BAN CHAP HANH TP HO CHÍ MINH
CONG TRINH DU THI
GIAI THUONG SINH VIEN NGHIEN CUU KHOA HOC EUREKA LAN THU XX NAM 2018
TEN CONG TRINH:
“XÁC LẬP QUYEN SỞ HỮU TRÍ TUE DOI VOI SAN PHAM TẠO RA BỞI TRÍ
TUỆ NHÂN TẠO ÁP DỤNG CÔNG NGHỆ HỌC SAU (DEEP LEARNING) VÀ DE
XUẤT HOÀN THIỆN PHÁP LUẬT VIỆT NAM”
LĨNH VỰC NGHIÊN CỨU: HANH CHÍNH PHAP LÝ CHUYEN NGANH: LUAT QUOC TE
Mã sô công trình:
Trang 2TÓM TAT CÔNG TRINH 2-22-2223 222112221122211127111271112211121112111121111.T111 111.11 re 10870000 Ẻ 21 Đặt vấn đề - cSc nh T21 121121111211 11 1111111 11111101111 1111111 111111 01111101111 011111111111 te 2
3 Mực tiểu —phưững Phap is as sa cactancs snares n2 ïn 6á gia came EARE1A là 834131 SEN 38 eee 358358 3
4 Kết cấu công trình nghiên cứu khoa học 2 2 2 £+S£+S£E£EE£EE£EEeEEeEEeEzEezrszrerreee 4
0;10/9)00520 ê^ Ô 5
KHÁI QUÁT CHUNG VE TRÍ TUỆ NHÂN TẠO ÁP DỤNG CÔNG NGHỆ HỌC SÂU (DEEPLEARNING) VÀ PHÁP LUẬT CUA MỘT SO QUOC GIA TREN THE GIỚI 51.1 Khái quát về Trí tuệ nhân tạO 2 2 5£ ©S£+S++EE£EEtEE++E+EEEtrEv+Exerxerxrsrxerxerxrrrerxervee 5
1.1.1 Trí tuệ nhân tao là gÌ? - nh nh HH HT HT TH HH TH Hi Hư nh 5
1.1.2 Nguồn gốc của Trí tuệ nhân (ạO -2- 2-52 SESESE2EE2EE2EE2EE215211215211711217171 71111 Excrker 61.1.3 Qua trình hình thành va phát triển của Trí tuệ nhân tạo ¿5-5252 s+sz>s+cs2 61.1.4 Một số ứng dụng của Trí tuệ nhân tạO - 2-5-5 ©5£+++Ex+EE++EEeExerx+rxerxerxerresrxerxee 8
1.1.5 Neural Network, Machine Learning và Deep Learning - - sec re 11
1.2 Céng nghệ Học sâu (Deep Learning) 12
1.2.1 Khai niệm công nghệ Học sâu (Deep Learning) - - s nnnnHH Hrệt 12
1.2.2 Quá trình phát triển của công nghệ Học sâu (Deep Learning) -5sccsscsscssss 161.2.3 Ung dụng của công nghệ Học sâu (Deep Learning) vào Trí tuệ nhân tạo 171.3 Pháp luật một số quốc gia trên thế giới về xác lập quyền sở hữu trí tuệ đối với sản phẩm
được tạo ra bởi Công nghệ Học sâu 1 nh nh nh TH nh nu nu HH nh Hết 19
1.3.1 Tri tuệ nhân tạo áp dụng công nghệ Học sâu trong mối quan hệ với Bản quyền 231.3.2 Trí tuệ nhân tao, công nghệ Hoc sâu trong mối quan hệ với Sáng chế 25
1.4 Danh giá :€ÏUTTPi:zssssnssnrennibvditiirttndpoatiioiOG-TG0G53894111401595391V4SESSSSD0ĐESSISESESISVHESSSSDNSXSESNSSIES45 26
.4⁄800/ 9089:1019) 0c 015 - HĂHHHẬH ,.ÔỎ 29
Co, EEE 30
TRÍ TUE NHÂN TAO ÁP DUNG CONG NGHỆ HỌC SAU (DEEP LEARNING) - TINHHINH UNG DUNG VA PHAT TRIEN TAI VIET NAM; THUC TRANG KHUNG PHAP LY
Trang 3RA 30
2.1 Tình hình ứng dụng và phát triển Trí tuệ nhân tao áp dụng công nghệ Học sâu (Deep
Learning) tại Việt Nam - - - HH TH TH HH TH 30
2.1.1 Xu hướng phát triển của các doanh nghiệp Việt Nam về áp dụng công nghệ Học sâu 302.1.2 Các sản phẩm của Trí tuệ nhân tạo áp dụng Công nghệ Học Sâu (Deep Learning) tại
VICE NAM .- 32
2.1.3 Tri tuệ nhân tạo tại Việt Nam trong 10 năm tới eeeeneeeeeeeeeneeeeeeaeeeeenaeraeenees 34
2.2 Thực trạng khung pháp lý hiện hành về xác lập quyền sở hữu trí tuệ đối với sản phẩm
tạo ra bởi Trí tuệ nhân tao áp dụng công nghệ Học sâu (Deep Learning) ‹ ~- 37
2.2.1 Khái quát pháp luật Việt Nam hiện hành về quyền sở hữu trí tuệ - 372.2.2 Sản phẩm tao ra bởi Trí tuệ nhân tạo áp dung công nghệ Học sâu (Deep Learning) và tài
sản trí tuệ của con người dưới góc độ so SAND c c2 11 11 1n ng ng HH hiệp 45
2.2.3 Thực trạng khung pháp lý hiện hành về xác lập quyền sở hữu trí tuệ đối với sản phẩm
tạo ra bởi Trí tuệ nhân tao áp dụng công nghệ Học sâu (Deep Learning) -. - 50
2.24 Đánh giá CHUNG wo scisccsiccwmsmiwo semen renee cours sven osaonuvnnenaccrencavereasiees 57
.4⁄8000/.09):10/9) C22157 = ,HằHẬậẬHẬ)H 60
CHỮ ING By kene scares xxcnaacsna cousins acsmata santa nck een G01000:044010000-Gi81015841343006300800180G5E3L4899SS00480891618445638L3/05650384 61
DE XUAT HOAN THIEN KHUNG PHAP LY HIEN HANH VE XAC LAP QUYEN SO HUUTRÍ TUE DOI VOI SAN PHAM DUOC TẠO RA BỞI TRÍ TUE NHÂN TẠO ÁP DUNGCÔNG NGHỆ HỌC SAU (DEEP LEARNING) cccscsscssscsssssessessessessessessessessessesssessesstssesateseeseeass 613.1 Ly do cita coi sẽ <5 HẶHH 613.2 Các mục tiêu va giải pháp có thé cân nhắc thực hiện 2-2 2 2+ +xczxezxerxerxees 633.3 Giải pháp tối ưu cho đề xuất hoàn thiện khung pháp lý hiện hành 67KET LUAN 9:1019) 06.0117 HẬĂẬậẬHẬHậH)H,HàÀ 80Se DE NGHI Phd4 ,ÔỎ 80KẾT LUẬN - G5 S1 SE SE SE 1E 19111121171121111111111111111.111111111 1111111111111 y0 82DANH MỤC TÀI LIEU THAM KHHẢO À 2-22 2552 ©S22E++EEtEESEESEEeEEevEverxerxesrrerxerxerrree 84
PHU LUC Sa ———~^®5 ÔỎ 89
):19809 e0 Ô 91
PHU LUC 3 .22 2222++12221111222111112221111222T1 1112.1110.111 001 11c re 93
Trang 4Công trình lựa chọn đối tượng nghiên cứu là (1) Tình hình thực tiễn của Trí tuệ nhân tạo áp dụng công nghệ Học sâu (Deep Learning) và (2) Thực trạng khung pháp lý hiện hành về xác lập quyền sở hữu trí tuệ, trên phạm vi quốc tế và Việt Nam.
Công trình đã thực hiện:
- Nghiên cứu thực trạng khung pháp lý của một số quốc gia, khu vực phát triển trên thế giới đối với vẫn đề Trí tuệ nhân tạo;
- Nghiên cứu tác động thực tế của Trí tuệ nhân tạo áp dụng công nghệ Học sâu (Deep Learning) ở các cấp độ, trên cơ sở đó tập trung xác định tác động đến xã hội Việt Nam;
- Nghiên cứu thực trạng khung pháp luật Việt Nam thông qua các văn bản pháp luật nội địa và các điều ước quốc tẾ, hiệp định song phương, đa phương mà Việt Nam tham gia liên quan đến van đề xác lập quyền sở hữu trí tuệ đối với tài sản trí tuệ;
- Xác định giải pháp cơ bản để hoàn thiện các quy định liên quan đến xác lập quyền sở hữu trí tuệ đối với sản phẩm do Trí tuệ nhân tạo áp dụng công nghệ Học sâu (Deep Learning) tạo ra.
Thêm vào đó, mặc dù chúng tôi chỉ đưa ra và nghiên cứu đối tượng là Trí tuệ nhân tạo áp dụng công nghệ Học sâu, nhưng trong phạm vi nghiên cứu đề tài này, mục đích nghiên cứu của chúng tôi là bao hàm cả Trí tuệ nhân tạo áp dụng công nghệ Học sâu hoặc bat kỳ công nghệ tiên tiến hơn khác, bởi Trí tuệ nhân tạo nói chung vẫn đang và sẽ áp dụng các công nghệ khác trong tương lai Công nghệ Học sâu là công nghệ tiên tiến nhất có thé áp dụng dé tạo nên Trí tuệ nhân tạo hiện nay, nhưng chúng tôi không dám khắng định nó sẽ luôn là tiên tiến nhất, do đó, các kết luận trong đề tài này vẫn sẽ có thể được áp dụng trong trường hợp có các công nghệ mới hơn của Trí tuệ nhân tạo.
Trang 5MỞ DAU 1 Đặt vấn đề
Trước khi bắt đầu, nhóm nghiên cứu xin được trích lời một nhà khoa học nôi tiếng đã tạo ra robot Erica — một nang robot người Nhật sử dụng trí tuệ nhân tạo sé trở thành phát thanh viên tin tức trên truyền hình Nhật Bản vào tháng 4 năm 2018 sắp tới, ông Hiroshi Ishiguro: “Tôi nghĩ rang Erica là một robot có "linh hồn" và thậm chí có ý thức độc lập trong tương lai Đôi khi nó còn thấy áp lực và căng thắng trước sự chú ý của mọi người, không khác gì một con người thực sự”.
Quả thật vấn đề Trí tuệ nhân tạo trong cuộc Cách mạng công nghiệp 4.0 đến thời điểm hiện tại đã ngày càng thu hút rất nhiều sự quan tâm của các học giả từ khắp nơi trên thế giới Khởi nguồn từ những năm 1970 - thời điểm mà Trí tuệ nhân tạo đã ứng dụng được thành công trong nhiều lĩnh vực, tuy nhiên chỉ đến những năm 1990 những công trình, dé tài nghiên cứu các van dé liên quan đến Trí tuệ nhân tạo mới thực sự tập trung vào khía cạnh pháp lý.
Việt Nam thật sự đã bước vào hành trình chuyên biến của cuộc cách mạng mới cùng các nước khác trên thế giới Thời gian gần đây chúng ta đã nghe và thay các cụm từ “Cách mạng công nghiệp 4.0”, “Kỷ nguyên số hóa”, “Trí tuệ nhân tạo” xuất hiện ở mọi phương tiện thông tin đại chúng Chúng tôi nhận ra vấn đề đang nhận được nhiều sự quan tâm hơn cả đó là sự phát triển nhanh chóng của Trí tuệ nhân tạo — bước đột phá mới trong quá trình phát triển của loài người Mặc dù tưởng chừng như Trí tuệ nhân tạo là một van dé rất mới nhưng thực ra nó ton tại đã vài thập kỷ, nhưng nhờ sự phát triển của phần cứng hiện nay, khi được áp dụng công nghệ Học sâu (Deep Learning), nó đã thực sự tạo ra được những bước tiễn mới cho con người, có thê thay thế con người trong lao động và sáng tạo ra sản phâm.
Trước những thay đổi nhanh chóng và có phần đột ngột như vậy, chúng tôi nhận thấy khung pháp lý của Việt Nam hiện nay đang tồn tại một lỗ hồng lớn khi chỉ bảo hộ quyền sở hữu trí tuệ đối với các tài sản trí tuệ tạo ra bởi trí tuệ con người Bởi vậy chúng tôi đã lựa chọn nghiên cứu đề tài này trong tâm thế háo hức về những sự thay đổi, khác biệt to lớn mà Trí tuệ nhân tạo đã, đang và sẽ đem lại cho xã hội Việt Nam nói chung và hệ thống pháp luật Việt Nam nói riêng về quyền sở hữu trí tuệ 2 Tổng quan tài liệu
Trên phạm vi quốc tế, đã có những dé tài nghiên cứu khoa học thuộc cùng lĩnh vực mà các nhà học giả đã thực hiện như công trình nghiên cứu của Lawrence
B.Solum “7 cách pháp lý cho Trí tuệ nhân tạo” (Legal personhood for Artificial
| https://congnghe.tuoitre
vn/sophia-da-co-doi-thu-robot-erica-den-tu-nhat-ban-voi-giong-noi-cuc-hay-20180201132838118.htm, truy cập lân cuôi ngày 31/3/2018.
