g x < ≠ = ⇔ = hoặc ( ) ( ) log ( 0) f x a a b f x b b = ⇔ = > 1). (0,2) x-1 = 1 2). 3 3 1 13 =       − x 3). 164 23 2 = +− xx 4). x x 34 2 2 2 1 2 − − =       5). ( ) ( ) 223223 2 +=− x 6). 255 4 2 = +− xx 7) 3 x .2 x+1 = 7 8) 2 2 1 . 2 1 217 =             −+ xx 9) 5 x+1 + 6. 5 x – 3. 5 x-1 = 52 10) 2. 3 x+1 – 6. 3 x-1 – 3 x = 9 11) 4 x + 4 x-2 – 4 x+1 = 3 x – 3 x-2 – 3 x+1 2. Đặt ẩn phụ Loại1: Phương trình có dạng : m.a 2x + n.a x + p = 0 (1) 1) 4 x + 2 x+1 – 8 = 0 2) 4 x+1 – 6. 2 x+1 + 8 = 0 3) 3 4x+8 – 4. 3 2x+5 + 27 = 0 4) 16 17.4 16 0 x x − + = 5) 1 49 7 8 0 x x + + − = 6) ( ) ( ) 7 4 3 2 3 6 x x + + + = Loại 2: Phương trình đưa được về dạng: 0. =++ p a n am x x 1) 3 1+x + 3 1-x = 10 2) 5 x-1 + 5 3 – x = 26 3) ( ) ( ) 23232 =−++ xx 4) 14487487 =       ++       − xx 5) ( ) ( ) 02323347 =+−−+ xx 6) 1099 22 cossin =+ xx Loại 3: Phương trình dạng : m.a 2x + n.(a.b) x + p.b 2x = 0 (2) 1) 9 x + 6 x = 2. 4 x 2) 4 x – 2. 5 2x = 10 x 3) 3 2x+4 + 45. 6 x – 9.2 2x+2 = 0 4) 25 x + 10 x = 2 2x+1 5) 06.913.6-6.4 xxx =+ 3.Lôgarit hóa 1) 2) 5 x .3 x = 2 2x 3) 2 x .3 x-1 .5 x-2 = 12 II. PHƯƠNG TRÌNH LÔGARIT. 1. Giải các phương trình. Áp dụng công thức: ⇔ 1) log 2 x(x + 1) = 1 2) log 2 x + log 2 (x + 1) = 1 3) log(x 2 – 6x + 7) = log(x – 3) 4) log 2 (3 – x) + log 2 (1 – x) = 3 5) 6) log 2 (2 x+2 – 5) = 2x 7) 2 2 log 3 log 3x 7 2x − + − = 2.Đặt ẩn phụ 1) 2 2 2 log 3.log 2 0x x − + = 3 2) log log 9 3 x x + = 3) 9 4log log 3 3 x x + = 4) ( ) ( ) 3 2 2 2 2log 1 log – 1 5x x − + = 5) 2 2 2 log ( 3) log 3 5x x − + − = 6) 2 2 8 log -9log 4x x = 7) 2 2 2 3 3 log ( 2 ) 4log 9( 2 ) 7x x x x + + + = 8) 4lglg3lg 22 −=− xxx Trang 3 ễN THI TN THPT 2009-2010 THPT HIP C- Q NAM 9) x x x x 81 27 9 3 log1 log1 log1 log1 + + = + + 10) 3 3 log log 9 3 6 x x + = III. BT PHNG TRèNH M V LễGARIT. a) )()(1 )()( xgxfaaa xgxf >>> 0)()()(log)(log >>> xgxfxgxf aa b) )()(10 )()( xgxfaaa xgxf <><< )()(0)(log)(log xgxfxgxf aa <<> 1. Gii cỏc bt phng trỡnh. 1) 13 52 > + x 2) 27 x < 3 1 3) 4 2 1 45 2 > + xx 4) 439 1 +< + xx 5) 3 x 3 -x+2 + 8 > 0 6) 2 2 12 3 2 3 2 9 4 x x x x + < + 2. Gii cỏc bt phng trỡnh. 