1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx

82 296 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 82
Dung lượng 594,64 KB

Nội dung

bộ giáo dục đào tạo trờng đại học bách khoa hà nội Vũ công đoàn luận văn thạc sĩ khoa học ngành : công nghệ thông tin Tập mờ loại hai suy diễn với tập mờ loại hai công nghệ thông tin Vũ công đoàn 2006 - 2008 Hà Nội 2008 Hà Nội 2008 1 Mục lục Mục lục 1 Danh mục hình vẽ 3 Mở đầu 5 Chơng 1. Cơ bản về tập mờ 7 1.1. Tập mờ 7 1.2. Các phép toán tập hợp trên tập mờ 8 1.3. Quan hệ mờ 10 1.3.1. Quan hệ mờ trên cùng không gian 10 1.3.2. Quan hệ mờ phép hợp thành trên các không gian khác nhau. 13 1.4. Cơ bản về suy diễn mờ 14 1.5. Nguyên lý mở rộng 17 1.6. Kết luận chơng 18 Chơng 2. tập mờ loại hai 19 2.1. Giới thiệu chung 19 2.2. Hàm thuộc loại hai 19 2.2.1. Khái niệm tập mờ loại hai 19 2.2.2. Định nghĩa tập mờ loại hai các khái niệm 19 2.2.3. Hàm thuộc trên hàm thuộc dới 26 2.3. Tập mờ loại hai nhúng 27 2.4. Các phép toán trên tập mờ loại hai 30 2.4.1. Hợp của các tập mờ loại hai 30 2.4.2. Giao của các tập mờ loại hai 32 2.4.3. Phần bù của một tập mờ loại hai 33 2.5. Kết luận chơng 36 Chơng 3. Suy diễn với tập mờ loại hai 37 3.1. Quan hệ mờ loại hai phép hợp thành 37 3.1.1. Khái niệm chung 37 3.1.2. Quan hệ mờ loại hai phép hợp thành trên cùng một không gian 38 3.1.3. Quan hệ mờ loại hai phép hợp thành trên các không gian khác nhau 41 3.1.4. Phép hợp thành của một tập mờ loại hai một quan hệ mờ loại hai 42 3.2. Tích Đê-các của các tập mờ loại hai 43 3.3. Các dạng luật mờ 45 3.4. Một số phơng pháp suy diễn mờ loại hai 46 3.4.1. Suy diễn mờ dựa vào phép hợp thành 46 3.4.2. Suy diễn mờ dựa trên sự tơng tự của các tập mờ 48 3.5. Nhận xét 57 2 Chơng 4. Hệ logic mờ loại hai khoảng 59 4.1. Định nghĩa 59 4.2. Hàm thuộc trên hàm thuộc dới của tập mờ loại hai khoảng 60 4.3. Phép toán hợp giao của tập mờ loại hai khoảng 62 4.4. Suy diễn với tập mờ loại hai khoảng 63 4.5. Giảm loại khử mờ 68 4.6. Thiết kế hệ logic mờ loại hai khoảng bằng phơng pháp lan truyền ngợc BP (Back-Propagation) 70 4.7. ứng dụng của hệ logic mờ loại hai khoảng 76 4.8. Kết luận chơng 79 Kết luận 80 Tài liệu tham khảo 81 3 Danh mục hình vẽ Hình 1-1: Các hàm độ thuộc cho xe nội địa xe ngoại nhập dựa trên tỷ lệ phần trăm các thành phần sản xuất trong nớc 7 Hình 1-2: Các hàm thuộc: (a) )(x A à )(x B à , (b) )(x BA à , (c) )(x BA à , (d) )(x B à 9 Hình 1-3: đồ thị hàm thuộc của quan hệ mờ |)(| yx c à 11 Hình 1-4 16 Hình 2-1: (a) hàm thuộc loại một, (b) vết mờ hàm thuộc loại một, (c) FOU 20 Hình 2-2: Ví dụ về hàm thuộc loại hai 21 Hình 2-3: (a): một tập mờ loại hai Gaussian. (b): hàm thuộc thứ cấp Gaussian tại x = 4 23 Hình 2-4 24 Hình 2-5: FOU dạng tam giac 25 Hình 2-6: FOU của hàm thuộc sơ cấp Gaussian với tham số giá trị trung bình m không chắc chắn 26 Hình 2-7: FOU của hàm thuộc sơ cấp Gaussian với tham số độ lệch chuẩn không chắc chắn 26 Hình 2-8: Ví dụ về một tập loại một nhúng (đờng đứt tô đậm) trong một tập mờ loại hai 28 Hình 2-9: Một tập mờ loại hai nhúng một tập mờ loại một nhúng đợc gắn với hàm thuộc loại hai đợc biểu diễn trong Hình 2-2. 