1. Trang chủ
  2. » Giáo án - Bài giảng

các phương pháp so sanh phân số cực hay

13 1,4K 4

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 457 KB

Nội dung

Chủ đề 7 tiết 7-10 SO SÁNH PHÂN SỐ I)Mục tiêu: Để so sánh 2 phân số , tùy theo một số trường hợp cụ thể của đặc điểm các phân số , ta có thể sử dụng nhiều cách tính nhanh và hợp lí .Tính chất bắc cầu của thứ tự thường được sử dụng ( & a c c m a m thì b d d n b n > > > ), trong đó phát hiện ra một số trung gian để làm cầu nối là rất quan trọng.Sau đây tôi xin giới thiệu một số phương pháp so sánh phân số II) chuẩn bò Gv: giáo án Hs: III) dạy bài mới PHẦN I: CÁC PHƯƠNG PHÁP SO SÁNH . Hoạt động của GV Hoạt động của Hs I/CÁCH 1: Ví dụ : So sánh 11 17 & 12 18 − − ? Gv hướng dẫnn cho Hs Chú ý :Phải viết phân số dưới mẫu dương . II/CÁCH 2: IIII/CÁCH 3: Ví dụ : So sánh 11 17 & 12 18 − − ? 11 33 17 17 34 & 12 36 18 18 36 − − − − = = = − 33 34 11 17 36 36 12 18 Vì − − − > ⇒ > − Quy đồng mẫu dương rồi so sánh các tử :tử nào lớn hơn thì phân số đó lớn hơn Quy đồng tử dương rồi so sánh các mẫu có cùng dấu “+” hay cùng dấu “-“: mẫu nào nhỏ hơn thì phân số đó lớn hơn . Quy đồng mẫu dương rồi so sánh các tử :tử nào lớn hơn thì phân số đó lớn hơn G cho Hs lê bảng giải và uốn năn sai lầm cho Hs Chú ý : Phải viết các mẫu của các phân sốcác mẫu dương vì chẳng hạn 3 4 4 5 − < − do 3.5 < -4.(-4) là sai IV/CÁCH 4: 1) Dùng số 1 làm trung gian: a) Nếu 1&1 a c a c b d b d > > ⇒ > b) Nếu 1; 1 a c M N b d − = − = mà M > N thì a c b d > • M,N là phần thừa so với 1 của 2 phân Ví dụ 1: 5 7 5.8 7.6 6 8 vì < < Ví dụ 2: 4 4 4.8 4.5 5 8 vì − − < − < − Ví dụ 3: So sánh 3 4 & ? 4 5− − Ta viết 3 3 4 4 & 4 4 5 5 − − = = − − Vì tích chéo –3.5 > -4.4 nên 3 4 4 5 > − − (Tích chéo với các mẫu b và d đều là dương ) +Nếu a.d>b.c thì a c b d > + Nếu a.d<b.c thì a c b d < + Nếu a.d=b.c thì a c b d = Dùng số hoặc phân số làm trung gian . số đã cho . • Phân số nào có phần thừa lớn hơn thì phân số đó lớn hơn. b) Nếu 1; 1 a c M N b d + = + = mà M > N thì a c b d < M,N là phần thiếu hay phần bù đến đơn vò của 2 phân số đó. Phân số nào có phần bù lớn hơn thì phân số đó nhỏ hơn. Bài tập áp dụng : Gv hướng dẫn cho Hs giải Dùng 1 phân số làm trung gian: Gv:(Phân số này có tử là tử của phân số thứ nhất , có mẫu là mẫu của phân số thứ hai) Ví dụ : Để so sánh 18 15 & 31 37 ta xét phân số trung gian 18 37 . Vì 18 18 18 15 18 15 & 31 37 37 37 31 37 > > ⇒ > *Nhận xét : Trong hai phân số , phân số nào vừa có tử lớn hơn , vừa có Bài tập 1: So sánh 19 2005 & ? 18 2004 Ta có : 19 1 2005 1 1& 1 18 18 2004 2004 − = − = 1 1 19 2005 18 2004 18 2004 Vì > ⇒ > Bài tập 2: So sánh 72 98 & ? 73 99 Ta có : 72 1 98 1 1& 1 73 73 99 99 + = + = 1 1 72 98 73 99 73 99 Vì > ⇒ < Bài tập 3 : So sánh 7 19 & ? 