7) 3 log (3 2) 2 x x + < 8) 2 1 2 log ( -5 -6) -3x x 9) log 0,8 (x 2 + x + 1) < log 0,8 (2x + 5) 10) 2 1 2 3 2 log 0 x x x + 11) 0) 1 21 (loglog 2 3 1 > + + x x 12) 1 1 15 15 log ( - 2) log (10- ) -1x x+ 13) log 2 (x + 4)(x + 2) 6 14) 0 1 13 log 2 > + x x x 15) 2 0,9 6 log (log ) 0 4 x x x + < + 16) ( ) ( ) 2 2 2 log 3 2 log 14x x x + + CH 3 : NGUYấN HM TCH PHN Phần 1. NGUYấN H M L u ý 1. Đối với phơng pháp đổi biến: + Nếu biểu thức dới dấu nguyên hàm có chứa 22 xa thì đặt x= a sint Hoặc x=acost +Nếu biểu thức dới dấu nguyên hàm có chứa 22 xa + thì đặt x= a tant Hoặc x=a cott 2. Đối với phơng pháp từng phần cần chú ý. * Nu + dxbaxxf )ln()( đặt = + = = += dxxfv bax adx du dxxfdv baxu )( )( )ln( Trang 4 ễN THI TN THPT 2009-2010 THPT HIP C- Q NAM * Nu + dxbaxxf )sin()( đặt += = += = )cos( 1 )( )sin( )( bax a v dxxfdu dxbaxdv xfu * Nu + dxbaxxf )cos()( đặt += = += = )sin( 1 )( )cos( )( bax a v dxxfdu dxbaxdv xfu * Nu dxexf bax + )( đặt = = = = + + bax bax e a v dxxfdu dxedv xfu 1 )( )( * Nu dx dcx dcx e bax + + + )cos( )sin( Đặt tuỳ ý. Bài 1: Tìm nguyên hàm của các hàm số. 1. dx x xx + 3 623 2. xdx 2 cos 3. xdx 2 tan 4. dx e x x 31 5. xdxx 5cos.3cos 6. dxx 2 cot 7. xdx 2 sin 8. xdxx 3cos4sin 9. dxe x +32 10. + dxx)21( 11. dxxxx )23)(2( 2 + 12. ( ) dx x x + 4 3 2 13. + dxx )2( 2 14. dxxxx )5)(4( 3 + 15. ( ) dx x x + 2 2 2 1 16. dxx )72( 3 17. dxx 3 )3( 18. ( ) ( ) dxxxxx 12 + 19. dx x x 2 3 1 3 1 20. dx x xx + 32 2 21. ( ) dx x xxx + 1 3 32 22. dxxx + 2 3 3 4 10 2 5 23. dx x xxx ++ 2 23 12 24. + dxxx )4)(12( 25. ( ) dx x x + 4 3 2 Bài 2: Dùng phơng pháp đổi biến số tính các nguyên hàm sau đây: 26. dx x x 3 2 1 9 28. dxxx 4 2 1 27. + 45x dx 29. ( ) + 2 1 xx dx 30. ( ) + 5 4 3 56x dxx 31. 1cos2sin xx dx 32. dxxx +12 2 33. dxxx + 43 32 Bài 3: Dùng phơng pháp nguyên hàm từng phần hãy tính các nguyên hàm sau: Trang 5 ễN THI TN THPT 2009-2010 THPT HIP C- Q NAM 34. ( ) dxex x2 13 + 39. xdxxln 35. ( ) dxxx 23ln2 40. dxex x 322 + 36. dxex x +132 41. xx 2cos3 2 37. ( ) dxxx 62sin 2 + 42. xdxe x sin 38. ( ) dxxe x 54cos 32 43. ( ) dxxe x 73sin 2 Bài 4: Dùng phơng pháp đồng nhất hãy tính các nguyên hàm sau đây: 44. dx xx x + + 54 42 2 45. 752 3 2 xx xdx 46. dx xx x + 6 3 2 47. 3 2 2 4 2 5 3 4 x x x dx x x + + + Phần II : T CH PH N Bài 1: Tính các tích phân: 1. dx x x 2 4 2 2 1 3 + 2. ( ) dxxxx 3 0 52 3. dx x e x + + 1 0 8 3 2 4. ( ) dxxx 34 1 0 3 5. ( ) dxx 6 5 2 52 6. ( ) dxx 2 4 1 23 + 7. ( ) dxex x + 0 3 3 8. dx x xxx + 3 1 23 9. ( ) dxe x 1 0 3 5 10. 