29 Hình 3-1: Hệ logic mờ loại hai 37 Hình 4-1: Ví dụ về hàm thuộc của một tập mờ loại 2 khoảng trong không gian rời rạc. Miền tô đen trong mặt phẳng x-u là FOU 60 Hình 4-2: (a) minh hoạ cho ví dụ 4-1, (b) minh hoạ cho ví dụ 4-2 .62 Hình 4-3: Xác định l f l f . (a) sử dụng minimum t-norm. (b) sử dụng product t-norm. 67 Hình 4-4: Xác định )( ~ y l B à . (a) sử dụng minimum t-norm. (b) sử dụng product t-norm 67 4 Hình 4-5: Xác định )( ~ y B à . (a) sử dụng minimum t-norm. (b) sử dụng product t-norm .68 Hình 4-6: Minh hoạ cho tập mờ loại 2 khoảng đơn trị có hai luật. (a) FOU của 1 1 ~ F 1 2 ~ F trong luật 1. (b) FOU của 2 1 ~ F 2 2 ~ F trong luật 2 73 Hình 4-7: Giá trị trung bình độ lệch chuẩn của RMSE s1 , RMSE ns1 , RMSE s2 . (a) giá trị trung bình, (b) độ lệch chuẩn . 78 5 Mở đầu Lý thuyết tập mờ loại hai đợc Zadeh đa ra từ năm 1975. Tập mờ loại hai ngày càng đợc khẳng định vị trí u việt của mình trong việc cải thiện nâng cao chất lợng xử lý thông tin so với nhiều phơng pháp truyền thống khác. Ngày nay, Logic mờ đợc ứng dụng trong thực tiễn đặc biệt là trong lĩnh vực dự báo, khai phá tri thức, điều khiển mờ Tuy nhiên, việc tính toán xử lý thông tin dựa trên tập mờ loại hai nói chung có độ phức tạp rất lớn, điều này đã ảnh hởng không nhỏ tới khả năng ứng dụng của tập mờ loại hai vào giải quyết các bài toán thực tế. Chính vì vậy, những năm trở lại đây, lý thuyết tập mờ loại hai nhận đợc rất nhiều sự quan tâm nghiên cứu của nhiều nhà khoa học. Một trong những hớng nghiên cứu đó là tìm ra các phơng pháp làm giảm độ phức tạp tính toán trong các hệ logic mờ loại hai. Suy diễn với tập mờ loại hai là một khâu quan trọng trong hệ logic mờ loại hai. Phơng pháp suy diễn quyết định rất lớn tới chất lợng độ phức tạp tính toán của toàn hệ. Với mục đích tìm hiểu nghiên cứu về tập mờ loại 2, đợc sự hớng dẫn của PGS.TS. Trần Đình Khang Khoa CNTT - Đại Học Bách Khoa Hà Nội, tôi lựa chọn đề tài Tập mờ loại hai suy diễn với tập mờ loại hai. Đề tài thực hiện tìm hiểu nghiên cứu những vấn đề cơ bản đối với tập mờ loại hai, một số phơng pháp suy diễn đối với tập mờ loại hai tổng quát tập mờ loại hai khoảng. Đề tài đợc chia thành các phần sau: Chơng 1. Cơ bản về tập mờ: Chơng này trình bày các khái niệm cơ bản về tập mờ nói chung làm cơ sở để tìm hiểu, nghiên cứu các đặc trng của tập mờ loại hai. Chơng 2. Tập mờ loại hai: Tập mờ loại hai là sự phát triển mở rộng của tập mờ loại một nhằm khắc phục những nhợc điểm của tập mờ loại một. Chơng này trình bày những khái niệm những đặc trng cơ bản của tập mờ loại hai. Các phép toán tập hợp trên tập mờ loại hai cũng đợc trình bày ở đây, các phép toán này là công cụ không thể thiếu để thực hiện các phép suy diễn mờ. 6 Chơng 3. Một số phơng pháp suy diễn trên tập mờ loại hai: Chơng này trình bày một số phơng pháp suy diễn với tập mờ loại hai. Hai phơng pháp suy diễn đợc trình bày ở đây đó là phơng pháp suy diễn dựa trên phép hợp thành phơng pháp suy diễn dựa trên độ tơng tự. Từ đó đa ra những phân tích đánh giá, đây là một cơ sở quan trọng để lựa chọn phơng pháp suy diễn phù hợp khi thiết kế xây dựng các ứng dụng logic mờ. Chơng 4: Tập mờ loại hai khoảng: Tập mờ loại hai tổng quát bộc lộ một số nhợc điểm nh độ phức tạp tính toán lớn. Do có cấu trúc đặc biệt nên việc tính toán suy diễn trên tập mờ loại hai khoảng có độ phức tạp nhỏ hơn rất nhiều lần so với tập mờ loại hai tổng quát. Chính vì vậy, tập mờ loại hai khoảng thờng đợc ứng dụng trong các hệ logic mờ. Chơng này trình bày những đặc trng cơ bản của tập mờ loại hai khoảng phơng pháp suy diễn trên tập mờ loại hai khoảng. 7 Chơng 1. Cơ bản về tập mờ 1.1. Tập mờ Định nghĩa 1-1: Tập mờ F xác định trong không gian X đợc định nghĩa nh sau: F = {(x, )(x F à )| x X} với )(x F à [0, 1] à F đợc gọi là hàm thuộc của tập mờ F )(x F à là giá trị độ thuộc của x X vào F. Để thuận tiên cho việc biểu diễn, ngời ta ký hiệu tập mờ F : F = X F xx /)( à , khi X liên tục F = xx X F /)( à , khi X rời rạc ở đây, các kí hiệu không phải là phép tích phân tổng đại số mà là tập hợp tất cả các phần tử x X kết hợp với giá trị độ thuộc )(x F à tơng ứng của chúng. 0 2 5 50 75 1 00 0.5 1 )(x F à )(x D à x )(x à Hình 1-1. Các hàm độ thuộc cho xe nội địa xe ngoại nhập dựa trên tỷ lệ phần trăm các thành phần sản xuất trong nớc (1-1) (1-3) (1- 2) 8 Ví dụ 1-1: Hình 1-1 tả việc phân loại tập các ô tô thành hai tập nội địa (D) ngoại nhập (F) theo tỷ lệ phần trăm các linh kiện đợc sản xuất trong nớc. ở đây, F D là các tập mờ có các hàm thuộc tơng ứng là )(x F à )(x D à ; x là tỷ lệ phần trăm các linh kiện sản xuất trong nớc. Một chiếc ô tô đợc coi là nội địa nếu có )(x D à > )(x F à , ngợc lại nó đợc coi là xe ngoại nhập. Thông thờng, đồ thị sử dụng để tả cho các hàm thuộc của một tập mờ có dạng hình tam giác, hình thang, Gaussian .v.v. Các hàm thuộc thờng đợc lựa chọn một cách tùy ý trên cơ sở kinh nghiệm của ngời sử dụng về lĩnh vực liên quan hoặc phơng pháp tính toán tối u mà họ lựa chọn. 1.2. Các phép toán tập hợp trên tập mờ Trong lý thuyết tập mờ, các phép toán tập hợp đợc định nghĩa thông qua các hàm thuộc của chúng. Giả sử A B là hai tập mờ xác định trên không gian X đợc đặc trng bởi các hàm thuộc tơng ứng là )(x A à )(x B à . Định nghĩa 1-2: Hợp của hai tập mờ A B, ký hiệu BA , có hàm thuộc đợc định nghĩa: )(x BA à = max[ )(x A à , )(x B à ] Định nghĩa 1-3: Giao của hai tập mờ A B, ký hiệu BA , có hàm thuộc đợc định nghĩa: )(x BA à = min[ )(x A à , )(x B à ] Phần bù của tập mờ A, ký hiệu A hàm thuộc đợc định nghĩa: )(x A à = 1 - )(x A à Xét ví dụ sau: Ví dụ 1-2: Cho hai tập mờ A B có hàm thuộc đợc xác định nh sau: )(x A à = + 15.0],)5.0(1/[1 5.00,0 2 xx x nếu nếu (1-4) (1-5) (1-6) (1-7) 9 )(x B à = 10, )707.0(1 1 4 + x x Hình 1-2 dới đây tả các hàm thuộc )(x A à , )(x B à , )(x BA à , )(x BA à , )(x A à