Trang 6Intelligences - 19922; bài nghiên cứu của Felix Einsel “Ung dung của Trí tuệ nhân tạo và khía cạnh luật sở hữu trí tuệ có liên quan tại Nhat Ban” (Application of Artificial
Intelligence (AI) and its IP law aspects in Japan - 2017); bài nghiên cứu của Andres Guadamuz “Tri tué nhân tạo và bản quyên" (Artificial Intelligences and copyright — 2017); bài nghiên cứu của Charlotte Walker-Osborn “Tri tué nhân tao và van dé đặt ra với luật pháp ” (Artificial Intelligence forges ahead of the law — 2017)”; va hang loạt các bài viết về Trí tuệ nhân tạo và van dé sở hữu trí tuệ “Ban quyền trong mot tác phẩm do Trí tuệ nhân tạo tao ra theo pháp luật Anh” (Copyright in Al-generated
works (UK law)) — “Vi phạm bản quyên bởi hệ thông Tri tuệ nhân tạo theo pháp luật Anh” (Copyright infringement by Al-systems (UK law) — “Vấn đề cấp giấy phép liên quan đến Trí tuệ nhân tao” (Licensing (UK law)) bởi Leigh Smith®; Những bài viết nghiên cứu nay thé hiện quan điểm của các chuyên gia Luật trên thé giới về van đề trí tuệ nhân tạo và những quy phạm pháp luật điều chỉnh Qua đó có thể thấy các vấn đề về sở hữu trí tuệ liên quan đến Trí tuệ nhân tạo không chỉ thực sự hiện hữu mà còn thu hút rất nhiều sự quan tâm của các học giả và nhà nghiên cứu quốc tế trong thời gian qua Ở một khía cạnh khác, tạp chí Trí tuệ nhân tao và Luật pháp (Artificial Intelligence and Law) gần đây đã xuất bản bài viết của Giáo sư Joanna J Bryson thuộc trường Dai hoc Bath va hai luật sư Mihailis E Diamantis va Thomas D Grant. Bai báo đã thông tin về việc Liên minh châu Au cũng dang thảo luận khung pháp ly về các van đề liên quan đến Trí tuệ nhân tạo.
Ở phạm vi trong nước, các van đề về Trí tuệ nhân tạo liên quan đến luật pháp mới chỉ thực hiện những bước khởi đầu chậm rãi , chưa có một công trình hay bài viết chuyên sâu nghiên cứu về vấn đề này Những bài viết được đăng tải trên các trang web tại Việt Nam cũng mới chỉ dừng lại ở việc đặt ra các van đề và trích dẫn các quan điểm, chưa một bài viết nào phân tích sâu sắc và gợi mở về khung pháp lý điều chỉnh trí tuệ nhân tạo nói chung và xác lập quyền sở hữu trí tuệ đối với trí tuệ nhân tạo nói riêng Do đó, công trình thực hiện nghiên cứu và đi tới giải quyết các vẫn đề mới này 3 Mục tiêu — phương pháp
Xuất phát từ vẫn đề đã đặt ra và tình hình nghiên cứu thuộc lĩnh vực đề tài trên thế giới và Việt Nam, nhóm tác giả thực hiện đề tài nghiên cứu này với những mục tiêu sau đây:
? Lawrence B Solum, Legal Personhood for Artificial Intelligences, 70 N.C L Rev 1231 (1992)
3 https://www.eu-japan.eu/sites/default/files/imce/4._einsel_se.pdf, truy cập lần cuối ngày 14/3/2018.4 http://www.wipo.int/wipo_magazine/en/2017/05/article_0003.html truy cập lần cuối ngày 14/3/2018.5 https://www.lexology.com/library/detail.aspx2g=1fefI6e5-f3 Ia-4f82-99ea-af9d6abf5800 truy cập lần cuối
ngày 14/3/2018.
6 https://talkingtech.cliffordchance.com truy cập lần cuối ngày 14/3/2018.
Trang 7- Tìm hiểu, chỉ ra và phân tích sâu sự khác biệt giữa sản phẩm tạo ra bởi Trí tuệ nhân tạo áp dụng công nghệ Học sâu (Deep Learning) so với sản phẩm trí tuệ của con người;
- Rà soát và xác định những lỗ hồng, thiếu sót trong hệ thống pháp luật về quyền sở hữu trí tuệ của Việt Nam hiện nay trong bối cảnh sự xuất hiện của Trí tuệ nhân tạo áp dụng công nghệ Học sâu (Deep Learning);
- Dua ra giải pháp khả thi nhất dé lấp đầy các lỗ hồng pháp luật về xác lập quyền sở hữu trí tuệ do sự xuất hiện của Trí tuệ nhân tạo áp dụng công nghệ Học sâu (Deep Learning) có thé tao ra sản phâm đem lại.
Đề tài được thực hiện trên cơ sở các phương pháp nghiên cứu khoa học khác nhau, bao gồm: phương pháp tổng hợp, phân tích, chứng minh, thống kê, so sánh, kết
hợp nghiên cứu lý luận với thực tiễn.
4 Kết cau công trình nghiên cứu khoa học
Công trình nghiên cứu khoa học bao gồm ba chương:
Chương 1: Khái quát chung về Công nghệ Học sâu (Deep Learning) và pháp luật của một số quốc gia trên thé giới.
Chương 2: Trí tuệ nhân tạo áp dụng Công nghệ Học sâu (Deep Learning) - Tình hình ứng dụng và phát triển tại Việt Nam; thực trạng khung pháp lý hiện hành về xác lập quyền sở hữu trí tuệ đối với sản phẩm được tạo ra Chương 3: Đề xuất hoàn thiện khung pháp lý hiện hành về xác lập quyền sở hữu trí tuệ đối với sản pham được tao ra bởi Tri tuệ nhân tạo áp dụng Công nghệ Học sâu (Deep Learning).
Trang 8CHƯƠNG 1
KHÁI QUÁT CHUNG VỀ TRÍ TUỆ NHÂN TẠO ÁP DỤNG CÔNG NGHỆ HỌC SÂU (DEEP LEARNING) VA PHÁP LUẬT CUA MOT SO QUOC GIA
TREN THE GIỚI
1.1 Khai quát về Trí tuệ nhân tao 1.1.1 Trí tuệ nhân tạo là gì?
Trên thế giới hiện có nhiều định nghĩa khác nhau về Trí tuệ nhân tạo hay còn
gọi là Trí thông minh nhân tạo (Artificial Intelligence), cụ thé:
Trí tuệ nhân tao hay Trí thông minh nhân tao (Artificial Intelligence) là mộtngành thuộc lĩnh vực khoa học máy tính, là trí tuệ do con người lập trình tạo nên vớimục tiêu giúp máy tính có khả năng xử lý thông tin như con người Trí tuệ nhân tạokhác với việc lập trình logic trong các ngôn ngữ lập trình là ở việc ứng dụng các hệ thống Học máy (Machine Learning) để mô phỏng trí tuệ của con người trong các xử lý mà con người làm tốt hơn máy tính.
Bên cạnh đó, một số học giả nôi tiếng cũng đã đưa ra các định nghĩa khác nhau,
đó là Bellman (1978) với định nghĩa: “1777 tué nhán tạo là tự động hod các hoạt động phù hop với suy nghĩ con người, chang han các hoạt động ra quyết định, giải bài
toan `.
Rich anh Knight (1991) thì cho rang: “Trí tué nhân tạo là khoa học nghiên cứu xem làm thé nào dé máy tính có thể thực hiện những công việc mà hiện con người còn
làm tốt hơn máy tinh”.
Winston (1992) lại nhận định: “777 tué nhân tạo là lĩnh vực nghiên cứu các tính
toán dé máy có thê nhận thức, lập luận và tác động”."
Mỗi nhận định, định nghĩa đều có điểm đúng riêng, nhưng dé đơn giản chúng ta có thé hiểu Trí tuệ nhân tạo chính là một ngành khoa học máy tính Nó được xây dựng trên một nền tảng lý thuyết vững chắc và có thể ứng dụng trong việc tự động hóa các hành vi thông minh của máy tính, giúp máy tính có được những trí tuệ như của con người như: biết suy nghĩ và lập luận dé giải quyết van dé, biết giao tiếp do hiểu ngôn ngữ, tiếng nói, biết học và tự thích nghi.
Thttps://news bitcoin.com/pr-poly-ai-artificial-intelligence-base-on-blockchain-project/, truy cập lần cuối ngày
09/3/2018.
Trang 9Y tưởng xây dựng một chương trình Tri tuệ nhân tao xuất hiện lần đầu vào tháng 10 năm 1950, khi nhà bác học người Anh Alan Turing xem xét vấn đề “Liệu máy tính có khả năng suy nghĩ hay không?” Dé trả lời câu hỏi này, ông đã đưa ra khái niệm "phép thử bắt chước" (Imitation test) mà sau này người ta gọi là “phép thử Turing” (Turing test) trong một bài báo nổi tiếng “Computing Machinery and Intelligence” trên tạp chi triết học Mind Phép thử được thực hiện dưới dạng một trò chơi Theo đó, có ba đối tượng tham gia trò chơi (gồm Trí tuệ nhân tạo, người và một máy tính) Một người (người thâm van) ngồi trong một phòng kin tách biệt với hai đối tượng còn lại Người này đặt các câu hỏi và nhận các câu trả lời từ người kia (người trả lời thâm van) và từ máy tính Cuối cùng, nêu người thâm van không phân biệt được câu trả lời nào là của người, câu trả lời nào là của máy tính thì lúc đó có thể nói máy tính đã có khả năng "suy nghĩ" giống như người.Š
Đến mùa hè năm 1956, tại Hội nghị do Marvin Minsky và John McCarthy tô chức với sự tham dự của rất đông các nhà khoa học tại trường Dartmouth, Mỹ, tên gọi “Artificial Intelligence” — Trí tuệ nhân tạo được chính thức công nhận và được dùng cho đến ngày nay Cũng tại đây, Bộ môn nghiên cứu Trí tuệ nhân tạo đầu tiên đã được thành lập.”
1.1.3 Quá trình hình thành và phát triển của Trí tuệ nhân tạo
e Giai doan 1950 — 1965
Một số nhà khoa học như John McArthy, Marvin Minsky, Allen Newell và Herbert Simon cùng với những sinh viên đã viết những lập trình gây kinh ngạc cho hầu hết mọi người: máy vi tính giải được những bài toán đố của đại số, chứng minh các định lý, và nói được tiếng Anh Các công trình nghiên cứu của họ được Bộ Quốc phòng Mỹ tài trợ và họ đã rất lạc quan về tương lai của bộ môn mới này.
Một số thành tựu ban đầu của giai đoạn này có thé kế đến như: Chương trình chơi cờ của Samuel; Chương trình lý luận Logic cua Newell & Simon; Chương trìnhchứng minh các định lý hình học của Gelernter.
Năm 1965, Simon từng khăng định: “Máy móc trong vòng hai mươi năm nữasẽ có khả năng làm tât cả mọi việc con người làm” Tuy nhiên, với rât nhiêu thách thức và hạn chế, tiên đoán này đến nay (năm 2018) vẫn chưa thé trở thành sự thật.
8 https://www.theguardian.com/technology/2014/jun/09/what-is-the-alan-turing-test, truy cập lần cuối ngày
? https://insights.innovatube.com/I%C6%B0%E1
Z;BB%A3c-s26E12%BB%AD-tr%C324AD-tu2E12%BB287-nh%C33%A2n-f%E1%BA%%A Io-fa600bef73df, truy cập lân cuôi ngày 10/8/2018.
Trang 10Các nghiên cứu trong giai đoạn này tập trung vào việc biểu diễn tri thức và phương thức giao tiếp giữa người và máy tính bằng ngôn ngữ tự nhiên Nhưng hầu hết các nghiên cứu này đều thất bại và ngành Trí tuệ nhân tạo đã gặp phải rất nhiều khó khăn Thất vọng trước các kết quả này, chính phủ các nước như Anh, Mỹ đã cắt bỏ tài trợ cho nhiều công trình nghiên cứu thuộc lĩnh vực này, nhất là các đề tài mang tính thăm dò hoặc không có định hướng Mặc dù vậy, các nghiên cứu trong giai đoạn này cũng giúp các nhà khoa học hiểu được giới hạn của máy tính và tìm ra được một sỐ phương pháp biéu diễn tri thức vẫn được dùng cho đến nay.
° Giai đoạn 1975 — 2010
Sự thành công của một số hệ thống ứng dụng Trí tuệ nhân tạo như Hệ chuyên gia, Hệ chân đoán đã giúp ngành Trí tuệ nhân tạo thu hút được sự quan tâm của các Chính phủ trên thé giới Trí tuệ nhân tạo dan trở thành một ngành công nghiệp Các hệ thống và các chương trình trong lĩnh vực này đã được dùng trong thương mại và mang lại lợi nhuận cho người sử dụng Đến năm 1997, sau trận đấu lịch sử giữa kiện tướng cờ vua Garry Kasparov với máy tinh của IBM - DeepBlue!, niềm hy vọng về Trí tuệ nhân tạo mới được hôi sinh.