2 1 2 4 x e dx 11. ( ) dxee xx 1 1 12. ( ) dxe x 1 0 1 13. ( ) dxxx 4 1 42 3 Bài 2: Dùng phơng pháp đổi biến số 14. 2 2 0 2 1 dxx 17. dxxx + 2 1 2 3 15. 1 1 21 dxe x 18. ( ) dxxx + 1 0 2 3 2 1 16. 2 3 5sin x dx 19. ( ) dxxx + 1 0 32 5 20. + 1 0 4 3 3 x dxx 21. dxxx + 2 0 cos8sin 22. x x dx 1 2 4 Bài 3: Dùng phơng pháp tích phân từng phần . 23. ( ) dxex x + 1 0 12 24. ( ) xdxx sin61 2 0 25. ( ) dxex x21 2 1 0 32 + 26. ( ) dxex x3 2 1 32 + 27. dxex x 2 1 22 28. xdxx 3sin 2 0 2 Trang 6 ễN THI TN THPT 2009-2010 THPT HIP C- Q NAM 29. ( ) xdxxx 2cos52 2 30. ( ) xdxx e ln1 1 + 31. dx x x 2 1 2 ln 32. ( ) xdxx e 3ln32 1 + 33. I ( ) xdxx sin12 2 1 2 = 34. I = 2 2 3 3sin xdxe x Bài 4: Dùng phơng pháp đồng nhất hãy tính các nguyên hàm sau đây: 36. 2 2 1 1x dx x x + 37. 0 2 1 3 2 x dx x x + 38. 4 2 3 1 4 dx x 39. 2 2 0 2 3 2 x dx x x+ + Phần III : ứng dụng Bài tập 1: Hãy tính thể tích củ vật thể sinh bởi hình (H) khi (H) xoay quanh 0x a. (H)= , , ; 0 3 y tgx x o x y = = = = ] b. (H)= { } 62,64 22 +=+= xxyxxy c. (H)= { } 2,4 22 +== xyxy Bài 2: Miền (B) giới hạn bởi đồ thị (C) của hàm số y= 1 1 + x x và hai trục toạ độ. a.Tính diện tích của miền (B). c.Tính thể tích của khối tròn xoay sinh ra khi quay (B) quanh trục 0x. Bài 3 : Miền (D) giới hạn bởi đồ thị (C) của hsố y= 1 1 + x x và hai tiệm cận của(C) và hai đthẳng x=3, x=-3. Bài 4 : Miền (E) giới hạn bởi y=e .,1,ln; exxxy x === a.Tính diện tích của miền (E). b.Tính thể tích của khối tròn xoay sinh ra khi quay (E) quanh trục 0x Bài 5: Tính diện tích hình phẳng giới hạn bởi. a. Đồ thị hàm số y= x xx 23 23 + , trục hoành, trục tung và đờng thẳng x=3 b. đồ thị hàm số y=x 3 , trục hoành, đờng x=2 c. Đồ thị hàm số y=4-x 2 và trục hoành d. Đồ thị hàm số y=x 4 3 , trục hoành, trục tung và đờng thẳng x=-2 e. Đồ thị hàm số y=x x4 3 , trục hoành, đờng x=-2 và đờng x=4 Bài 6 : Tính diện tích hình phẳng giới hạn bởi. a.Đồ thị hàm số y=e 1+ x , trục hoành, trục tung và đờng thẳng x=1 b.Đồ thị hàm số y=e 1 2 x , trục hoành, đờng x=1 và đờng x=2 c.