9 17 Ta có 7 19 7 19 1 9 17 9 17 < < ⇒ < mẫu nhỏ hơn thì phân số đó lớn hơn (điều kiện các tử và mẫu đều dương ). *Tính bắc cầu : & a c c m a m thì b d d n b n > > >  Bài tập áp dụng : a) h) 1999.2000 2000.2001 & ? 1999.2000 1 2000.2001 1 + + (Hướng dẫn : Từ câu a → c :Xét phân số trung gian. Từ câu d → h :Xét phần bù đến đơn vò ) 2) Dùng phân số xấp xỉ làm phân số trung gian. Ví dụ : So sánh 12 19 & ? 47 77 Ta thấy cả hai phân số đã cho đều xấp xỉ với phân số trung gian là 1 4 . Ta có : 12 12 1 19 1 9 1 12 19 & 47 48 4 77 76 4 47 77 > = < = ⇒ > Bài tập áp dụng : Bài tập 1: So sánh 72 58 & ? 73 99 -Xét phân số trung gian là 72 99 , ta thấy 72 72 72 5 8 72 58 & 73 99 99 99 73 99 > > ⇒ > -Hoặc xét số trung gian là 58 73 , ta thấy 72 58 58 58 72 58 & 73 73 73 99 73 99 > > ⇒ > Bài tập 2: So sánh * 1 & ;( ) 3 2 n n n N n n + ∈ + + Dùng phân số trung gian là 2 n n + Ta có : * 1 1 & ;( ) 3 2 2 2 3 2 n n n n n n n N n n n n n n + + < < ⇒ < ∈ + + + + + + Bài tập 3: (Tự giải) So sánh các phân số sau: 12 13 & ? 49 47 456 123 & ? 461 128 64 73 & ? 85 81 2003.2004 1 2004.2005 1 & ? 2003.2004 2004.2005 − − 19 17 & ? 31 35 149 449 & ? 157 457 67 73 & ? 77 83 Dùng phân số xấp xỉ làm phân số trung gian để so sánh : 11 16 58 36 12 19 18 26 ) & ; ) & ; ) & ; ) & 32 49 89 53 37 54 53 78 13 34 25 74 58 36 ) & ; ) & ; ) & . 79 204 103 295 63 55 a b c d e f h V/ CÁCH 5: Gv cho bài tập Hs lên bảng trình bày Bài tập 1: So sánh 11 10 12 11 10 1 10 1 & ? 10 1 10 1 A B − + = = − + Ta có : 11 12 10 1 1 10 1 A − = < − (vì tử < mẫu) ⇒ 11 11 11 10 12 12 12 11 10 1 (10 1) 11 10 10 10 1 10 1 (10 1) 11 10 10 10 1 A B − − + + + = < = = = − − + + + Vậy A < B . Bài tập 2: So sánh 2004 2005 2004 2005 & ? 2005 2006 2005 2006 M N + = + = + Ta có : 2004 2004 2005 2005 2006 2005 2005 2006 2005 2006  >   +   >  +  Cộng theo vế ta có kết quả M > N. Bài tập 3:So sánh 37 3737 & 39 3939 ? Giải: 37 3700 3700 37 3737 39 3900 3900 39 3939 + = = = + (áp dụng . a c a c b d b d + = = + ) Bài tập 1: Sắp xếp các phân số 134 55 77 116 ; ; ; 43 21 19 37 theo thứ tự tăng dần. Giải: đổi ra hỗn số : 5 1 3 1 5 3 ;2 ; 4 ;3 43 21 19 37 Ta thấy: 13 5 5 1 2 3 3 4 21 43 37 19 < < < Dùng tính chất sau với m ≠ 0 : * 1 a a a m b b b m + < ⇒ < + * 1 . a a a m b b b m + = ⇒ = + Hướng dẫn giải: Rút gọn A=1 , đổi B;C ra hỗn số ⇒ A<B<C. Hướng dẫn giải: -Rút gọn 5 1 138 1 1 & 1 . 4 4 137 137 M N M N = = + = = + ⇒ > ( Chú ý: 690=138.5&548=137.4 ) Gợi ý: a) Quy đồng tử c) Xét phần bù , chú ý : 10 100 100 41 410 413 = > d)Chú ý: 53 530 57 570 = Xét phần bù đến đơn vò e)Chú ý: phần bù đến đơn vò là: 1 1010 1010 26 26260 26261 = > nên 55 134 116 77 21 43 37 19 < < < . Bài tập 2: So sánh 8 8 8 8 10 2 10 & ? 