° Giai đoạn 2010 - nay
Nam 2015, sự phát triển của chip xử ly với chi phí ở mức chap nhận được, cùng những bộ dir liệu phong phú, các công cụ phát trién phần mềm miễn phí hoặc giá rẻ đã hỗ trợ rất nhiều cho các nhà nghiên cứu Nhờ đó, những nghiên cứu về công nghệ học hỏi cho máy tính, còn được gọi các mạng thần kinh, từ chỗ vô cùng tốn kém đã trở nên tương đối rẻ Ngay sau đó, năm 2016 là một năm rực rỡ của trí tuệ nhân tạo khi vào tháng Giêng năm 2016, công ty Trí tuệ nhân tạo DeepMind cua Google đã đạt đượcthành tựu lớn trong lĩnh vực Học sâu (Deep Learning) Chương trình AlphaGo đã thành công ngoài sức tưởng tượng với kha năng thành thạo trò cờ vây!!: hay hệ thong tự lái của Tesla khi nó đã giúp một người đàn ông bị lên cơn bệnh đột ngột tới được bệnh viện an toàn Đó là anh Joshua Neally, đang trên đường đi làm về thì thay co hién
tượng dau tim trên đường cao tốc tại Springfield, MO Lúc ay, chiéc Tesla da bat hé thống tự lái, giúp anh tới được bệnh viện và anh Neally ké lai rang, néu không có hệ thống tự lái của Trí tuệ nhân tạo này, anh có lẽ đã mat mang!’ Và cũng trong năm
2016, Trí tuệ nhân tạo trong lĩnh vực y học cũng đã đạt những thành tựu đáng kế như 10 https://www.pri.org/stories/2018-01-05/garry-kasparov-and-game-artificial-intelligence, truy cập lần cuối
Trang 11hệ thống IBM Watson có thé phát hiện ra được những van đề về sức khỏe mà bác sĩ không thể tìm ra được Cụ thê hơn, Watson đã tìm ra dấu vết của bệnh leukemia trong máu của một phụ nữ Nhật, người bệnh nhân trước đó được chuẩn đoán là bình thường Tại Viện Nghiên cứu Phương pháp Houston tại Texas, Mỹ, hệ thống Trí tuệ nhân tạo đặt tại đây có thê phân tích được hình ảnh chụp khối u nhanh hơn 30 lần con người, khả năng phát hiện ung thư của nó có độ chính xác lên tới 99%.!3 Gần đây, Việt Nam cũng đã chính thức hợp tác triển khai IBM Watson for Oncology - công nghệ điện toán biết nhận thức hỗ trợ điều trị ung thư dựa trên bằng chứng - giữa Tập đoàn IBM và Công ty Five9 Việt Nam Theo đó, bệnh viện Da khoa Phú Thọ được lựa chọn là đơn vị đầu tiên tại Việt Nam thí điểm sử dụng công nghệ này !* Phần mềm này sẽ giúp các bác sĩ đưa ra phác đồ điều trị ung thư dựa trên băng chứng, nhờ vào nén tảng điện toán biết nhận thức của IBM có thê đọc, hiểu hàng chục triệu tài liệu y khoa đã được công bố và hàng triệu bệnh án điều trị hiệu quả Và theo thông tin mới nhất, bệnh viện đa khoa tỉnh Phú Thọ đã xác nhận một trường hợp bệnh nhân ung thư có chuyền biến rất tốt sau khi được các bác sĩ hội chân kết hợp với sự hỗ trợ từ IBM Watson for Oncology Phác đồ điều trị do hệ thống Trí tuệ nhân tạo Watson đưa ra đã có được sự thong nhất cao với hội đồng chuyên môn và sau | tháng điều trị, bệnh nhân đã có thé đi lại bình thường, không phải sử dụng thuốc giảm đau, và phim chụp phổi của chị đạt được sự đáp ứng rat tot, các khôi u đã gân như biên mat.!>
Tất cả đã giúp cho mảnh đất Trí tuệ nhân tạo thu hút đông đảo các công ty lớn như: Facebook; Google; Microsoft tham gia nghiên cứu, phát triển sản phẩm và mở ra kỷ nguyên mới cho Trí tuệ nhân tạo.
1.1.4 Một số ứng dụng của Trí tuệ nhân tạo
Có hai hướng tiếp cận Trí tuệ nhân tạo dé ứng dụng trong đời sông: dùng máy tính để bắt chước quá trình xử lý của con người và thiết kế những máy tính thông minh độc lập với cách suy nghĩ của con người Những năm vừa qua, Trí tuệ nhân tạo đã tạo nên nhiều thay đôi được ứng dụng trong một vài lĩnh vực như:
1.1.4.1 Nhận dạng chữ viết
Nhận dạng chữ viết ứng dụng trong lĩnh vực nhận dạng chữ in hoặc chữ viết tay và lưu thành văn bản điện tử Ở Việt Nam, phần mềm VnDOCR do Phòng Nhận dạng
Trang 12& Công nghệ tri thức, Viện Công nghệ Thông tin xây dựng có thé nhận dang trực tiếp tài liệu bang cách quét thông qua máy scanner thành các tệp ảnh, chuyên đổi thành các tệp có định dạng *.doc, *.xls, *.txt, *.rtf, giúp người sử dụng không phải gõ lại tài liệu vào máy Tương tự với phần mềm nhận dạng chữ viết trong thư viện, người ta cũng có thé dé dàng chuyền hàng ngàn đầu sách thành văn bản điện tử một cách nhanh chóng 1.1.4.2 Nhận dang tiếng nói
Nhận dạng tiếng nói đóng vai trò quan trọng trong giao tiếp giữa người và máy Nó giúp máy móc hiểu và thực hiện các hiệu lệnh của con người Một ứng dụng trong lĩnh vực này là hãng sản xuất xe hơi BMW (Duc) đã phát triển thành công một công nghệ mới cho phép các tài xế có thể soạn email, tin nhắn băng giọng nói trong khi đang lái xe!® Một ứng dụng khác là phần mềm lồng phụ dé vào các chương trình truyền hình Đây là một công việc khá buôn tẻ và đòi hỏi phải có những người ghi tốc ký chuyên nghiệp Nhờ có những tiễn bộ trong công nghệ nhận dạng tiếng nói, các nhà cung cấp dich vụ truyền hình gần đây đã gia tăng đáng kể số lượng các chương trình được lồng phụ đề của họ Hiện nay, đã bắt đầu có những doanh nghiệp khởi nghiệp băng việc cho ra đời những thiết bị có thể chuyên đổi giọng nói của bạn sang ngôn ngữ khác mà ban không hề biết !”
1.1.4.3 Dịch tự động
Dịch tự động là công việc thực hiện dịch một ngôn ngữ sang một hoặc nhiều ngôn ngữ khác, không có sự can thiệp của con người trong quá trình dịch Tuy nhiên, dé làm cho máy hiểu được ngôn ngữ là một trong những van đề khó nhất của Trí tuệ nhân tạo Ví dụ: câu “bà già đi quá nhanh” cũng có nhiều cách hiểu khác nhau: với cách phan tách từ va cum từ thành bà gia/di/qua nhanh và ba/gia di/nhanh quá thì việc dịch câu dạng thé này từ tiếng Việt sang tiếng Anh đòi hỏi máy không những phải hiểu đúng nghĩa câu tiếng Việt mà còn phải tạo ra được câu tiếng Anh tương ứng Các phần mềm dịch tự động hiện nay còn phải tiếp tục nghiên cứu nhiều hơn nữa để có được những hệ dịch tốt hơn.
1.1.4.4 Tim kiém théng tin
Thông tin trên mạng hang ngày được gia tăng theo cấp số nhân Việc tìm kiếm thông tin mà người dùng quan tâm bây giờ là tìm đúng thông tin mình cần và phải đáng tin cậy Theo thống kê năm 2014, có đến hơn 75% số lượng người Việt Nam lên 16 https://tuoitre.vn/9-buoc-lap-mot-dia-chi-email-trong-xe-hoi-bmw-1304079.htm, truy cập lần cuối ngày
17
http://trendintech.com/2017/07/02/this-startup-wants-translate-your-own-voice-into-another-language-that-you-cant-speak/, truy cập lần cuối ngày 09/3/2018.
Trang 13mạng Internet để thực hiện việc tìm kiếm thông tin!Š Các máy tìm kiếm (search engine) hiện nay chu yếu thực hiện tìm kiếm dựa theo từ khóa Thí dụ, Google hay Yahoo chỉ phân tích nội dung một cách đơn giản dựa trên tần suất của từ khoá, thứ hạng của trang và một số tiêu chí đánh giá khác Kết quả là rất nhiều tìm kiếm không nhận được câu trả lời phù hợp, thậm chí bị dẫn tới một liên kết không liên quan gì do thủ thuật đánh lừa nhằm giới thiệu sản pham hoặc lại nhận được quá nhiều tài liệu không phải thứ ta mong muốn, trong khi đó lại không tìm ra tài liệu cần tìm.
Hiện nay, các nhà nghiên cứu dang cải tiễn các công cụ tìm kiếm trực tuyến dé một ngày nào đó, nó có thé hiểu và trả lời cả những câu hỏi cụ thé, thí dụ như “làm thế nao dé có một chuyên đi tiết kiệm nhất trong những ngày cuối thang ba?” Tuy vậy, thực tế cho đến bây giờ chưa có máy tìm kiếm nào có thể làm hài lòng người dùng giống như vậy.
1.1.4.5 Khai pha dữ liệu và phát hiện tri thức
Đây là lĩnh vực cho phép xử lý từ rất nhiều đữ liệu khác nhau để phát hiện ra tri thức mới Ngoài ra, ứng dụng trong lĩnh vực này cũng cần phải biết trả lời câu hỏi của người sử dụng chúng từ việc tông hop dữ liệu thay vì máy móc chỉ đáp trả những gì có sẵn trong bộ nhớ Thực tế dé làm được điều này rất khó, nó gần như là mô phỏng quá trình học tập, khám phá khoa học của con người Ngoài ra, dữ liệu thường có SỐ lượng rất lớn, với nhiều kiểu (số, văn bản, hình ảnh, âm thanh, video ) và không ngừng thay đôi Dé tim ra tri thức thì các chương trình phải đối mặt với van dé độ phức tap tính toán, Đây là lĩnh vực vẫn còn đang trong giai đoạn đầu phát triển.
1.1.4.6 Xe tự động
Theo Sebastian Thrun, Giáo sư ngành máy tính và kỹ thuật điện của Đại học Carnegie Mellon: Ưu điểm lớn nhất của xe tự lái là khả năng loại bỏ sai sót của con người — nguyên nhân dẫn đến 95% số vụ tử vong mỗi năm tai Mỹ do tai nan giao thông “Chúng tôi có thể giảm bớt 50% số vụ tai nạn do nguyên nhân này” ông Sebastian Thrun khăng định.
Chế tạo được ôtô tự lái và an toàn cao cũng là một mục tiêu được Cục nghiên cứu các dự án công nghệ cao Bộ quốc phòng Mỹ DARPA (Defense Advanced
Research Projects Agency) khởi xướng và hỗ trợ dưới dạng một cuộc thi mang tên “thách thức lớn của DARPA” (DARPA grand challenge).!°
'8 https://news.appota.com/nguoi-viet-su-dung-cac-cong-cu-tim-kiem-internet-ra-sao/, truy cập lần cuối ngày
09/3/2018 Ộ ;
!2 https://www.wired.com/story/darpa-grand-urban-challenge-self-driving-car/, truy cập lan cudi ngày 09/3/2018.
Trang 141.1.4.7 Robot
Nhiều dé án nghiên cứu về robot thông minh va các lĩnh vực liên quan được ứng dụng trong đời sống Các đề án này hướng đến các sáng tạo công nghệ có nhiều ý nghĩa trong văn hóa, xã hội và công nghiệp, đòi hỏi phải tích hợp nhiều công nghệ, như nguyên lý các tác tử, biểu diễn tri thức về không gian, nhận biết chiến lược, lập
luận thời gian thực, nhận dạng và xử lý các chuỗi hình ảnh liên tục trong thời gian
thực Một trong những ứng dụng đó là dé án RoboCup: tổ chức thi dau bóng đá giữa các đội robot Mục tiêu hướng đến của dé án này là đến năm 2050, sẽ chế tạo được một đội robot có thé thắng đội bóng đá vô địch thé giới.
Ứng dụng quan trọng khác của lĩnh vực này là chế tạo robot đối phó và dò tìm nạn nhân trong các thảm họa Trong sự cô hư hỏng tại nhà máy điện hạt nhân xảy ra sau trận động đất và sóng thần ngày 11 tháng 3 năm 2011 ở Nhật Bản, người ta gửi robot có tên Quince?? dé hoạt động tại những khu vực khó tiếp cận do độ phóng xạ cao của nhà máy Fukushima Được điều khiến từ xa, Quince có thể làm việc trong nhiều giờ đồng hồ dé chụp hình và đo độ phóng xạ trong những tòa nhà bị lây nhiễm chất phóng xạ, nơi mà các kỹ thuật viên không thể vào bên trong.
1.1.5 Neural Network, Machine Learning và Deep Learning
Neural Network, hay còn gọi là mạng lưới thần kinh nhân tạo, là một thuật toán mô phỏng lại cấu trúc của mạng nơ-ron trong não động vật Mỗi node trong mạng này sẽ chứa thông tin và máy tính sẽ học cách xử lý thông tin đó Cac node sẽ học cách xử ly thông tin lẫn nhau va cách sắp xếp các node sẽ tạo nên mạng lưới thần kinh nhân
Khái niệm về mạng lưới thần kinh nhân tạo đã có từ những năm 1950 với sự ra đời của ngành nghiên cứu về Trí tuệ nhân tạo Người ta nói rằng khi năm riêng biệt, những node máy tinh này chỉ chạy những gì được lập trình sẵn và chỉ có thé trả lời những câu hỏi đơn giản, hay nói cách khác là nó "không thông minh" Cũng giống như trong cơ thé người, một no-ron chưa thé làm nên chuyện, nhưng khi kết nối chúng thành một mạng lưới dày đặc thì mọi chuyện sẽ khác đi rất nhiều Khi các hệ thống máy tính được nối lại với nhau, chúng có thể cùng nhau giải quyết những vấn đề khó khăn hơn Và quan trọng nhất, khi áp dụng đúng thuật toán, người ta có thé "day học" cho máy tính.