Đồ thị hs y=e xx e , trục hoành, đờng x=-1 và đờng x=1 Bài 7: Tính diện tích hình phẳng giới hạn bởi. a. Đồ thị hàm số y= 1 2 +x , Ox,Oy và đờng thẳng x=4 b. Đồ thị hàm số y= x2 3 ,Ox, đt x=-1 và x=1 c. Đồ thị hàm số y=x+ x 1 , Ox, đờng thẳng x=-2 vã x=-1 Trang 7 ễN THI TN THPT 2009-2010 THPT HIP C- Q NAM d. Đồ thị hàm số y=1- 2 1 x , trục honh, 2 đờng x=1, x=2 Bài tập 8: Tính diện tích hình phẳng giới hạn. a. H= { } 2,0,,2 2 ===+= xxxyxy b.H= { } 1,0,,2 2 ==== xxxyxy c. H= { } xyxy == ,2 2 d. H= { } 4,27 22 +== xyxy e. H= { } xyxy 2, 2 == Bài 9 : Tính thể tích của khối tròn xoay tạo thành khi quay quanh trục hoành của hình phẳng H a. H= { } hvatruchoanxxy )4( = b. b.H= { } 3,0,, === xxtruchoanhey x Bài 11 : Tính diện tích của hình phẳng giới hạn bởi các đờng sau: a. x=0, x=1, y=0y=5x 33 24 ++ x b. y=x 3,1 2 =++ yx c. y=x xy 3,2 2 =+ d. y=4x-x 0, 2 =y e. y=lnx,y=0,x=e g, x=y 8,1, 3 == xy Bài 12 : Tính diện tích của hình phẳng bởi.:a.y=x(x-1)(x-2),y=0 b.x=- xyyx cos,0,, 2 === Bài 14: Tính diện tích của vật thể tròn xoay, sinh ra bởi mỗi hp giới hạn bởi các đờng sau đây khi nó quay xung quanh trục 0x: a.y=0, y=2x-x 2 b.y=cosx, y=0, x=0, x= 4 c.y=sin 2 x ,y=0 ,x=0 , x= d.y=xe 2x , y=0 , x=0, x=2 Bài 15: Tính thể tích vật thể tròn xoay sinh ra bởi hp giới hạn bởi các đờng y=sinx, y=0 , x=0, x= 4 Khi nó quay quanh trục 0x Bài 16 : Tính thể tích vật thể tròn xoay,sinh ra bởi hình elip 1 2 2 2 2 =+ b y a x , khi nó quay quanh trục 0x Bài 17 : Tính thể tích vật thể tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đờng y=2x 2 và y=x 3 xung quanh trục 0x Bài 18: Tính diện tích hình phẳng giới hạn bởi các đờng. a.xy=4, y=0, x=a, x=3a(a>0) b.y=e x , y=e x , x=1 Bài 20: Tính thể tích của vật thể tròn xoay, sinh ra bởi các hình phẳng giới hạn bởi các đờng: a. y=x 2 1 e 2 x ,x=1 , x=2 , y=0 khi nó quay xung quanh 0x b. y=lnx , x=1 ,x=2, y=0 khi nó quay xung quanh 0x c. y 32 x= , y=0, x=1 khi nó quay xung quanh trục 0x CH 5: S PHC Trang 8 ÔN THI TN THPT 2009-2010 THPT HIỆP ĐỨC- Q NAM Bài1. Thực hiện các phép tính sau: 1. (2 5 ) (4 8 )i i+ + − 2. ( 4 3 ) (2 6 )i i− + − − 3. 5 ( 4 )i i+ − − 4. 9 (14 22 )i− − − 5. ( 2 7 ) (14 ) (1 2 )i i i− + + − + − 6 . (2 17 ) (4 ) (11 3 )i i i− + + − − 7. ( 5 7 ) (9 3 ) (11 6 )i i i− − − − − + 8. ( 2 7 ) (14 ) (1 2 ) ( 2 5 )i i i i− + − − + − − + Bài 2. Thực hiện các phép tính sau: 1. ( 2 5 )(4 8 )i i− + + 2. (4 )(3 6 )i i+ − 3. 5 ( 4 )i i− − 4. 7(4 22 )i− 5. (2 7 )(4 )(1 2 )i i i− − + 6 . (2 7 )(4 ) (11 3 )i i i− + − − 7. ( 5 )(4 3 ) (11 6 )i i i− − − + + 8. ( 2 5 )(1 ) (1 2 )(3 )i i i i− + − + − + 9. 2 3 ( 3 2 )(1 ) (1 2 ) (3 )i i i i− + − + − + 10. 3 1 3 2 2 i   − +  ÷  ÷   11. 3 1 3 2 2 i   +  ÷  ÷   12. 2110 (1 )i+ 13. 2000 (1 )i− 14. 2110 2110 (1 ) (1 )i i+ − + Bài 3`. Thực hiện các phép tính sau: 1. 2 2 ( 2 5 ) (4 8 )i i− + + 2. 3 4 (2 ) (2 )i i+ − 3. 7 5 (1 )i i− 4. 5(4 2 ) 7 (8 5 )i i i− + − 5. 2 3 (2 )(3 ) (1 2 )i i i− − − − 6 . 2 2 (4 ) (1 3 )i i− − − 7. 4 4 (3 ) (4 3 )i i− − − 8. 4 4 (2 7 ) [(1 2 )(3 )]i i i+ − − + 9. 2 3 ( 3 2 )(1 ) (1 2 ) (3 )i i i i− + − + − + Bài 4 `. Thực hiện các phép tính sau: 1. 2 1 3 i i + − − 2. 2 5 3 2 i i − − 3. 5 2 5 i i− 4. 2 1 3i+ 5. (3 )(2 6 ) 1 i i i + + − 6 . 1 3 (2 )(1 4 ) i i i − + − 7. (1 2 )( 4 ) (1 )(4 3 ) i i i i + − + − + 8. 2 5 (1 3 )( 2 )(1 ) i i i i − + + − − + 9. 2 3 ( 3 2 )(1 ) (1 2 ) (3 ) i i i i − + − − + 10. (2 ) (1 )(4 3 ) 3 2 i i i i + + + − − 11. (3 4 )(1 2 ) 4 3 1 2 i i i i − + + − − 12. 1 3 1 3 1 2 1 2 i i i i + − + − + Bài 5. Giải các phương trình sau trên tập số phức: 1. (2 3 ) 1 3i z i+ = − 2. 2 (4 3 ) (2 )i z i+ = − 3. 2 (1 ) 5i z i− = 4. 3 (1 2 ) (3 4 ) 2 3i z i i+ − − = − + 5. ( 2 7 ) (14 ) (1 2 )i z i i z− + = − + − 6 . 3 (2 7 )(4 ) z i i i = − + + 7. (9 3 ) (11 6 ) 5 7 i i i z − − + = − 8. 2 ( 2 5 ) ( 2 7 ) (1 )(1 2 )i z i i i+ = − + − − − 9. 3 5 1 2 (1 )(4 3 ) 1 3 2 i i z i i i i + + + = − + − 10. 1 1 5 1 5 3 1 3 1 i i i z i i i + − −   + =  ÷ − + −   11. (2 ) 3 4i z i− = + 12. 5 (1 ) (3 2 )(1 3 )i z i i− = + + Bài 6. Xác định phần thực, phần ảo và tính modun của các số phức sau: 1 1 2 1 2 i z i + − = + + 2 1 3 1 2 i z i + = + 3 3 1 3 i z i − = + 4 1 tan 1 tan i z i α α + = + Bài 7. Tìm nghịch đảo của các số phức sau: Trang 9 ễN THI TN THPT 2009-2010 THPT HIP C- Q NAM 2 3i 3 i 3 (1 )i 2 (3 2)i 2 2 (4 ) (1 3 )i i 1 3 3 2 i i + Bi 8. Tỡm tp hp cỏc im M trong mt phng h trc Oxy biu din cho s phc z tha món iu kin: 1. 3 2 1z i + = 2. (3 2 )(1 ) 1z i i + = 3. 3 (1 ) 1z i = 4. (1 3 ) 3 2z i z i+ = + 5. 4 z i z i = + 6. 1 1 z i = + 7. 1 1z l mt s thun o. 8. z i z i + l mt sụ thc dng 9. 2 ( )z i l mt s thc dng. 10. 2 ( 1 )z i + l mt s thun o. Bi 9: Gii cỏc phng trỡnh sau trờn tp s phc: 2 2 2 4 2 4 2 3 2 2 4 2 1. 2 3 0 2. 3 2 0 3. 4 3 1 0 4. 3 4 0 3 5. 6 8 0 6. 3 4 0 7. 2 8.