Ví dụ này cho thấy phép hợp, giao của một tập mờ với phần bù của nó có kết quả khác so với trong tập rõ. Bởi vì, rõ ràng XAA AA . Ngoài việc sử dụng các phép toán maximum minimum, ngời ta còn có thể định nghĩa các phép hợp phép giao khác cho tập mờ. Chẳng hạn, Zadeh định nghĩa hai phép toán hợp giao cho tập mờ nh sau: (1-8) 0.707 0.5 )(x B à )(x A à x 1 (a) 0.707 0.5 x 1 )(x BA à (b) 0.707 0.5 )(x BA à x 1 0.707 0.5 )(x B à x 1 )(x B à (d) Hình 1-2: Các hàm thuộc: (a) )(x A à )(x B à , (b) )(x BA à , (c) )(x BA à , (d) )(x B à (c) [...]... 0.6 0.8 1 J1 J2 J3 J5 J4 u (b) Hình 2-9: Một tập mờ loại hai nhúng một tập mờ loại một nhúng đợc gắn với hàm thuộc loại hai đợc biểu diễn trong Hình 2-2 2.4 Các phép toán trên tập mờ loại hai Trong phần này đề cập tới các phép toán tập hợp đối với tập mờ loại hai nói chung Các phép toán tập hợp bao gồm phép hợp, giao, phần bù ~ ~ Cho hai tập mờ loại hai A B xác định trên cùng không gian X: ~ A =... x ) đợc kết hợp với một độ thuộc thứ cấp f x ( ) Hình 2-8 là một ví dụ về một tập mờ loại hai nhúng ~ Nh vậy, một tập mờ loại hai A có thể đợc hiểu là một tập hợp các tập ~ ~ mờ loại hai Ae , đợc gọi là các tập mờ loại hai nhúng trong A Khi tính toán với tập mờ loại hai, chúng ta thờng rời rạc hóa không gian X U nh trong (2-6) Khi đó, sẽ có một số hữu hạn các tập mờ loại hai ~ ~ nhúng Ae trong... thuộc là các tập mờ loại một trong khoảng [0, 1] ta đợc khái niệm tập mờ loại hai Một trong những u điểm của tập mờ loại hai so với tập mờ loại một đó là nó cho phép biểu diễn các giá trị độ thuộc bằng các giá trị mờ, các giá trị ngôn ngữ chứ không phải là các giá trị số hoàn toàn chính xác 2.2.2 Định nghĩa tập mờ loại hai các khái niệm Hình 2-1 (a) biểu diễn hàm thuộc của một tập mờ loại một Dịch... hội của một tập mờ loại hai đơn trị ~ ~ ~ (singleton), A một tập mờ loại hai, B Tập mờ loại hai đơn trị, A là một tập mờ loại hai có hàm thuộc đợc xác định nh sau: 1/1 x = x ' ( x, v ) = ~ àA ' 1 / 0 x x ~ Tập mờ loại hai B đợc diễn tả bởi hàm thuộc à ~ B ( x, w) = à X ~ B ( x) / x = [J X W à (2-32) ~ B ( x, w) : g x ( w) / w] / x X J w x [0,1] (2-33) Từ (2-29), (2-31), (2-33) sử dụng minimum... khái niệm tập mờ loại hai, các phép toán các tính chất trên nó 2.2 Hàm thuộc loại hai 2.2.1 Khái niệm tập mờ loại hai Đối với tập mờ loại một, độ thuộc của các phần tử là các giá trị số thực trong khoảng [0, 1] Trong trờng hợp chúng ta không thể xác định đợc giá trị độ thuộc của các phần tử, khi đó chúng ta có sử dụng các tập mờ loại một đề biểu diễn giá trị độ thuộc đó Mở rộng tập mờ loại một bằng... 1.6 Kết luận chơng Trong chơng này đã trình bày sơ lợc về khái niệm tập mờ, các phép toán tập hợp trên tập mờ bao gồm các phép toán hợp, giao, lấy phần bù Ngoài ra, còn giới thiệu về quan hệ mờ cơ bản về suy diễn mờ Tập mờ trong chơng này có độ thuộc của mỗi phần tử trong không gian nền là một số thực thuộc đoạn [0, 1], do đó đợc gọi là tập mờ loại một để phân biệt với khái niệm tập mờ loại