20 https://www.japantimes.co.jp/news/20 1 2/0
1/06/national/domestic-robots-failed-to-ride-to-rescue-after-no-1-plant-blew/#.WgqJGJ-hublIU, truy cập lân cuôi ngày 09/3/2018.
Trang 15Machine Learning (công nghệ Học máy) Day là các thuật toán dựa trên công thức xác suất thống kê, băng cách học tập từ dữ liệu dé làm ra các đặc tính tiêu biểu
của đối tượng, từ đó giúp máy tính phân loại hoặc dự đoán các đối tượng khác.
Deep Learning (công nghệ Học sâu), là một nhánh đặc biệt của ngành Học máy, tiên tiễn nhất trong ngành Trí tuệ nhân tạo cho tới thời điểm hiện tại Với sự trợ giúp của mạng thần kinh nhân tạo Neural Network, công nghệ Học sâu có thé tự xác định
được các đặc điểm quan trọng của đối tượng (mà ở công nghệ Học máy phải xác định
băng tay) nên khả năng học hỏi của công nghệ này lớn hơn đáng ké so với công nghệ Học máy 7!
Chính bởi sự tiên tiễn nhất của công nghệ này mà chúng tôi, những người thực hiện nghiên cứu này đã và đang rat quan tâm tới những van đề mà nó đem lại.
1.3 Công nghệ Học sâu (Deep Learning)
1.3.1 Khái niệm công nghệ Học sâu (Deep Learning)
1.3.1.1 Công nghệ Học sâu (Deep Learning) là gì?
Công nghệ Học sâu (Deep Learning) của Trí tuệ nhân tạo (sau đây gọi tắt là công nghệ Hoc sâu) — là một nhánh đặc biệt của ngành khoa hoc Học máy (Machine Learning) như đã nói ở phan trên (Hình 1).
Trí tuệ nhân tạo
Học Má
, y Bất kỳ kỹ thuật nào cho
Một tập hgp con của AI phép các máy tính bắt
ti mi giúp cho máy móc con người, sử dụng logic,cải thiện các nhiệm vụ có kinh quy tắc nếu - thì,"cây quyết
nghiệm Danh mục này bạo định” và Học Máy (bao g6m
gồm Học Sâu cả quá trình Học Siu)
?! https://deepmind.com/blog/understanding-deep-learning-through-neuron-deletion/, truy cập lần cuối ngày
30/3/2018.
Trang 16Hình 1 Mối quan hệ giữa Trí tuệ nhân tao (Artificial Inteligence) — Công nghệ Học máy (Machine Learning) — Công nghệ Học sâu (Deep Learning).
Công nghệ Học sâu trở nên phô biên trong thập kỉ gân đây nhờ vào sự gia tăngnhanh chóng của lượng dữ liệu sô mà loài người tạo ra, ngoài ra, còn nhờ vào sức mạnh xử lý ưu việt của máy tính gia tăng trong khi giá thành giảm xuống đáng kể.
Dưới góc nhìn của những học giả, nhà nghiên cứu trong lĩnh vực khoa học máytính, vê định nghĩa của công nghệ Học sâu, có khá nhiêu cách lý giải ngăn gọn khácnhau dành cho công nghệ này.
Giới công nghệ nói chung đã đưa ra một cách hiểu khái quát thường thấy về công nghệ Học sâu”, đó là “một kỹ thuật trong công nghệ Học máy, liên quan đến các thuật toán được lấy cảm hứng từ cấu trúc và hoạt động của bộ não động vát gọi là Mạng no-ron nhân tạo (Artificial Neural Networks)” Với cách giải thích này, lại bắt gặp một định nghĩa mới đó là “Mạng nơ-ron nhân tạo” Mạng nơ-ron nhân tạo này đượctạo nên từ một tập hợp các nơ-ron nhân tạo (tương tự nơ-ron sinh học trong não động vật) liên kết với nhau Mỗi liên kết (tương tự một xi-náp) giữa các nơ-ron nhân tạo có thé truyền tín hiệu từ một no-ron này đến các nơ-ron khác Nơ-ron nhân tạo nhận tin hiệu, xử lý rôi lại truyên tín hiệu đã qua xử lý đên các nơ-ron mà nó liên két.
Tiến sĩ Pham Quang Dũng từ công ty FPT Software trong bài viết Hoc sâu — Công nghệ kiến tạo giá trị mới của mình đã cho rằng: “Học sâu (deep learning) là một tập các kỹ thuật học máy mạnh sử dụng mạng no-ron nhiễu lóp Đây hiện là công nghệ dẫn đâu trong việc giải quyết nhiễu bài toán trong lĩnh vực nhận dạng ảnh, nhận dang giọng nói, từ đó mang thêm nhiêu giá trị mới cho doanh nghiệp trên nhiễu lĩnh vực ”.?3 Theo Leonardo Araujo dos Santos trong cuốn Artificial Intelligence của mình, ngoài việc đưa ra định nghĩa ngắn gon “Công nghệ Hoc sâu là một nhánh của công nghệ Học máy, dựa trên một tập hợp các thuật toán để học cách thể hiện các dữ liệu đầu vào ”, tac giả còn liệt kê ra một số công nghệ Học sâu phô biến như:
- Mạng tích chập (Convolutional Neutral Networks)- Mang tin cậy sâu (Deep Belief Networks)
- Ma hóa - giải mã (Deep Auto — Encoders)
22 Cách hiểu nay được coi là don giản nhất bởi có thé được tìm thấy tại hau hết các bài viết, bai báo khi nói vềcông nghệ Học sâu trên các trang mạng tại Việt Nam và trên thế giới.
? Bài viết được đăng trên ấn phẩm Đặc san công nghệ FPT, FPT Techlnsigh No.1 và tạp chí công nghệ Cuder
World #3 do FPT Software phát hành.
Trang 17- Mạng no-ron tải phát (Recurrent Neural Networks (LSTM))”!
Tuy nhiên, dưới góc nhìn của toàn xã hội nói chung và khoa học pháp lý nói riêng, nhóm tác giả chúng tôi qua quá trình phân tích và tổng hop đã thông nhất cách hiệu vê công nghệ Hoc sâu như sau:
Công nghệ Học sâu là một loại công nghệ đột phá trong ngành khoa học máy tính, công nghệ này tao ra các mạng no-ron nhân tạo mô phỏng mạng no-ron than kinh có trong bộ não con người, từ đó giúp may tính thực hiện các công việc doi hỏitính chính xác và khả năng sang tạo giông như con người.
Theo đó, công nghệ Học sâu sẽ mang hai đặc điêm cân lưu ý, đó là:
Thứ nhất, đây là một loại công nghệ mang tính đột phá trong ngành khoa học máy tính nói chung và trong quá trình nghiên cứu, phát triển Trí tuệ nhân tạo nói riêng ở thời điểm cuộc Cách mạng 4.0 đang diễn ra trên toàn cầu Tính đột phá của công nghệ này nằm ở việc lập trình viên đã tạo ra được các mạng nơ-ron nhân tạo tương tự như mạng nơ-ron có trong hệ thần kinh của con người, đồng thời qua đó mô phỏng được cách ma não bộ của con người hoạt động dé “day học” cho máy tính có thé thực hiện nhiệm vụ như con người Bởi ở trước thời điểm Học sâu ra đời, chưa có thuật toán nào được sử dụng dựa trên phương thức tạo ra một hệ thần kinh nhân tạo giống như con người, thực hiện được những công việc nhất định với hiệu suất có thể cạnh tranh lại được với con người.
Thứ hai, công nghệ Học sâu giúp máy tính thực hiện các công việc đòi hỏi tính chính xác và kha năng sáng tạo giống như con người Những công việc này có thé đơn giản chỉ là nhận diện hình ảnh, tín hiệu, nhận biết âm thanh, nhưng rất cần tính chính xác dé không xảy ra sai sót Và cũng có thé là những công việc cần đến kha năng sáng tao cao hơn như trò chuyện với con người, viết tiêu thuyết, Hay nói cách khác, công nghệ Học sâu đến nay đã thể hiện là một công cụ đắc lực giúp biến máy móc — vốn là những đồ vật vô tri vô giác — trở nên vô cùng hữu ích bởi có thể làm việc thay thế được cả con người trong những lĩnh vực mà trước đó vẫn tưởng như không thé.
Từ hai đặc điêm trên, chúng tôi có thê đưa ra một vài nhận xét mang tính kháiquát đê so sánh công nghệ Học sâu và công nghệ Học máy trong bôi cảnh cả hai cùng là những công nghệ đóng vai trò cốt lõi trong lĩnh vực Trí tuệ nhân tạo (Hình 2)
24 Leonardo Araujo dos Santos, “Artificial Intelligence”, 2017, trang 257-258.
Trang 18Công nghệ Học Sâu
Công nghệ Học Sau là một kỹ thuật học máy có thể học các biểu thi hữu ichhoặc các đặc điểm trực tiếp từ hình ảnh, van bản và âm thanh.
Cách tiếp cận của học máy truyền thống
Hình 2 Cách thức hoạt động của công nghệ Hoc sâu va công nghệ Học máy. Nguôn: Leonardo Araujo dos Santos, “Artificial Intelligence”, trang 259.
(anh đã được dich bởi nhóm tac giả)
Trước hết, mạng nơ-ron nhân tạo bởi công nghệ Học sâu có khả năng giải quyết nhiều van dé hon, do có khả năng tính toán dé kết hợp giữa các yếu tố của một dit liệu với nhau, việc này đã giải quyết được vấn đề mà công nghệ Học máy gặp phải đó là không biết kết hợp các yếu tô gốc của đối tượng như thế nào cho đúng Mạng nơ-ron nhân tạo càng có nhiều lớp, khả năng học để giải quyết vấn đề của máy tính được trang bị công nghệ Học sâu càng cao.
Thêm nữa, đó là dù mang trong mình khả năng nhiều hơn, công nghệ Học sâu lại
quá phức tạp đến mức không thể hình dung được Điều duy nhất khiến cho Học sâu trở
nên đáng tin cậy là kết quả học của công nghệ này rất chính xác Một mạng Học sâu của các nhà khoa học gần đây trong việc nhận diện thực thể đã cho ra kết quả rất cao, gan 96%, cao hơn cả khả năng phân loại thông thường của con người.”
Chính bởi sự khác biệt đột phá của công nghệ Học sâu so với công nghệ Học máy thông thường này đã khiến chúng ta cần phải nhìn nhận Trí tuệ nhân tạo trong mối quan hệ với các lĩnh vực khác của xã hội, đặc biệt là lĩnh vực luật pháp bang cái nhìn đa chiều hơn.
25 Dựa trên kết quả nghiên cứu của Google “Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning”, 23/8/2016, chi tiệt tai Attps://arxiv.org/pdf/1602.07261.pdf
Trang 191.3.2 Quá trình phát triển của công nghệ Hoc sâu (Deep Learning)
Công nghệ Học sâu có thê được hiêu một cách đơn giản khi đặt vào các giai đoạn mà nó đã trải qua trong cùng bối cảnh lịch sử với Trí tuệ nhân tạo nói chung (Hình 3).
Ky thuat ché tao may va =
chương trình thông minh CÔNG NGHE HỌC MÁYi Khả nang hoc hỏi ma không
: ần lậ ình rõ rà ce m lí lễ can lập trinh r rang CONG NGHỆ HỌC SÂUHọc hỏi trên nền tảng Hệ
thống nơ - ron nhân tạo
Hình 3 Quá trình phát triển của Trí tuệ nhân tao (Artificial Inteligensce) — Công nghệ Học máy (Machine Learning) — Công nghệ Học sâu (Deep Learning).
Nguồn: https://www.edureka.co/ (ảnh đã được dich bởi nhóm tác giả)
Sau khi tìm hiểu quá trình lịch sử phát triển của công nghệ Học sâu, chúng tôi đã xác định được một số xu hướng phát trién mà công nghệ này đã trải qua từ năm 2006 đên nay như sau:
e 2006: Được ra đời từ sớm, được đặt nhiều tên gọi khác nhau nhằm phan ánh
các quan điểm triết ly đa dạng và cũng đã từng rất phát triển, tuy nhiên sau
đó công nghệ Học sâu lại không còn được cộng đồng biết đến nhiều như
e 2010: Công nghệ Học sâu đã trở nên hữu ích hơn do phan cứng rất phát triển
và nguồn đữ liệu sẵn có ngày càng tăng.
e 2012: Các dạng mẫu của Công nghệ Học sâu ngày càng phát triển sâu và rộng hơn theo thời gian do kết cấu máy tính (gồm cả phần cứng và phần mềm) phục vụ cho công nghệ này đã được nâng cấp hơn.
e 2017: Công nghệ Học sâu giải quyết được các van đề phức tạp hon rất nhiều mà nó được giao với mức độ chính xác ngày càng tăng theo thời gian.
Trang 201.3.3 Ứng dụng của công nghệ Học sâu (Deep Learning) vào Trí tuệ nhân tạo Tuy mới chỉ được nghiên cứu và phát triển chính thức trong vải năm, song công nghệ Học sâu đã thúc đây tiễn bộ một cách nhanh chóng trong đa dạng các lĩnh vực như nhận thức sự vật, dịch tự động, nhận diện giọng nói, - những vẫn đề từng rất khó khăn đôi với các nhà nghiên cứu Trí tuệ nhân tạo.