( 1)( 5 6) 0 z z z z z z z z z z z z z z z z z + + = + = + = = + + = + = + = + = Chủ đề 6. HèNH HC KHễNG GIAN Bi 1: Cho hỡnh nún cú ng cao h. Mt mt phng ( ) i qua nh S ca hỡnh nún to vi mt ỏy hỡnh nún mt gúc 60 0 , i qua hai ng sinh SA, SB ca hỡnh nún v ct mt ỏy ca hỡnh nún theo dõy cung AB, cung AB cú s o bng 60 0 . Tớnh din tớch thit din SAB. Bi 2: Cho hỡnh t din ABCD cú cnh AD vuụng gúc vi mt phng (ABD); AC = AD = 4cm; AB = 3cm; BC = 5cm. Tớnh khong cỏch t im A ti mt phng (ACD). Bi 3: Cho hỡnh chúp t giỏc u S.ABCD cú di cnh ỏy AB = a, gúc SAB = . Tớnh th tớch S.ABCD theo a v . Bi 4: Cho hỡnh chúp t giỏc u S.ABCD cú ỏy ABCD l hỡnh vuụng cnh a v SA = SB = SD = a. Tớnh din tớch ton phn v th tớch hỡnh chúp S.ABCD theo a. Bi 5: Cho hỡnh chúp tam giỏc S.ABC, SA = x, BC = y, cỏc cnh cũn li u bng 1.Tớnh th tớch hỡnh chúp theo x,y. Bi 6: Cho hỡnh chúp S.ABC cú ỏy ABCD l hỡnh ch nht vi:AB = 2a, BC = a. Cỏc cnh bờn ca hỡnh chúp bng nhau v bng 2a . Tớnh th tớch ca hỡnh chúp S.ABCD. Bi7: Trong mt phng (P) , cho mt hỡnh vuụng ABCD cú cnh bng a. S l mt im bt kỡ nm trờn ng thng At vuụng gúc vi mt phng (P) ti A. Tớnh theo a th tớch hỡnh cu ngoi tip chúp S.ABCD khi SA = 2a. Bi 8: Cho t din ABCD cú = 2, AB = BC = CD = DA = DB = 1AC . a. Cmr cỏc tam giỏc ABC v ADC l tam giỏc vuụng . b. Tớnh dtớch ton phn ca t din ABCD. Bi 9: Cho hỡnh chúp S.ABCD cú ỏy hỡnh ch nht ABCD vi AB = 2a, BC = a. Cỏc cnh bờn ca hỡnh chúp bng nhau v bng 2a . Tớnh th tớch ca hỡnh chúp S.ABCD Bi 10: Cho lng tr ng ABCD.A'B'C'D' cú ỏy ABCD l hỡnh thoi cnh a, gúc nhn BAD = 60 0 . Bit ' 'AB BD uuuur uuuur . Tớnh th tớch lng tr trờn theo a. Bi 11: Cho hỡnh chúp S.ABCD cú ỏy ABCD l hỡnh bỡnh hnh . Bit rng gúc nhn to bi hai ng chộo AC v BD l 60 0 , cỏc tam giỏc SAC v SBD u cú cnh bng a. Tớnh th tớch hỡnh chúp theo a. Bi 12: Tớnh th tớch ca khi nún xoay bit khong cỏch t tõm ca ỏy n ng sinh bng 3 v thit din qua trc l mt tam giỏc u. Bài 13: Cho hình chóp đều S.ABCD có cạnh đáy bằng a, góc SAC bằng 60 0 . Xác định tâm và bán kính mặt cầu đi qua các đỉnh của hình chóp S.ABCD. Bài 14: Cho một hình nón có đờng cao bằng 12 cm, bán kính đáy bằng 16 cm. Tính diện tích xung quanh của hình nón đó. Trang 10 [...]...ƠN THI TN THPT 2009 -2010 THPT HIỆP ĐỨC- Q NAM Chđ ®Ị 7 PHƯƠNG PHÁP TOẠ ĐỘ TRONG KHÔNG GIAN 1 Bµi to¸n 1 : C¸c bµi to¸n vỊ to¹ ®é cđa vect¬, to¹ ®é cđa ®iĨm → → → Bµi 1: Cho u = (1; 2 ; 3), v = (2 ; 2 ; − 1), w = (4 ; 0 ; − 4) → → → → → → → 1 → → → →... 