hai đợc... ~ Tập Ae đợc nhúng trong A , có tổng số U = [0,1] i M ~ N i =1 (2-15) i tập mờ nhúng Ae ~ trong A Định nghĩa 2-10: Cho hai không gian liên tục X U, một tập mờ loại một nhúng Ae đợc định nghĩa: 28 / x Ae = , x X J x U = [0,1] (2-16) ~ Tập Ae là tập tất cả các độ thuộc sơ cấp của tập mờ loại hai nhúng Ae ~ đợc định nghĩa trong (2-14) Có vô số tập mờ loại một nhúng Ae của Ae khi hai tập X và. .. chắc chắn Điều đó có nghĩa là việc biểu diễn sự không chắc chắn lại sử dụng các độ thuộc mà bản thân chúng là các số thực chính xác Năm 1975, Zadeh giới thiệu khái niệm tập mờ loại hai nhằm giải quyết vấn đề trên Đó là thay vì độ thuộc là một số thực nh với tập mờ thông thờng, với tập mờ loại hai, độ thuộc là một tập mờ loại một trên đoạn [0, 1] Tập mờ loại hai thờng đợc sử dụng trong những trờng hợp... = 0, 0.2, 0.4 các độ thuộc thứ cấp kết hợp với chúng là a, b, c Khi fx(u) = 1 với u Jx [0, 1] thì các hàm thuộc thứ cấp là các tập khoảng Nếu điều này là đúng với mọi x X, khi đó chúng ta gọi tập mờ loại hai này là tập mờ loại hai khoảng chúng ta có hàm thuộc lọai 2 khoảng Tập mờ loại hai khoảng sẽ đợc trình bày chi tiết ở Chơng bốn Ví dụ 2-3: Hàm thuộc thứ cấp dạng Gaussian tam giác thờng... độ thuộc sơ cấp của Ae đợc định M N nghĩa trong (2-15) Có tất cả i =1 i tập mờ nhúng Ae Ví dụ 2-7: Hình 2-9 thể hiện hai tập mờ loại hai nhúng của hàm thuộc loại hai đợc diễn tả trong Hình 2-2 Tơng ứng với mỗi tập mờ loại hai nhúng đó là các tập mờ loại một nhúng: 0 / 1 + 0.4 / 2 + 0.8 / 3 + 0.8 / 4 + 0.4 / 5 (Hình 2-9 (a)) 0.2 / 1 + 0.8 / 2 + 0.6 / 3 + 0.2 / 4 +0.2 / 5 (Hình 2-9 (b)) à 1 0 ~ . 2.4.2. Giao của các tập mờ loại hai 32 2.4.3. Phần bù của một tập mờ loại hai 33 2.5. Kết luận chơng 36 Chơng 3. Suy diễn với tập mờ loại hai 37 3.1. Quan hệ mờ loại hai và phép hợp thành 37. trong một tập mờ loại hai 28 Hình 2-9: Một tập mờ loại hai nhúng và một tập mờ loại một nhúng đợc gắn với hàm thuộc loại hai đợc biểu diễn trong Hình 2-2. 29 Hình 3-1: Hệ logic mờ loại hai 37. cơ bản đối với tập mờ loại hai, một số phơng pháp suy diễn đối với tập mờ loại hai tổng quát và tập mờ loại hai khoảng. Đề tài đợc chia thành các phần sau: Chơng 1. Cơ bản về tập mờ: Chơng

Ngày đăng: 27/06/2014, 22:20

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1]. Trần Đình Khang, Đinh Khắc Dũng, “Suy diễn với tập mờ loại hai dựa trên đại số gia tử”, Tạp chí tin học và điều khiển học, T.19, S.1 (2003) Sách, tạp chí
Tiêu đề: Suy diễn với tập mờ loại hai dựa trên đại số gia tử”, "Tạp chí tin học và điều khiển học
[2]. Trần Đình Khang, Đinh Khắc Dũng “Về quan hệ giữa tập mờ loại hai dựa trên đại số gia tử với một số dạng tập mờ loại hai khác”, Tạp chí tin học và điều khiển học, T.21, S.1(2005) Sách, tạp chí
Tiêu đề: Về quan hệ giữa tập mờ loại hai dựa trên đại số gia tử với một số dạng tập mờ loại hai khác”, "Tạp chí tin học và điều khiển học
[3]. Jerry M. Mendel, “Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions”, University of Sounthern California Los Angeles, CA Sách, tạp chí