10 1 10 3 A B + = = − − Giải: 8 8 3 3 1 & 1 10 1 10 3 A B = = − − mà 8 8 3 3 10 1 10 3 A B < ⇒ < − − Ta thấy: 13 13 35 35 5 5 4 4 17 27 37 47 > > > ⇒ 17 27 37 47 ( ) 98 148 183 223 a c b d vì b d a c < < < < ⇒ > Bài tập 4: So sánh các phân số : 3535.232323 3535 2323 ; ; 353535.2323 3534 2322 A B C = = = ? Bài tập 5: So sánh ( ) 2 2 5 11.13 22.26 138 690 & ? 22.26 44.54 137 548 M N − − = = − − Bài tập 1: So sánh các phân số sau bằng cách hợp lý: 7 210 11 13 31 313 53 531 25 25251 ) & ; ) & ) & ) & ) & 8 243 15 17 41 413 57 571 26 26261 a b c d e Bài tập 2: Không thực hiện phép tính ở mẫu , hãy dùng tính chất của phân số để so sánh các phân số sau: 244.395 151 423134.846267 423133 ) & 244 395.243 423133.846267 423134 a A B − − = = + + Bài tập 3: So sánh 3 3 3 33.10 3774 & 2 .5.10 7000 5217 A B= = + Bài tập 4: So sánh 2 3 4 4 2 3 4 3 5 6 5 6 4 5 5 & 5 ? 7 7 7 7 7 7 7 7 A B = + + + + = + + + + Bài tập 5:So sánh VI/CÁCH 6: GV: cho bài tập Hs lên bảng trình bày Gợi ý: Quy đồng tử rồi so sánh . 1919.171717 18 & 191919.1717 19 M N = = ? Bài tập 6: So sánh 17 1717 & ? 19 1919 Bài tập 7: Cho a,m,n ∈ N * .Hãy so sánh : 10 10 11 9 & ? m n m n A B a a a a = + = + Giải: 10 9 1 10 9 1 & m n n m n m A B a a a a a a     = + + = + +  ÷  ÷     Muốn so sánh A & B ,ta so sánh 1 n a & 1 m a bằng cách xét các trường hợp sau: Với a=1 thì a m = a n ⇒ A=B Với a ≠ 0: Nếu m= n thì a m = a n ⇒ A=B Nếu m< n thì a m < a n ⇒ 1 1 m n a a > ⇒ A < B Nếu m > n thì a m > a n ⇒ 1 1 m n a a < ⇒ A >B Bài tập 8: So sánh P và Q, biết rằng: 31 32 3 3 60 . . & 1.3.5.7 59 2 2 2 2 P Q = = ? 30 30 31 32 33 60 31.32.33 60 (31.32.33.60).(1.2.3 30) . . 2 2 2 2 2 2 .(1.2.3 30) (1.3.5 59).(2.4.6 60) 1.3.5 59 2.4.6 60 P Q = = = = = = Vậy P = Q Bài tập 9: So sánh 7.9 14.27 21.36 37 & ? 21.27 42.81 63.108 333 M N + + = = + + Giải: Rút gọn 7.9 14.27 21.36 7.9.(1 2.3 3.4) 37 : 37 1 & 21.27 42.81 63.108 21.27.(1 2.3 3.4) 333 : 37 9 M N + + + + = = = = + + + + Vậy M = N Bài tập 10: Sắp xếp các phân số 21 62 93 ; & 49 97 140 Đổi phân số lớn hơn đơn vò ra hỗn số để so sánh : +Hỗn số nào có phần nguyên lớn hơn thì hỗn số đó lớn hơn. +Nếu phần nguyên bằng nhau thì xét so sánh các phân số kèm theo. Gợi ý : Quy đồng mẫu , ta được 2 3 4 9 36 3 6 36 36 x y < < < ⇒ 2 < 3x < 4y < 9 Do đó x=y=1 hay x=1 ; y=2 hay x=y=2 PHẦN II: CÁC BÀI TẬP TỔNG HP . (Gv Gợi ý: a) Quy đồng tử c) Xét phần bù , chú ý : 10 100 100 41 410 413 = > d)Chú ý: 53 530 57 570 = Xét phần bù đến đơn vò e)Chú ý: phần bù đến đơn vò là: 1 1010 1010 26 26260 26261 = > ) Gv Hướng dẫn giải:Sử dụng tính chất a(b + c)= ab + theo thứ tự tăng dần ? Gợi ý: Quy đồng tử rồi so sánh . Bài tập 11: Tìm các số nguyên x,y biết : 1 1 18 12 9 4 x y < < < ? Bài tập 12: So sánh 7 6 5 3 1 1 3 5 ) & ; ) & 80 243 8 243 a A B b C D         = = = =  ÷  ÷  ÷  ÷         Giải: p dụng công thức: ( ) . & n n n m m n n x x x x y y   = =  ÷   7 7 7 6 6 4 28 5 30 28 30 5 5 3 3 3 15 5 15 1 1 1 1 1 1 1 1 1 ) & ; 80 81 3 3 243 3 3 3 3 3 3 243 5 5 125 ) & . 