31: Mặt phẳng (P) đi qua ba điểm A(1;3;2); B(1;2;1); C(1;1;3) Hãy viết ptts, ptct của đường thẳng (d) đi qua trọng tâm G của tam giác ABC và vuông góc với (P) 6- Bµi to¸n 6: XÐt vÞ trÝ t¬ng ®èi cđa c¸c ®êng th¼ng vµ c¸c mỈt ph¼ng Trang 12 ƠN THI TN THPT 2009 -2010 THPT HIỆP ĐỨC- Q NAM Bµi 32: X¸c ®Þnh vÞ trÝ t¬ng ®èi cđa c¸c cỈp ®êng th¼ng sau:  x = −2t x = 1 − t x −1 y − 2 z   = = a.d: vµ d’ : ... và có tâm nằm trên mp(Oxy) b) Đi qua hai điểm A(3 ; -1 ; 2), B(1 ; 1 ; -2) và có tâm thuộc trục Oz c) Đi qua bốn điểm A(1 ; 1 ; 1), B(1 ; 2 ; 1), C(1 ; 1 ; 2), D(2 ; 2 ; 1) Trang 11 ƠN THI TN THPT 2009 -2010 THPT HIỆP ĐỨC- Q NAM Bµi 16: ViÕt pt mỈt cÇu (S) ®i qua 3 ®iĨm A(1; 1; 0) , B(-1; 1; 2) , C(1; -1; 2) vµ cã t©m thc mp (P) : x+y+z–4=0 Bµi 17: ViÕt ph¬ng tr×nh mỈt cÇu (S) t©m I(1; -1; 2) vµ tiÕp... t   x = 2 − t  y = 4 + 2t z = 1  x − 3 y +1 z − 2 x −1 y + 2 z − 2 = = = = vµ d’: 2 1 −2 1 4 3  x = 1 + 6t  Bµi 33: Chøng minh r»ng d:  y = −2 − 4t vu«ng gãc víi mỈt ph¼ng (P): 3x – 2y + z 2010 = 0  z = 2t  c.d : Bµi 34: ViÕt PTTQ cđa mp chøa ®t d: 0 x −1 y + 2 z − 2 = = vµ vu«ng gãc víi mp(Q): 3x + 2y – z – 5 = 2 −3 2 Bµi35: XÐt vÞ trÝ t¬ng ®èi cđa ®êng th¼ng (d) vµ mỈt ph¼ng (P) ,biÕt:... Oxyz cho ®iĨm M(1; -2; 3) TÝnh kho¶ng c¸ch tõ M ®Õn: a.MỈt ph¼ng Oyz b.MỈt ph¼ng (P): x – 2y – 2z + 3 = 0 Bµi 39: Trong kh«ng gian víi hƯ trơc to¹ ®é Oxyz cho 2 ®êng th¼ng Trang 13 ƠN THI TN THPT 2009 -2010 THPT HIỆP ĐỨC- Q NAM x −1 y + 2 z + 2 x +1 y z − 3 = = = = ∆1: vµ ∆2: 3 1 4 2 3 −1 a.Chøng minh 2 ®êng th¼ng trªn chÐo nhau b.TÝnh kho¶ng c¸ch gi÷a hai ®êng th¼ng c.Chøng minh ∆1 song song víi mỈt . rằng d: = = += tz ty tx 2 42 61 vuông góc với mặt phẳng (P): 3x 2y + z 2010 = 0 Bài 34: Viết PTTQ của mp chứa đt d: 2 2 3 2 2 1 = + = zyx và vuông góc với mp(Q): 3x + 2y z 5 = 0 Bài35:. Viết phơng trình hình chiếu vuông góc của đờng thẳng lên mặt phẳng, phơng trình đờng vuông góc chungcủa hai đờng thẳng cheó nhau a.Viết phơng trình hình chiếu vuông góc của đờng thẳng lên mặt. : + Gọi là hình chiếu vuông góc của lên (P) = (P) (Q) với (Q) chứa và (Q) vuông góc với (P) + Viết PTTQ của mặt phẳng (Q) + Lấy M , xác định hình chiếu vuông góc M của M xuống (P)

Ngày đăng: 03/07/2014, 09:00

w