Tiêu đề: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions
[4]. Chung-Ming Own and Pao-Ta Yu, “Reasoning with Type-2 Similarity”, National Chung Cheng University Sách, tạp chí
Tiêu đề: Reasoning with Type-2 Similarity
[5]. Qilian Liang and Jerry M.Mendel, “Interval Type-2 Fuzzy Logic Systems: Theory and Design”, IEEE transactions on Fuzzy systems, Vol.8, No.5, October 2000 Sách, tạp chí
Tiêu đề: Interval Type-2 Fuzzy Logic Systems: Theory and Design”, "IEEE transactions on Fuzzy systems
[6]. J. M. Mendel and R. I. Bob John, “ Type-2 fuzzy sets made simple,” IEEE Trans. on Fuzzy Systems, vol. 10, pp. 117-127, April 2002 Sách, tạp chí
Tiêu đề: Type-2 fuzzy sets made simple,” "IEEE Trans. on Fuzzy Systems
[7]. Q. Liang and J. M. Mendel, “ Interval type-2 fuzzy logic systems: theory and design.” IEEE Trans. on Fuzzy Systems, Vol. 8, Oct.2000 Sách, tạp chí
Tiêu đề: Interval type-2 fuzzy logic systems: theory and design.” "IEEE Trans. on Fuzzy Systems
[8] N. N. Karnik, J. M. Mendel and Q. Liang, “ Type-2 fuzzy logic systems,” IEEE Trans on Fuzzy Systems, vol. 7, Dec. 1999 Sách, tạp chí
Tiêu đề: Type-2 fuzzy logic systems,” "IEEE Trans on Fuzzy Systems
[9] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Information Sciences, vol. 132, 2001 Sách, tạp chí
Tiêu đề: Centroid of a type-2 fuzzy set,” "Information Sciences
[10] H. Wu and J. M. Mendel, “Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems,” IEEE Trans. on FuzzySystems, vol. 10, Oct. 2002 Sách, tạp chí
Tiêu đề: Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems,” "IEEE Trans. on FuzzySystems

HÌNH ẢNH LIÊN QUAN

Hình 1-1. Các hàm độ thuộc cho xe nội địa và xe ngoại nhập dựa  trên tỷ lệ phần trăm các thành phần sản xuất trong n−ớc - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 1 1. Các hàm độ thuộc cho xe nội địa và xe ngoại nhập dựa trên tỷ lệ phần trăm các thành phần sản xuất trong n−ớc (Trang 8)
Hình 1-2 d−ới đây mô tả các hàm thuộc  (x ) - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 1 2 d−ới đây mô tả các hàm thuộc (x ) (Trang 10)
Hình 1-3: Đồ thị hàm thuộc của quan hệ mờ  à c (| x − y |) (1-16) - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 1 3: Đồ thị hàm thuộc của quan hệ mờ à c (| x − y |) (1-16) (Trang 12)
Đồ thị minh họa kết quả phép hợp thành đ−ợc đ−a ra trong Hình 1-4. - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
th ị minh họa kết quả phép hợp thành đ−ợc đ−a ra trong Hình 1-4 (Trang 17)
Ví dụ 2-1: Hình 2-2 diễn tả  ~ ( x , u ) - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
d ụ 2-1: Hình 2-2 diễn tả ~ ( x , u ) (Trang 21)
Hình 2-2. Ví dụ về hàm thuộc loại hai - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 2 2. Ví dụ về hàm thuộc loại hai (Trang 22)
Hình 2-3: (a): Một tập mờ loại hai Gaussian. - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 2 3: (a): Một tập mờ loại hai Gaussian (Trang 24)