8 2 2 243 3 3 a A B Vì A B b C D           = > = = = = = > ⇒ >  ÷  ÷  ÷  ÷  ÷                   = = = = = =  ÷  ÷  ÷  ÷         Chọn 15 125 2 làm phân số trung gian ,so sánh 15 125 2 > 15 125 3 ⇒ C > D. Bài tập 13: Cho 1 3 5 99 2 4 6 100 . . & . . 2 4 6 100 3 5 7 101 M N = = a)Chứng minh: M < N b) Tìm tích M.N c) Chứng minh: 1 10 M < Giải: Nhận xét M và N đều có 45 thừa số a)Và 1 2 3 4 5 6 99 100 ; ; ; 2 3 4 5 6 7 100 101 < < < < nên M < N b) Tích M.N 1 101 = c)Vì M.N 1 101 = ac +Viết 244.395=(243+1).395=243.395 +395 Gv Hướng dẫn cho Hs giải mà M < N nên ta suy ra được : M.M < 1 101 < 1 100 tức là M.M < 1 10 . 1 10 ⇒ M < 1 10 IV) Hướng dẫn ở nhà; PHẦN II: CÁC BÀI TẬP TỔNG HP . Bài tập 1: So sánh các phân số sau bằng cách hợp lý: 7 210 11 13 31 313 53 531 25 25251 ) & ; ) & ) & ) & ) & 8 243 15 17 41 413 5 7 571 26 26261 a b c d e (Gợi ý: a) Quy đồng tử c) Xét phần bù , chú ý : 10 100 100 41 410 413 = > d)Chú ý: 53 530 57 570 = Xét phần bù đến đơn vò e)Chú ý: phần bù đến đơn vò là: 1 1010 1010 26 26260 26261 = > ) Bài tập 2: Không thực hiện phép tính ở mẫu , hãy dùng tính chất của phân số để so sánh các phân số sau: 244.395 151 423134.846267 423133 ) & 244 395.243 423133.846267 423134 a A B − − = = + + Hướng dẫn giải:Sử dụng tính chất a(b + c)= ab + ac +Viết 244.395=(243+1).395=243.395+395 +Viết 423134.846267=(423133+1).846267=… +Kết quả A=B=1 53.71 18 54.107 53 135.269 133 ) ; ; ? 71.52 53 53.107 54 134.269 135 b M N P − − − = = = + + + (Gợi ý: làm như câu a ở trên ,kết quả M=N=1,P>1) Bài tập 3: So sánh 3 3 3 33.10 3774 & 2 .5.10 7000 5217 A B= = + Gợi ý: 7000=7.10 3 ,rút gọn 33 3774 :111 34 & 47 5217 :111 47 A B = = = Bài tập 4: So sánh 2 3 4 4 2 3 4 3 5 6 5 6 4 5 5 & 5 ? 7 7 7 7 7 7 7 7 A B = + + + + = + + + + Gợi ý: Chỉ tính 2 4 4 2 4 4 3 6 153 6 5 329 & 7 7 7 7 7 7 + = = + = = Từ đó kết luận dễ dàng : A < B Bài tập 5:So sánh 1919.171717 18 & 191919.1717 19 M N = = ? Gợi ý: 1919=19.101 & 191919=19.10101 ; Kết quả M>N ⇒ Mở rộng : 123123123=123.1001001 ;… Bài tập 6: So sánh 17 1717 & ? 19 1919 Gợi ý: +Cách 1: Sử dụng . a c a c b d b d + = = + ; chú ý : 17 1700 19 1900 = +Cách 2: Rút gọn phân số sau cho 101…. Bài tập 7: Cho a,m,n ∈ N * .Hãy so sánh : 10 10 11 9 & ? m n m n A B a a a a = + = + [...]... 