Ngoài những ứng dụng tuyệt vời mà công nghệ này đã mang lại nhiêu lợi íchtrong cuộc sông như nhận dạng giọng nói, nhận dạng chữ việt, xử lý dữ liệu, lái xe tựđộng, đã nêu ra tại phân giới thiệu vê Trí tuệ nhân tạo nói chung, Học sâu còn là công nghệ được dùng dé tạo ra các ứng dụng ưu việt khác như:
e Kham phá dược pham và độc chất học
Ngành công nghiệp dược phẩm đã phải đối mặt với van đề mà một tỷ lệ lớn các loại thuốc tiềm năng thất bại khi tiếp cận với thị trường Những thất bại của các hợp chất hóa học này gây ra bởi không đủ hiệu quả trên mục tiêu phân tử sinh học, có các tương tác không bị phát hiện và không mong muốn với các phân tử sinh học khác, hoặc các hiệu ứng độc dược ngoài dự tính Trong năm 2012, một nhóm nghiên cứu dẫn đầu bởi George Dahl đã chiến thắng cuộc thi “Merck Molecular Activity Challenge” sử dụng các mạng nơ-ron sâu đa tác vụ dé dự đoán mục tiêu phân tử sinh học của một hợp chất Trong năm 2014, nhóm nghiên cứu của Sepp Hochreiter lại sử dụng Học sâu dé phat hiện ra mục tiêu la và các ảnh hưởng độc dược của các môi trường hóa chất trong các chất dinh dưỡng, sản phẩm gia dụng và thuốc men và đã chiến thắng "Tox21 Data Challenge" của Cục Quan lý Thực phẩm và Dược phẩm Hoa Kỳ Những thành công ấn tượng này chỉ ra rằng Trí tuệ nhân tạo áp dụng công nghệ Học sâu có thê vượt trội so với các phương pháp kiểm tra ảo khác Các nhà nghiên cứu đến từ Google và Stanford đã mở rộng công nghệ Học sâu hơn nữa để khám phá được phẩm bang cách kết hop di liệu từ nhiều nguồn khác nhau Năm 2015, công ty Atomwise đã giới thiệu AtomNet, mạng nơ-ron học sâu đầu tiên dành cho thiết kế dược phẩm dựa trên một cấu trúc hợp lý Sau đó, AtomNet đã được sử dụng dé dự đoán các phân tử sinh học được chọn mới lạ đối với nhiều mục tiêu bệnh tật, đặc biệt là phương pháp điều trị bệnh do virus Ebola và bệnh đa xơ cứng.
e© Quản lý quan hệ khách hàng
Thành công gần đây đã được báo cáo với ứng dụng của công nghệ Học sâu tăng cường trong các thiết lập tiếp thị trực tiếp, thé hiện sự phù hợp của phương pháp nay dành cho lĩnh vực tự động hóa quản lý quan hệ khách hàng Một mạng nơ-ron đã được sử dụng dé ước tính giá trị của các hành động có thé trực tiếp tiếp thị trên không gian trạng thái khách hàng Ứng dụng này của Học sâu không chỉ đem lại lợi nhuận không
Trang 21nhỏ cho các doanh nghiệp khi được áp dụng nhờ tiết kiệm chi phí, mà còn đem đến sự thoải mái đáng kê cho khách hàng khi tiếp tục sử dụng hàng hóa/dịch vụ Trên thực tế, tạo ra những sản phẩm giúp doanh nghiệp quản lý quan hệ khách hàng nhờ công nghệ Học sâu đang là một xu hướng rất được ưa chuộng bởi không chỉ những công ty công nghệ, mà còn bởi chính những doanh nghiệp kinh doanh hàng hóa dịch vụ Điều này là rất phù hợp với quy luật cung — cầu của mỗi nền kinh tế đặc biệt là trong thời điểm cách mạng 4.0 đang bùng nô.
® Sáng tạo nghệ thuật
Vấn đề máy móc dần xâm nhập các lĩnh vực sáng tạo nghệ thuật đã xuất hiện trong nhiều năm qua, nhưng cho tới gần đây chúng ta đã chứng kiến tốc độ phát triển của Trí tuệ nhân tạo đặc biệt ấn tượng trong lĩnh vực này Cùng với sự trợ giúp của công nghệ Học sâu, Trí tuệ nhân tạo còn tỏ ra hữu ích hơn nữa khi đã sáng tác được cả tiêu thuyết — một chương mới cho bộ truyện Harry Potter nồi tiếng?5, sáng tác và sản xuất âm nhạc — album ca nhạc mang tên I AM AI được đón nhận rộng rãi trên mang YouTube?”, và hàng loạt các lĩnh vực nghệ thuật khác như nhiếp ảnh, hội họa?Š, Tac giả Aaron Hertzmann, trong bài nghiên cứu đầy hap dẫn của mình — “Liệu máy tính có thé sáng tạo nghệ thuật? ”?2, ngoài việc đưa ra hàng loạt các minh chứng về khả năng sáng tạo của Trí tuệ nhân tạo áp dụng công nghệ Học sâu, còn đưa ra thêm cả những hoài nghi về việc khả năng sáng tạo ưu việt của máy tính sẽ đe dọa đến triển vọng nghề nghiệp của những nghệ sĩ là con người thực thụ Tuy nhiên, ngay sau đó tác giả này cũng đưa ra một nhận định làm chấm dứt hoài nghi này đó là “chúng ta không thể dự đoán được những sang tao và ý tưởng mới mà các nghệ sỹ sẽ đưa ra trong giai đoạn này, nhưng chúng ta có thể dự đoán rằng họ sẽ rất tuyệt vời, và họ sẽ rất tuyệt vời vì sử dụng chính những công nghệ mới theo những cách mới, không thể tiên đoán được”.
e Soạn thảo hợp đồng
Chỉ mới đây, tháng 2 năm 2018, hãng luật LawGeex của Mỹ đã cho ra mắt Trí tuệ nhân tạo với khả năng thay luật sư soạn thảo hợp đồng cho các doanh nghiệp, giúp tiết kiệm tới 80% thời gian và 90% chi phí so với việc thuê luật sư thông thường (Hình 4)
26 https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a943 1 §03da6, truy cập lầncuối ngày 08/3/2018.
?7
https://congnghe.tuoitre.vn/ra-mat-album-nhac-dau-tien-do-tri-tue-nhan-tao-sang-tac-20170827070358019.htm, truy cập lần cuối ngày 08/3/2018.
28 Bản tin “Tai chính tiêu ding” của VTVI, Đài truyền hình Việt nam, ngày 29/3/2018.
? Aaron Hertzmamn, “Can Computers Create Arts?”, 08 February 2018, xem thêm tại
https://arxiv.org/pdf/1801.04486.pdf
Trang 22Contract Review Automation
kest and easiest wayfor businesses to review and approve incoming contract
80% TIME SAVED
& approving contracts
reviewing & appro
Hình 4 Trang web chính thức của LawGeex với thông tin giới thiệu về Trí tuệ nhân tạo soạn thảo hợp đồng.
Nói tóm lại, khi tìm hiểu về công nghệ Học sâu được áp dụng trong lĩnh vực Trí tuệ nhân tạo của ngành khoa học máy tính, chúng ta biết được rằng mặc dù bản thân công nghệ này là một phạm trù nằm ngoài phạm vi của ngành khoa học pháp lý, nhưng những tác động nó đem lại cho xã hội lại có những ảnh hưởng không hề nhỏ, đặc biệt là van đề quyền sở hữu trí tuệ Bởi vậy, với công nghệ tiến bộ vượt bậc nay, chúng ta cũng cần có những nghiên cứu chuyên sâu hơn dé bat kịp với những thay đổi không chỉ của riêng chúng mà còn cả sự chuyên mình của các nước trên thê giới.
1.3 Pháp luật một số quốc gia trên thế giới về xác lập quyền sở hữu trí tuệ
đối với sản phẩm được tạo ra bởi Công nghệ Học sâu
Sau nhiều năm ra đời thì công nghệ Học sâu, Trí tuệ nhân tạo, các thế hệ máy tính thông minh vẫn đang phát triển và có thể nói trong kỷ nguyên cách mạng 4.0 hiện nay thì lại càng phát triển mạnh mẽ, điều này đã dẫn tới những bước ngoặt lớn trong cộng đồng giới nghiên cứu, nhà làm luật và ngành công nghiệp phải thúc đây và đầu tư vào việc nghiên cứu cho kip sự phát triển của lĩnh vực Trí tuệ nhân tạo nói chung và công nghệ Học sâu nói riêng - sự phát triển của phần mềm Học sâu, một bộ phận nhỏ của trí thông minh nhân tạo, tạo ra các hệ thống tự trị có khả năng học tập, sáng tạo mà không được lập trình bởi con người.
Các chương trình máy tính được phát triển cho các mục đích Học sâu có một thuật toán tích hợp cho phép nó nhập từ dit liệu đầu vào và dé xử ly, phát triển và sáng
tạo ra những sản phẩm tương lai dựa trên được hướng dẫn có sẵn trong phần mềm
Trang 23hoặc tự bản thân chương trình máy tính đó tạo ra một sản phẩm mới sáng tạo hơn mà không hề được con người lập trình trước như công nghệ Học sâu, những robot, các máy tính này sử dụng thông tin dữ liệu đầu vào dé tạo ra một tác phẩm mới, tự đưa ra các quyết định trong quá trình xác định xem tác phẩm mới trông như thế nào Một tính năng quan trọng đối với loại trí thông minh nhân tạo này là chúng có một mạng thần kinh — có quá trình phân tích tương tự như quá trình suy nghĩ của con người nên Trí
tuệ nhân tạo áp dung công nghệ Học sâu mới có khả năng sáng tạo ra các sản phâm.”9 Nhưng ngược lại với sự phát triển vượt bậc đó thì luật pháp của rất nhiều quốc gia lại thiếu hụt hoặc không có quy định về các van dé liên quan đến Trí tuệ nhân tao hoặc cụ thê hơn là về Trí tuệ nhân tạo áp dụng công nghệ Học sâu — khi chúng được coi là mô phỏng quá trình phát triển trí thông minh của con người băng các hệ thông máy tính và các máy móc khác - một loạt các phát triển gần đây đã làm sáng tỏ số lượng ngày càng tăng sự quan tâm của các nhà lập pháp và các nhà chức trách Chính phủ đối với lĩnh vực này Về vấn đề các quy định pháp luật cho Trí tuệ nhân tạo, các quy định đối với các sản phẩm được tạo ra bởi Trí tuệ nhân tao áp dụng công nghệ Học sâu, chúng tôi đã nghiên cứu các quy định pháp luật của một số nước phát triển về lĩnh vực này trong hoạt động sản xuất, sinh hoạt, công nghiệp như Hoa Kỳ, Vương quốc Liên hiệp Anh và Bắc Ai — len, Nhật Bản để có cái nhìn tổng quan nhất Cụ thê:
Vào ngày 17 tháng 2 năm 2017, Nghị viện châu Âu kêu gọi Ủy ban châu Âu đưa ra một đề xuất lập pháp về việc đặt ra một bộ luật dân sự về robot và trí thông minh nhân tạo Những quy định mới này sẽ giải quyết các vấn đề như trách nhiệm pháp lý đối với các thiệt hại do rô-bốt gây ra, cũng như thiết lập một cơ quan châu Âu về robot và trí tuệ nhân tạo Nghị quyết của Nghị viện dựa trên Điều 225 Hiệp định TFEU:! Ủy ban Pháp luật đã soạn thảo trong phần mở dau của ban Báo cáo cho Nghị viện Châu Âu về Các quy tắc luật Dân sự về robot? được Nghị viện Châu Âu bỏ phiếu và được da số phiếu bầu biểu quyết cho nội dung: soạn thảo áp dụng Báo cáo bao gồm các khuyến nghị của Ủy ban dé điều chỉnh robot và Trí tuệ nhân tạo, giới thiệu các quy tắc cho các kỹ sư và kiểm tra lại chế độ trách nhiệm dân sự trong mô hình mới này Các quy tắc dân sự trong bản báo cáo dự thảo này không quy định cụ thê vê quyên sở hữu tai sản và quyên sở hữu trí tuệ đôi với robot ma mới chỉ dừng lại
3° Andres Guadamuz, giảng viên cao cấp môn Luật sở hữu trí tuệ, Dai hoc Sussex, Anh, Artificial intelligence
and copyright, thang 10/2017.
3! https://www.jus.uio.no/english/services/library/treaties/09/9-01/tfeu_cons.xml truy cập lần cuối ngày
3 http://www.europarl.europa.eu/sides/
getDoc.do?pubRef=-//EP//TEXT+TA+P8-TA-2017-0051+0+DOC+XML+V0//EN truy cập lần cuối ngày 24/8/2018.
Trang 24ở việc phác thảo một loạt đề xuất hỗ trợ cho quá trình giới thiệu hệ thống đăng ký robot tiên tiễn phổ biến khắp châu Au, được kiểm soát bởi một cơ quan của Ủy ban châu Âu Các đề xuất ấy còn bao gồm cả việc thiết lập các điều luật quản lý các cơ chế chịu trách nhiệm đối với các thiệt hại có thê xảy ra, cũng như hình thành hệ thống cho một bộ quy tắc đạo đức ứng xử dé quy định quá trình thiết kế, phát triển và tương tac giữa con người và robot, đặc biệt hướng đến mục đích đảm bảo tính an toàn, riêng tư, liêm chính và nhân phẩm, cũng như khả năng tự quản và quyền sở hữu dir liệu Báo cáo cũng nhân mạnh nhu cầu về các cơ chế chỉ trả các khoản đóng góp an sinh xã hội dé bù trừ khoản giảm thiểu trong phần đóng góp của lực lượng nhân công cho xã hội và áp dụng cơ chê bao hiêm trách nhiệm bat buộc.