Hình 2-4 (a): Miền tô đen là FOU của một tập mờ  loại hai. Độ thuộc sơ cấp J x1  và J x2  tại điểm x 1  và x 2 - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 2 4 (a): Miền tô đen là FOU của một tập mờ loại hai. Độ thuộc sơ cấp J x1 và J x2 tại điểm x 1 và x 2 (Trang 25)
Hình 2-5: FOU dạng tam giác - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 2 5: FOU dạng tam giác (Trang 26)
Hình 2-6: FOU của hàm thuộc sơ cấp  Gaussian với tham số giá trị trung - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 2 6: FOU của hàm thuộc sơ cấp Gaussian với tham số giá trị trung (Trang 27)
Hình 2-8 là một ví dụ về một tập mờ loại hai nhúng. - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 2 8 là một ví dụ về một tập mờ loại hai nhúng (Trang 29)
Ví dụ 2-7: Hình 2-9 thể hiện hai tập mờ loại hai nhúng của hàm thuộc - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
d ụ 2-7: Hình 2-9 thể hiện hai tập mờ loại hai nhúng của hàm thuộc (Trang 30)
Hình 2-9: Một tập mờ loại hai nhúng và một tập mờ loại một nhúng - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 2 9: Một tập mờ loại hai nhúng và một tập mờ loại một nhúng (Trang 31)
Hình 3-1: Hệ logic mờ loại hai - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 3 1: Hệ logic mờ loại hai (Trang 38)
Hình 4-1. Ví dụ về hàm thuộc của một tập mờ loại 2 khoảng   trong không gian rời rạc. Miền tô đen trong mặt phẳng x-u là FOU - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 4 1. Ví dụ về hàm thuộc của một tập mờ loại 2 khoảng trong không gian rời rạc. Miền tô đen trong mặt phẳng x-u là FOU (Trang 61)
Hình 4-2: (a) minh hoạ cho ví dụ 4-1, (b) minh hoạ cho ví dụ 4-2. - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 4 2: (a) minh hoạ cho ví dụ 4-1, (b) minh hoạ cho ví dụ 4-2 (Trang 63)
Hình 4-3 minh họa việc xác định các giá trị  f l  và  f - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 4 3 minh họa việc xác định các giá trị f l và f (Trang 67)
Hình 4-4: Xác định  ~ l ( y ) - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 4 4: Xác định ~ l ( y ) (Trang 68)
Hình 4-3: Xác định  f l  và  f l . (a) sử dụng minimum  t-norm. (b) sử dụng product t-norm - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 4 3: Xác định f l và f l . (a) sử dụng minimum t-norm. (b) sử dụng product t-norm (Trang 68)
Hình 4-6: Minh hoạ cho tập mờ loại 2 khoảng đơn trị có hai luật. (a)  FOU của  F ~ 1 1  và  F ~ 2 1  trong luật 1 - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 4 6: Minh hoạ cho tập mờ loại 2 khoảng đơn trị có hai luật. (a) FOU của F ~ 1 1 và F ~ 2 1 trong luật 1 (Trang 74)
Hình 4-7: Giá trị trung bình và độ lệch chuẩn của RMSE s1 ,  RMSE ns1 , RMSE s2  . (a) giá trị trung bình, (b) độ lệch chuẩn - Luận văn: Tập mờ loại hai và suy diễn với tập mờ loại hai pptx
Hình 4 7: Giá trị trung bình và độ lệch chuẩn của RMSE s1 , RMSE ns1 , RMSE s2 . (a) giá trị trung bình, (b) độ lệch chuẩn (Trang 79)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w