10 1 1 1 3 4 Bài tập 14: Cho tổng : S = 31 + 32 + + 60 Chứng minh: 5 < S < 5 Giải: Tổng S có 30 số hạng , cứ nhóm 10 số hạng làm thành một nhóm Giữ nguyên tử , nếu thay mẫu bằng một mẫu khác lớn hơn thì giá trò của phân số sẽ giảm đi Ngược lại , nếu thay mẫu bằng một mẫu khác nhỏ hơn thì giá trò của phân số sẽ tăng lên       Ta có : S =  31 + 32 + + 40 ÷+  41 + 42 + + 50 ÷+  51 + 52 + +... = Q 7.9 + 14.27 + 21.36 37 Bài tập 9: So sánh M = 21.27 + 42.81 + 63.108 & N = 333 ? Giải: Rút gọn M= 7.9 + 14.27 + 21.36 7.9.(1 + 2.3 + 3.4) 37 : 37 1 = &N = = 21.27 + 42.81 + 63.108 21.27.(1 + 2.3 + 3.4) 333 : 37 9 Vậy M = N 21 62 93 Bài tập 10: Sắp xếp các phân số 49 ; 97 & 140 theo thứ tự tăng dần ? Gợi ý: Quy đồng tử rồi so sánh 1 x y 1 Bài tập 11: Tìm các số nguyên x,y biết: 18 < 12 < 9 < 4 ?... =  a m + a n ÷+ a n & B =  a m + a n ÷+ a m     10 9 1 10 9 1 1 1 Muốn so sánh A & B ,ta so sánh a n & a m bằng cách xét các trường hợp sau: a) Với a=1 thì am = an ⇒ A=B a) Với a ≠ 0: • Nếu m= n thì am = an ⇒ A=B 1 1 • Nếu m< n thì am < an ⇒ a m > a n ⇒ A < B 1 1 • Nếu m > n thì am > an ⇒ a m < a n ⇒ A >B Bài tập 8: So sánh P và Q, biết rằng: P= 31 32 33 60 & Q = 1.3.5.7 59 ? 2 2 2 2 31 32...  ÷ =  3 ÷ = 15 & D =  ÷ =  5 ÷ = 15 2 3 8 2   243   3  125 125 125 Chọn 215 làm phân số trung gian ,so sánh 215 > 315 ⇒ C > D 1 3 5 99 2 4 6 100 Bài tập 13: Cho M = 2 4 6 100 & N = 3 5 7 101 a)Chứng minh: M < N b) Tìm tích M.N c) Chứng 1 minh: M < 10 Giải: Nhận xét M và N đều có 45 thừa số 1 2 3 4 5 6 99 100 < ; < ; < ; < nên M < N 2 3 4 5 6 7 100 101 1 b) Tích M.N = 101 1 1 c)Vì... ý: Quy đồng tử rồi so sánh 1 x y 1 Bài tập 11: Tìm các số nguyên x,y biết: 18 < 12 < 9 < 4 ? 2 3x 4y 9 Gợi ý : Quy đồng mẫu , ta được 36 < 36 < 36 < 36 ⇒ 2 < 3x < 4y < 9 Do đó x=y=1 hay x=1 ; y=2 hay x=y=2 Bài tập 12: So sánh 7 6 5 3  1   1   3  5  a) A =  ÷ & B =  ÷ ; b)C =  ÷ & D =  ÷  80   243  8  243  n n  x xn = n & ( x m ) = x m.n Giải: p dụng công thức:  ÷ y  y 7 7... ÷+  41 + 42 + + 50 ÷+  51 + 52 + + 60 ÷       1 1 1 1 1 1 1 1 1 1 1   1 1 1   1 1 1   1 ⇒ S <  + + + ÷+  + + + ÷+  + + + ÷ 30   40 40 40   50 50 50   30 30 10 10 10 47 48 4 hay S < 30 + 40 + 50 từc là: S < 60 < 60 Vậy S < 5 (1) Mặt khác: 1 1   1 1 1   1 1 1   1 S > + + + ÷+  + + + ÷+  + + + ÷ 40   50 50 50   60 60 60   40 40 10 10 10 37 36 3 ⇒ S> + + tức . của 2 phân số đó. Phân số nào có phần bù lớn hơn thì phân số đó nhỏ hơn. Bài tập áp dụng : Gv hướng dẫn cho Hs giải Dùng 1 phân số làm trung gian: Gv: (Phân số này có tử là tử của phân số thứ. một số trung gian để làm cầu nối là rất quan trọng.Sau đây tôi xin giới thiệu một số phương pháp so sánh phân số II) chuẩn bò Gv: giáo án Hs: III) dạy bài mới PHẦN I: CÁC PHƯƠNG PHÁP SO SÁNH. Chủ đề 7 tiết 7-10 SO SÁNH PHÂN SỐ I)Mục tiêu: Để so sánh 2 phân số , tùy theo một số trường hợp cụ thể của đặc điểm các phân số , ta có thể sử dụng nhiều cách tính nhanh và hợp lí

Ngày đăng: 30/06/2014, 12:00

TỪ KHÓA LIÊN QUAN

w