Nghị quyết trên của Nghị viện châu Âu đã đề xuất giới thiệu một hệ thống đăng ký cho 'robot thông minh', những cá thể có quyền tự chủ thông qua việc sử dụng cảm biến và/hoặc kết nối với môi trường, có ít nhất một hỗ trợ vật lý nhỏ, điều chỉnh hành vi và hành động của họ với môi trường và các robot thông minh này không có 'cuộc sống' theo nghĩa sinh học Hệ thống đăng ký robot tiên tiến sẽ được quản lý bởi một cơ quan của châu Âu về robot và trí tuệ nhân tạo Cơ quan này cũng sẽ cung cấp chuyên môn kỹ thuật, đạo đức và pháp lý về robot.
Liên quan đến trách nhiệm đối với thiệt hại do robot gây ra thì Nghị quyết quy định trách nhiệm pháp lý có thé dựa trên trách nhiệm pháp lý nghiêm ngặt (không yêu cầu lỗi) hoặc phương pháp quản lý rủi ro (trách nhiệm của một người có thể giảm thiểu rủi ro) Trách nhiệm pháp lý phải được cân đối với mức độ thiệt hại thực tế của các hướng dẫn được đưa ra cho robot và mức độ tự chủ, độc lập của nó Các quy tắc về trách nhiệm pháp lý có thé được bổ sung bởi một chương trình bảo hiểm bắt buộc cho người dùng rô bốt và một quỹ bồi thường thiệt hại để thanh toán trong trường hợp không có chính sách bảo hiêm nào chịu rủi ro.
Nghị quyết đề xuất hai bộ quy tắc ứng xử - một quy tắc ứng xử đạo đức cho các kỹ sư robot và một bộ quy tắc cho các ủy ban đạo đức nghiên cứu Bộ quy tắc đầu tiên đưa ra bốn nguyên tắc đạo đức trong kỹ thuật robot: 1) có lợi (robot phải hành động vì lợi ích tốt nhất của con người); 2) không hại đến con người (robot không được phép gây hại cho con người); 3) quyền tự chủ (tương tác của con người với robot phải là tự nguyện); 4) công lý (lợi ích của robot nên được phân chia công bằng).
Ủy ban châu Âu đã thông qua ngày 25 tháng 5 năm 2018 một thông tin về trí thông minh nhân tạo cho châu Âu đặt ra cách tiếp cận dé tận dụng tối đa các cơ hội được cung cấp bởi Trí tuệ nhân tạo và giải quyết những thách thức mới mà Trí tuệ nhân tạo mang lại Ủy ban chỉ ra rằng một số hành động lập pháp sẽ được đề xuất để
Trang 25đảm bảo một khung pháp lý thích hợp cho Trí tuệ nhân tạo bao gồm soạn thảo các nguyên tắc đạo đức cho Trí tuệ nhân tạo vào cuối năm 2018 và soạn thảo tài liệu hướng dẫn về việc giải thích Chỉ thị trách nhiệm sản phẩm giữa năm 2019.33
Vào cuối năm 2016, tại Anh, Ủy ban Khoa học và Công nghệ đã công bố một báo cáo về robot và Trí tuệ nhân tạo Báo cáo cho rằng Ủy ban thường trực về Trí tuệ nhân tạo được thành lập dé kiểm tra các tác động đến các khía cạnh xã hội, đạo đức và pháp lý của những phát triển gần đây và tiềm năng trong Trí tuệ nhân tạo Năm 2017, vào ngày 12 tháng 01, các Thành viên của Anh trong Nghị viện Châu Âu từ Ủy ban pháp lý của Nghị viện Anh đã thông qua báo cáo về robot và Trí tuệ nhân tạo Nghị viện châu Âu đã bỏ phiếu cho dự thảo đề xuất vào tháng 02 để cho ra đời Các quy tắc dân sự về robot xoay xung quanh việc sử dụng robot va Trí tuệ nhân tao.*4
Bên cạnh đó, luật của một số quốc gia trên thé giới hiện cũng cho thay đang bắt kịp với sự cần thiết phải thay đổi luật do việc thay đổi hồ sơ rủi ro và các tác động xã hội và các hậu quả khác do sử dụng Trí tuệ nhân tạo và robot Điều quan trọng là phải xem trạng thái thay đôi về chính sách và pháp lý để xem xét phạm vi bảo hiểm và/hoặc trách nhiệm pháp lý tiềm ân của người tạo ra/sử dung robot hay Trí tuệ nhân tạo đó Chính phủ Vương quốc Liên hiệp Anh và Bắc Ai — len cũng đã kiểm tra các van đề có liên quan xung quanh Trí tuệ nhân tạo và công nghệ Học sâu và đã đồng ý soạn thảo một bản dự thảo các quy định điều chỉnh việc tạo ra và sử dụng các sản pham do Tri tuệ nhân tạo va công nghệ Hoc sâu tạo ra dé tận dụng được sức mạnh của khoa học công nghệ, của Trí tuệ nhân tạo khi chúng vẫn thuộc tầm kiểm soát của con người Tuy nhiên, vẫn thiếu quy định pháp luật điều chỉnh, hoặc có nhưng thiếu sự đồng bộ trong cách hiểu và lập pháp giữa các nước về van đề xác lập quyền sở hữu trí tuệ đối với các sản phẩm do Trí tuệ nhân tạo nói chung hay Trí tuệ nhân tạo áp dụng công nghệ Học sâu tạo ra Ví dụ về khái niệm sở hữu, quan điểm về xác lập quyền sở hữu trí tuệ tại các quốc gia đối với trí tuệ nhân tạo cũng có những sự khác biệt nhất định về việc để có quyền sở hữu trí tuệ thì có cần phải trực tiếp do con người sáng tạo ra hay không.
Đôi với các sản phâm do Trí tuệ nhân tạo áp dụng công nghệ Học sâu tạo ra,việc xác lập quyên sở hữu trí tuệ như thê nào, là Trí tuệ nhân tạo đó hay người tạo ra Trí tuệ nhân tạo đó có quyền sở hữu trí tuệ đối với sản phâm được tạo ra? Định nghĩa
33 Civil Law rules on Robotics, 20/7/2018,
http://www.europarl.europa.eu/legislative-train/theme-area-of-justice-and-fundamental-rights/file-civil-law-rules-on-robotics Truy cap ngay 24/8/2018.
34 Charlotte Walker-Osborn, Head of Technology, Media and Telecoms Sector, Artificial Intelligence forges
ahead of the law, 15/2/2017.
Trang 26về tài sản trí tuệ của Tô chức Sở hữu trí tuệ thê giới (WIPO) chỉ đê cập đên là “sự sángtạo của trí tuệ” chứ không yêu câu rõ ràng đó phải là sự sáng tạo của tri tué con người.Sản phâm được tạo ra bởi trí tuệ nhân tạo có thê được bảo hộ như những đôi tượng bảnquyên hoặc sáng chê.
1.3.4 Trí tuệ nhân tạo áp dụng công nghệ Học sâu trong mối quan hệ với Bản quyền
Bản quyên đôi với các tac phâm đã được tao ra bởi máy tính, các robot, Trí tuệnhân tạo nói chung hay Trí tuệ nhân tạo áp dụng công nghệ Học sâu nói riêng thuộc vềchủ thê nào, hoặc cách thức đê xác định quyên tác gia của các tac phâm đó như thê nàolà một vân đê còn gây tranh luận.
Ở Hoa Kỳ, Cục Bản quyền đã quy định răng sẽ chỉ đăng ký tác phâm gốc của tác giả, với điều kiện là tác phẩm được tạo ra bởi con người Quan điểm này xuất phát từ án lệ điển hình Feist Publications, Inc., v Rural Telephone Service Co., 499 U.S 340 (1991)35 theo đó luật bản quyền chỉ bảo vệ kết qua của lao động trí tuệ của con người Một vụ việc của Úc (Acohs Pty Ltd và Ucorp Pty Ltd), tòa án cũng tuyên bố rằng một tác pham được tao ra với sự can thiệp của máy tính không thể được bảo vệ bởi bản quyên vì nó không phải do con người tạo ra.
Đạo luật về Bản quyền chưa quy định chủ sở hữu đối với sản phẩm do Trí tuệ nhân tạo áp dụng công nghệ Học sâu tạo ra Tại điều 306 của đạo luật này, “Cục bản quyên Hoa Kỳ sẽ chỉ đăng kỷ bản quyển cho tác phẩm gốc của tác giả, miễn là tác phẩm đó được tạo ra bởi con người [ ]”.3° Đôi với quy định này không rõ ràng việc tạo ra bởi con người ở đây là trực tiếp hay gián tiếp do con người tạo ra Nếu coi trí tuệ nhân tạo của công nghệ học sâu khởi đầu hình thành từ các thuật toán, thì việc tác giả của những thuật toán đó có được coi là gián tiếp tạo ra các tác phâm này không? Vào năm 2016, để đáp lại phán quyết của tòa án Hoa Kỳ trong trường hợp vi phạm bản quyền liên quan đến việc một con khi đã tự lây một chiếc máy ảnh và chụp được ảnh, một nhiếp ảnh gia người Anh đã khởi xướng vụ kiện Naruto v David John Slater et al, No 3:2016-cv-04324 (91 Cir)”, Cục Bản quyền Hoa Kỳ đã soạn thảo các quy tắc quy định rõ răng "Luật bản quyên chỉ bảo hộ cho sản phâm mà con người tao ra", theo đó35 Án lệ Feist Publications, Inc., v Rural Telephone Service Co, 499 U.S 340 (1991) xem tại
Trang 27thì nghiễm nhiên Cục Bản quyền của Hoa Kỳ sẽ không đăng ký bảo hộ quyền tác giả đối vớimột bức ảnh được chụp bởi một con khi bởi vì bức ảnh đó không được con người tạo ra.
Như vậy theo Đạo luật bản quyền của Hoa Kỳ thì sẽ chỉ bảo hộ đối với những sản phẩm lao động của trí thông minh của con người, còn Trí tuệ nhân tạo hay một loại
trí tuệ nào khác tự tạo ra các tác pham/san pham một cach vô tinh hoặc tự động ma
không có bắt kỳ sự can thiệp nào của con người thì sẽ không được bảo hộ Đến nay dù đã là quốc gia rất phát triển trong lĩnh vực này nhưng luật pháp Hoa Kỳ không có quy định nào về van dé chủ sở hữu, quyền sở hữu trí tuệ đối với sản phẩm do Trí tuệ nhân tạo tạo ra, máy móc tự tạo hoặc nhiêu máy móc cùng tạo ra sản phâm đó.
Ở Nhật Bản, lực lượng chịu trách nhiệm về van đề sở hữu trí tuệ của chính phủ đã tuyên bố trong năm 2016 rằng luật bản quyên hiện tại của Nhật Bản không bao gồm các sáng tạo do Trí tuệ nhân tạo tạo ra Chính phủ Nhật đang trong quá trình đưa ra các biện pháp mới trong năm 2017 để tìm cách xây dựng để có các quy định về lĩnh vực này.°Š
Còn ở Anh, Đạo luật Bản quyên, Thiết kế và Sáng chế năm 1988 của quốc gia
này đã quy định theo hướng khác hơn so với Hoa Kỳ đó là định hướng cung cấp quyền tác giả cho người lập trình giống như được thể hiện ở một số quốc gia như Hong Kong, Ấn Độ, Ireland, New Zealand Cách tiếp cận này được gói gọn trong Đạo luật Bản quyền, Thiết kế và Sáng chế của Anh, phần 9(3) nêu rõ:
“Trong trường hợp các tác phẩm văn học, nghệ thuật, âm nhạc và hội họa mà do máy tính định hình tạo nên, tác giả sẽ phải là một con người cụ thể mà người này đã lập trình can thiết trong việc tạo nên tác phẩm do”.
Quy định này mở ra một vấn đề đó là ai sẽ là người lập trình cho tác phẩm được máy tính tạo ra? Ai sẽ là chủ thể quyền đối với sáng chế? Người lập trình hay người sử dụng chương trình đó? Câu trả lời có lẽ sẽ phụ thuộc vào việc sản phẩm cuối cùng được tạo ra bởi sáng tạo của người sử dụng chương trình đó, hay người sử dụng chỉ đơn thuần thực hiện vài thao tác đơn giản để hoàn tác Đơn cử trường hợp của Microsoft Word Microsoft phát triển chương trình máy tính Word nhưng rõ ràng không sở hữu tat cả các tác phẩm được tạo ra bang cách sử dụng phần mềm đó Ban quyền nằm ở người dùng, tức là tác giả đã sử dụng chương trình dé tạo ra tác phẩm của mình Nhưng khi nói đến các thuật toán của trí thông minh nhân tạo có khả năng
38 Charlotte Walker-Osborn, Head of Technology, Media and Telecoms Sector, Artificial Intelligence forges
ahead of the law, 15/2/2017.
Trang 28tạo ra một tác phẩm, sự đóng góp của người dùng vào quá trình sáng tạo chỉ đơn giản có thé là nhấn một nút dé máy có thé làm được điều đó Đã có một số chương trình học tạo máy tạo văn bản trên mạng, và mặc dù đây là một lĩnh vực nghiên cứu liên tục, nhưng kết quả có thể đáng kinh ngạc Sinh viên nghiên cứu sinh của trường đại học Stanford, Andrej Karpathy, đã dạy cho một mạng nơ-ron biết làm thế nào để đọc văn bản và soạn các câu trong cùng một phong cách, và nó đã đưa ra các bài viết và đường dây đối thoại của Bách khoa toàn thư mở (Wikipedia) giống với ngôn ngữ của nhà văn, đại thi hào Shakespeare.
Hơn nữa, phần 178 của Đạo luật Bản quyên, Thiết kế và Sáng chế của Anh định
nghĩa một tác phâm do máy tính tạo ra như là một công việc "được tạo ra bởi máy tính trong những trường hợp không có bất kỳ sự can thiệp nào của con người" Ý tưởng đăng sau một điều khoản như vậy là tạo ra một ngoại lệ cho tất cả các yêu cầu tác giả của con người bằng cách thừa nhận công việc tạo ra một chương trình có khả năng tạo
ra các tác phẩm, ví dụ ngay cả khi sáng tạo tia lửa được thực hiện bởi máy móc được
trang bi công nghệ Học sâu.
1.3.5 Trí tuệ nhân tạo, công nghệ Học sâu trong mối quan hệ với Sáng chế
Pháp luật Hoa Kỳ về sáng chế cũng không có quy định cụ thê về vấn đề này Tại điều 35 của Đạo luật Sáng chế Hoa Kỳ cũng chỉ quy định người tạo ra sáng chế phải là cá nhân hoặc nếu là cùng hợp tác tạo ra một sản phâm, một giải pháp kỹ thuật thì cá nhân phải là người phát minh, tìm ra được vấn đề chính mang tính mới của sản pham, giải pháp kỹ thuật đó Hơn thé nữa, cũng quy định trong Đạo luật Sáng chế rang Đạo luật sẽ chỉ bảo hộ những sản phẩm, giải pháp kỹ thuật được con người tạo ra chứ không phải do máy móc tạo ra Nhìn chung quy định như vậy nhưng cũng không có bat kỳ quy định cắm nào trong Đạo luật Sáng chế về việc bảo hộ sáng chế cho những sản phẩm, giải pháp kỹ thuật mà Trí tuệ nhân tạo hay Trí tuệ nhân tạo áp dụng công
nghệ Học sâu hoặc một trí tuệ khác tạo ra và cũng không có bat ky án lệ nao vé van dé
Ở Anh, Đạo luật Sáng chế năm 1977 rõ ràng đã tiến bộ hon những quy định của Hoa Kỳ ở chỗ Anh bảo hộ bằng sáng chế được thực hiện bởi các chương trình máy tính nếu chúng có "liên quan đến việc tạo ra các sản phẩm như vậy" Như vậy, nghĩa là chỉ có một số loại ứng dụng bang sáng chế liên quan đến hệ thống máy tính mới được cấp và bản thân những Trí tuệ nhân tạo cần phải có sự đóng góp "kỹ thuật" nhất định dé tạo ra sản pham đó Nếu đáp ứng được tiêu chí này thì được bảo hộ và Đạo luật quy định rằng người sáng chế là người tạo ra sáng chế có thể là một hoặc nhiều nhà sáng chê cùng sáng tạo chung Vì vậy, có thê nói, các phát minh vê Trí tuệ nhân tạo vê một
Trang 29sản phẩm nào đó có thê được cấp băng sáng chế nhưng cũng phải đối mặt với những rào cản đối với khả năng cấp bằng độc quyền sáng chế Thật vậy, cho dù công nghệ Học sâu có thé tạo ra một sản phẩm nào đó một cách độc lập dé có thé được cấp băng sáng chế nhưng sản phẩm này lại do máy móc tạo ra mà không phải con người cụ thê nên pháp luật vẫn chưa có quy định rõ ràng về việc bảo hộ quyền sở hữu trí tuệ cho sáng chế được tạo ra bởi công nghệ này.
1.4 Danh gia chung
Việc tạo ra các tác phẩm bởi việc sử dụng trí thông minh nhân tạo có ý nghĩa rất quan trọng đối với luật sở hữu trí tuệ Hầu hết các nước đều quy định rằng những tác phẩm được tạo ra bởi con người mới có thé được bảo vệ bởi bản quyền giống như Hoa Kỳ, Nhật Bản, Tây Ban Nha, Nhưng với các loại Trí tuệ nhân tạo mới nhất, chương trình máy tính không còn là công cụ nữa; nó thực sự đưara nhiều quyết định liên quan đến quá trình sáng tạo ra một sản phẩm mang tính mới mà không có sự can thiệp của con người Luật pháp các nước Hoa Kỳ, Anh, Nhật Bản tương tự cũng mới chỉ dừng lại ở vấn đề mối quan hệ, xem xét nên đặt Trí tuệ nhân tạo nói chung ở phần sáng chế hay bản quyền chứ chưa hề xác định được việc xác lập quyền sở hữu trí tuệ đôi với sản pham do công nghé tiên tiên này tạo ra.
Những tiến bộ huyền thoại của Trí tuệ nhân tạo chính từ việc bắt đầu thực hiện những gi con người đã lập trình tao ra một sản phẩm theo ý muốn của con người sau đó là tự tạo được những sản phâm mang tính sáng tạo hoàn toàn như Trí tuệ nhân tạo áp dụng công nghệ Học sâu Một vài ví dụ điển hình như Tiểu thuyết lừng danh Harry Potter vừa có thêm chương mới, nhưng không phải do tác giả J.K Rowling viết mà được chấp bút bởi một Trí tuệ nhân tạo Trí tuệ nhân tạo đã sáng tác một chương mới dai 3 trang có tiêu đề tạm dich là "Harry Potter và bức chân dung của một thứ gì đó trông như một đồng tro lớn" Phần lớn văn bản do Trí tuệ nhân tạo tạo ra nhưng cách diễn đạt chưa thực sự rõ ràng nên một số nhà văn đã thay đôi chút ít cho chúng dễ hiểu hơn Các nhà văn khác đều khăng định, chương mới về Harry Potter do Trí tuệ nhân tạo viết phần lớn đều chính xác về mặt ngữ phap*’ Hoặc robot Xiaoyi đã tham gia bài thi cấp giấy phép y khoa quốc gia tại Trung Quốc và đỗ với điểm số 456/600, cao hơn 96 điểm so với mức san Theo nhóm nghiên cứu tại trường Đại học Thanh Hoa, robot Xiaoyi đã nghiên cứu hơn một triệu hình ảnh y khoa, 53 cuốn sách y học, 2 triệu hồ sơ bệnh án và 400.000 văn bản y khoa và các báo cáo y tế trước khi ngôi làm bài
3*Nguyễn Hà (Trung tâm Tin tức VTV24)-Thứ hai, ngày 18/12/2017, Trí tuệ nhân tạo viết tiếp 1 chương
của bộ truyện Harry Potter,
hfíp:⁄/vív.vn/consg-nghe/Tri-tue-nhan-fao-vief-fiep-I-chuong-cua-bo-fryen-harry-potter-20171218165113111.htm
Trang 30thi Robot Xiaoyi sẽ được sử dụng rộng rãi trên đất nước Trung Quốc ké từ tháng 3 năm sau trong việc giảng dạy và đào tạo y khoa.Đây là robot đầu tiên trên thế giới làm được điều này"? Hoặc năm 2016, một nhóm bảo tàng và nhà nghiên cứu ở Hà Lan đã tiết lộ một bức chân dung mang tên The Next Rembrandt, một tác phẩm nghệ thuật mới được tạo ra bởi một máy tính đã phân tích hàng nghìn tác phẩm của họa sĩ Hà Lan thé kỷ 17 Rembrandt Harmenszoon van Rijn'!
Vấn đề Trí tuệ nhân tạo sáng tạo ra các tác phẩm độc lập, mang tính sáng tạo năm ngoài lập trình sẵn của con người ngày càng trở nên phổ biến, những vi dụ trên về Trí tuệ nhân tạo là điển hình cho sản phẩm được làm ra bởi Trí tuệ nhân tạo áp dụng công nghệ Học sâu đã làm mờ sự khác biệt giữa các tác phẩm do con người và do Tri tuệ nhân tạo tạo ra Điều này có ảnh hưởng nhất định đối với luật sở hữu trí tuệ -thường chỉ bảo vệ các tác phẩm do con người tạo ra cần phải được sửa đổi cho kịp với những sự phát triển của Trí tuệ nhân tạo nói chung và Trí tuệ nhân tạo áp dụng công nghệ Học sâu nói riêng Các Đạo luật của Anh, của Hoa Kỳ - những nước rất phát triển trong lĩnh vực Trí tuệ nhân tạo, công nghệ Học sâu và luật pháp cũng chỉ dừng lại ở việc thừa nhận và bảo hộ đối với các sản phẩm do con người tạo ra, ở Anh thì có những trường hợp nhất định, khi cùng có sự tham gia của con người sáng tạo thì sản phẩm đó cũng được bảo hộ dưới danh nghĩa sáng chế chứ chưa hề có quy định nào đã có hoặc mới có về vấn đề xác lập quyền sở hữu trí tuệ đối với sản phẩm do Trí tuệ nhân tạo áp dụng công nghệ Học sâu tạo ra mặc dù hiện tượng Trí tuệ nhân tạo, công nghệ Học sâu như phân tích ở trên đã có một quá trình lịch sử, phát triển từ lâu Với tình hình pháp luật chung hiện nay về xác lập quyền sở hữu trí tuệ với sản phẩm do Trí tuệ nhân tạo nói chung và Trí tuệ nhân tạo áp dụng công nghệ Học sâu nói riêng tạo ra đều thiếu hụt nên cần thiết lập một ngoại lệ cho xu hướng đó khi nói đến thành quả của những công nghệ tiên tiễn hiện nay.
Việc cấp bản quyền cho người tao ra Trí tuệ nhân tạo dường như là cách tiếp cận hợp lý nhất, với mô hình của Anh có vẻ như sẽ hiệu quả nhất trong các quy định hiện tại về vấn đề Trí tuệ nhân tạo trong pháp luật một số nước Anh, Hoa Kỳ, Nhật Bản, Đức, Tây Ban Nha, Cách tiếp cận như vậy sẽ đảm bảo rằng các công ty tiếp tục đâu tư vào công nghệ, an toàn với niêm tin răng họ sẽ có được lợi nhuận đâu tư từ
4° Tường Vy (VTV8) - Thứ ba, ngày 12/12/2017, Robot Trí tuệ nhân tạo vượt qua bài kiểm tra y
khoa,http://vtv.vn/cong-nghe/robot-tri-tue-nhan-tao-vuot-qua-bai-kiem-tra-y-khoa-20171212094128423.htm
41 Andres Guadamuz, giảng viên cao câp môn Luật sở hữu trí tuệ, Dai học Sussex, Anh, Artificial intelligence
and copyright, 10/2017.
Trang 31Trí tuệ nhân tạo do pháp luật bảo hộ Tuy nhiên, các vân đê về sở hữu trí tuệ liên quan đến Trí tuệ nhân tạo lại đường như không chỉ đơn giản như vậy.
Trang 32KET LUẬN CHƯƠNG 1
Chương | tập trung phân tích các khái niệm, đặc điểm và ứng dụng của Trí tuệ nhân tạo, công nghệ Học sâu và được nhóm tác giả trình bày dưới góc nhìn của ngành khoa học pháp lý để tiến hành nghiên cứu đề tài, không phải góc nhìn của ngành khoa học tự nhiên nên những kiến thức này đã ở dạng khái quát nhất.
Bên cạnh đó, ở chương | nhóm tác giả cũng đã đưa ra nội dung của pháp luật một số nước trên thế giới về xác lập quyền sở hữu trí tuệ đối với sản phẩm tạo ra bởi Trí tuệ nhân tạo áp dụng công nghệ Học sâu — làm tiền đề chính dé giải quyết van đề pháp lý mà đề tài đang đặt ra trong hệ thống pháp luật Việt Nam Với phần trình bày này, chúng tôi nhận thấy một số quốc gia trên thế giới đã nhìn nhận Trí tuệ nhân tạo nói chung và Trí tuệ nhân tạo áp dụng công nghệ Học sâu nói riêng trong mối quan hệ với bản quyền và sáng chế để có những cách thức áp dụng các quy định cho các vấn đề liên quan.
Từ những nội dung cơ sở đã trình bày ở Chương 1 Khái quát về Trí tuệ nhân tạo áp dụng công nghệ Học sâu (Deep Learning) và pháp luật một số quốc gia trên thế giới, đề tài sẽ tiếp tục triển khai những nội dung liên quan đến thực tiễn ứng dụng của Trí tuệ nhân tạo áp dụng công nghệ Học sâu tại Việt Nam và thực hiện rà soát các quy định pháp luật hiện hành trong điều chỉnh vẫn đề quyền sở hữu trí tuệ đối VỚI san phẩm tạo ra bởi Trí tuệ nhân tạo áp dụng công nghệ Học sâu ở cấp độ các văn bản quốc tế và trong nước, dé thay được sự khác biệt giữa sản phẩm tao ra bởi Trí tuệ nhân tạo áp dụng công nghệ Học sâu so với sản phẩm trí tuệ thông thường và chỉ ra những lỗ hồng pháp lý dành cho sản phẩm này trong Chương 2 Trí tuệ nhân tạo áp dụng công nghệ Hoc sâu (Deep Learning) — Tình hình ứng dụng và phát triển tại Việt Nam; thực trạng khung pháp lý hiện hành về xác lập quyền sở hữu trí tuệ
đối với sản phẩm được tạo ra.
Trang 33CHƯƠNG 2
TRÍ TUỆ NHÂN TẠO ÁP DỤNG CÔNG NGHỆ HỌC SÂU (DEEP
LEARNING) - TINH HÌNH UNG DUNG VÀ PHAT TRIEN TẠI VIỆT NAM; THỰC TRẠNG KHUNG PHÁP LÝ HIEN HANH VE XÁC LẬP QUYEN
SỞ HỮU TRÍ TUỆ DOI VỚI SAN PHAM ĐƯỢC TẠO RA
2.1 Tinh hình ứng dung và phát triển Trí tuệ nhân tạo áp dung công nghệ Học sâu (Deep Learning) tại Việt Nam
2.1.1 Xu hướng phát triển của các doanh nghiệp Việt Nam về áp dụng công nghệ Học sâu
Hiện nay, tat cả các công ty/tập đoàn lớn về công nghệ đều sẵn sàng chi một khoản đầu tư vô cùng lớn dé có thê tích hợp những công nghệ này vào sản phâm của họ Có thé nói, Trí tuệ nhân tao đang dân hiện hữu trong mọi mặt của cuộc sống chúng ta, không chỉ trên thế giới mà ngay tại Việt Nam, công nghệ này đã đi vào khá nhiều ứng dụng trong thực tế Ví dụ gần nhất và đơn giản nhất là hộp thư Email tự động phân loại mail vào các nhóm như thư rác, thư quan trọng, hoặc với tỷ lệ người dùng điện thoại thông minh (smartphone) so với người dùng điện thoại phô thông (feature phone) trong năm 2017 là 84%; tăng 6% so với năm 2016 (tỷ lệ 78%)”, trong đó điện thoại di động có rất nhiều ứng dụng của Trí tuệ nhân tạo như: phần mềm nhận dạng giọng nói, phần mềm nhận diện khuôn mặt khi chụp ảnh, trợ lý ao Siri của hang Apple, hay trên Hệ điều hành Window (Win10) là trợ lý ảo Cortana
Tuy nhiên, Việt Nam vẫn chưa thật sự được phát triển hết tiềm năng của Trí tuệ nhân tạo Trí tuệ nhân tạo vẫn còn đang trên quá trình thử nghiệm và phát triển trên mọi lĩnh vực Tại Việt Nam, đối với doanh nghiệp và người dùng, Trí tuệ nhân tạo vẫn còn là một khái niệm khá mới mẻ và lạ lẫm, tuy nhiên những tiềm năng phát triển mà Trí tuệ nhân tạo có thể mang lại cho doanh nghiệp là điều không cần phải bàn cãi.
Nhận thức được điều này, HBB Solutions là công ty đầu tiên áp dụng Trí tuệ nhân tạo
vào các sản pham, giải pháp về công nghệ thông tin của mình cho doanh nghiệp Đứng dau là tiến sĩ Nguyễn Thiên Bảo, người đã có hơn 10 năm kinh nghiệm về nghiên cứu, cũng như tham gia vào các dự án ứng dụng Trí tuệ nhân tạo tại các quốc gia tiên tiến trên thé giới HBB Solutions lay công nghệ cốt lõi của Trí tuệ nhân tạo dé đưa vào các sản phẩm, giúp cho doanh nghiệp tăng sức cạnh tranh của mình một cách tối đa khi tham gia vào thị trường toàn cầu”.
42 https://baomoi.com/2017-ty-le-nguoi-dung-smartphone-tang-6/c/24069101.epi, truy cập lần cuối ngày
lở
http://bstyle.vn/nhan-vat/doanh-nhan/1508-tien-si-nguyen-thien-bao-tri-tue-nhan-tao-tuong-lai-cua-the-gioi.html, truy cập lần cuối ngày 13/3/2018.
Trang 34Š cũng là những gương mặt tiêu biểu đại diện Tinypulse** và Trusting Socia
cho các cá nhân/tô chức nổi bật trong lĩnh vực này Tinypulse nhắm tới cải thiện tinh thần cho nhân viên và khiến họ gắn bó với công ty thông qua các khảo sát, phân tích cảm xúc Trusting Social là đối tác với Viettel, công ty vừa kêu gọi vốn thành công lên đến vài triệu đô, tiên phong trong lĩnh vực fintech — áp dụng công nghệ vào ngành dich vụ tài chính Trusting Social có nhiều chi nhánh trên thế giới và một trung tâm Nghiên cứu và Phát triển ở thành phố Hồ Chí Minh và một phòng thí nghiệm chuyên về Trí Tuệ nhân tạo ở Melbourne (Australia) Ý tưởng đẳng sau Trusting Social liên quan đến việc tính toán và phỏng đoán các con số và khả năng ứng dụng cho nhiều lĩnh vực tài chính và đặc biệt là lĩnh vực Trí tuệ nhân tạo.
Bên cạnh đó, công ty Sentifi vẫn đang đứng trong những công ty mạnh về Trí tuệ nhân tạo tại Việt Nam Đây là một trong những công ty đi tiên phong về sử dụng Trí tuệ nhân tạo trong mang non-trivial applications Nhóm kỹ thuật phân tích dữ liệu
của công ty Sentifi đã sử dụng cả công nghệ Học máy, công nghệ Học sâu và Trí tuệ nhân tạo dé phân tích hơn một tỉ tweets mỗi tháng dé thu được đánh giá từ cộng đồng Sau đó dựa vào những dữ liệu đó, nhân viên sẽ thực hiện liên hệ với những phân tíchtừ thị trường tài chinh*®.
Theo nhiều chuyên gia, Trí tuệ nhân tạo sẽ giúp cải thiện chất lượng dịch vụ tại
Việt Nam Ví dụ trong thời gian tới, người dùng sẽ có thể khám bệnh trực tuyến, có một Trí tuệ nhân tạo chuyên theo dõi sức khỏe và chăm sóc nhắc nhở người dùng hay việc gửi hình X — Quang dé cho phỏng đoán bệnh tinh mà không hề thua kém một bác sĩ có trình độ”.
Một doanh nghiệp cũng rat phát triển về công nghệ như FPT cũng đã và đang triển khai một số dự án ứng dụng công nghệ Học sâu Dự án thứ nhất là phát triển một hệ thống tìm kiếm các vị trí trồng trong bãi đậu xe từ hình ảnh thu nhận được, từ đó hướng dẫn các tài xế đưa xe đến vị trí đậu xe một cách nhanh chóng dé xếp, dỡ hàng hoá Dự án thứ hai phát triển một hệ thống cho phép tự động phát hiện các mặt hàng được bày trên kệ của các cửa hàng, đại lý bán lẻ.
4 Công ty Trách nhiệm hữu hạn TINYpulse là công ty chuyên về lập trình máy vi tính, Lầu 18, Tòa nhà Vincom
Center B, Sô 72, đường Lê Thánh Tôn, Phường Bên Nghé, Quận 1, TP Hồ Chí Minh
Trusting Social là công ty của Mỹ, có trụ sở chính tại Singapore, tiên phong trong lĩnh vực fintech — áp dung
công nghệ vào ngành dịch vụ tài chính Trusting Social có nhiều chi nhánh trên thế giới và một trung tâmNghiên cứu và Phát triển ở thành phố Hồ Chí Minh và một phòng thí nghiệm chuyên về Trí Tuệ nhân tạo ởMelbourne (Australia) với những người sáng lập, ban lãnh đạo và các thành viên chủ chốt của công ty là các tiễn
sĩ, thạc si ở các Viện nghiên cứu Stanforsd, Microsoft, IBM, Goldman Sach, Credit Suise va Barclays.https://trustingsocial.com/.
4Shttps://sentifi.com/, truy cập lần cuối ngày 13/3/2018.
47 https://viettimes.vn/luong-bac-si-xquang-se-ve-0-vi-tri-tue-nhan-tao-139041.html, truy cập lần cuối ngày
13/3/2018.
Trang 35Cũng tại FPT, hiện nay Trí tuệ nhân tạo đang được sử dụng dé tăng cường hiệu quả sản xuất kinh doanh, khách hàng sẽ thông qua hệ thống tự động ra quyết định do FPT cùng đối tác GE Predix thực hiện, camera sẽ giúp phân tích hành vi và thói quen tiêu dùng của khách hàng, trợ lí ảo Chatbot cung cấp thông tin cho khách hàng tự động qua Facebook Messenger Hiện tại, FPT cũng đã xây dựng một platform riêng về AI — FPT.AI, hay còn gọi là Nền tảng hội thoại và trợ lí ảo thế hệ mới”.
Trí tuệ nhân tạo đang được sử dụng ngày càng nhiều hơn ở Việt Nam ngày nay Tỉ lệ vi phạm quyền sở hữu trí tuệ về phần mềm của các tô chức, doanh nghiệp đã giảm xuống đáng kẻ, thể hiện hiểu biết về việc phải mua bản quyền đã được cải thiện Cụ thé, ty lệ vi phạm phần mềm tại Việt Nam từ 96% (năm 2009) giảm còn 78% (năm 2015), con số này đã đưa Việt Nam ra khỏi danh sách quốc gia vi phạm bản quyền phần mềm nhiều nhất.
Tuy nhiên, con số 78% vẫn cho thấy vấn nạn vi phạm bản quyền còn nan giải Các doanh nghiệp mới chỉ mua những phần mềm có giá trị thấp, còn những phần mềm kỹ thuật có giá tri cao thì rất ít được mua Và với sự phát triển chóng mặt của Trí tuệ nhân tạo, những nguôn lợi nhuận khổng 16 dang sau việc vi phạm bản quyền vẫn sẽ là một sự nhức nhối nếu không được chuẩn bị ki lưỡng Nếu trước đây, xử lý hành vi xâm phạm bản quyền áp dụng biện pháp xử lý hành chính hoặc dân sự thì từ 01/01/2018 trở đi, sẽ có thêm hình thức xử lý hình sự khi Bộ luật Hình sự 2015 chính thức đi vào hiệu lực Do vậy đây là thời điểm Việt Nam cần nâng cao nhận thức của doanh nghiệp cũng như các cơ quan nhà nước về van đề liên quan đến Trí tuệ nhân tạo.
2.1.2 Các sản phẩm của Trí tuệ nhân tạo áp dụng Công nghệ Học Sâu (Deep Learning) tại Việt Nam
2.1.2.1 Hệ thống điều khiển giao thông thông minh (ITS)
Hệ thống giao thông thông minh tại Hồ Chi Minh, theo ông Khuất Việt Hùng — Phó Chủ tịch Uy ban An toàn giao thông quốc gia, được ví như “Bộ não dé kết nối tat cả các yếu tố lại với nhau và hình thành nên một chiến lược chung trong vận hành đô thị và giao thông”.
Hệ thống này có thể thông báo cho người dân những tuyến đường kẹt xe để họ tìm một hướng lưu thông khác thông thoáng hơn; chủ động điều chỉnh tăng/giảm lịch trình của hệ thống vận tải công cộng; tự động điều chỉnh chu kỳ đèn tín hiệu tại các nút giao; giám sát hoạt động của hệ thống trạm thu phí ra - vào thành phó, nút giao, cửa ngõ thành phố; phân luồng từ xa những luồng giao thông kết nối và đi qua thành
Apho
48 https://fpt.ai/, truy cập lần cuối ngày 13/3/2018.
Trang 36Song, ý thức tham gia thông của người dân chưa cao, chưa chủ động thay đổi hành vi của mình Do đó, Hệ thống ITS thường được sự hỗ trợ phối hợp của Cảnh sát giao thông trong việc phân làn, phân luồng dé đảm bảo hiệu qua cao nhất.
Theo Thạc sĩ Nguyễn Đinh Vinh Mẫn, hệ thống ITS cho vận tải hành khách công cộng chủ yếu tập trung cho xe buýt và taxi Ông cho rằng “Xe buýt bình thường phải dừng đèn đỏ nên thường chạy chậm, hiệu quả phục vụ không cao, hơn nữa còn gây tình trạng kẹt xe Hệ thống xe buýt nhanh BRT sẽ phối hợp với ITS ở chỗ có bộ phận cảm biến nhận biết khi xe buýt đến gần đèn tín hiệu giao thông và chuyền thành đèn xanh ưu tiên cho xe di qua”.*
2.1.2.2 Ô tô tự lái
Trước các doanh nghiệp Việt Nam, các doanh nghiệp lớn trên thế giới như Google, Tesla, Uber, Apple đã có những bước phát triển và mở rộng trong lĩnh vực Trí tuệ nhân tạo, đặc biệt là áp dụng Công nghệ Học sâu lên ô tô tự lái Tuy vậy, các doanh nghiệp Việt Nam cũng dần bước những bước đầu tiên trong lĩnh vực này Sau bốn tháng âm thầm phát triển, ngày 31 tháng 10, mẫu ô tô gắn công nghệ tự hành do chính những ky sư người Việt Nam phát triển đã tự động di chuyền trong đường nội bộ khu công nghệ cao TP Hồ Chí Minh với tốc độ khoảng 25 km/h, biết tự điều khiển đi thăng, tránh xe ngược chiều, chướng ngại vật và đánh lái chuyển hướng theo các khúc cua Điều này đã đập tan những hoài nghỉ trước đó về tuyên bố của Chủ tịch FPT Software Hoàng Nam Tiến, tại một hội thảo về Tương lai của ô tô và công nghiệp robotic diễn ra vào tháng 4 năm 2017: “Nhiều người tỏ ra không tin tưởng vào tương lai Việt Nam có thê làm xe tự lái Thế nhưng, tháng 10 tới, FPT sẽ khoe công nghệ xe tự lái của mình”.”0
Điều này hứa hẹn sẽ mở ra một tương lai mới cho ngành công nghiệp ô tô Việt Nam và cả ngành công nghiệp phần mềm của Việt Nam Trong tương lai tới, khi Trí tuệ nhân tạo do FPT phát triển thành công kết hợp với một nhà sản xuất xe ô tô trong nước, các chuyên gia tin tưởng rằng sẽ sớm được nhìn thấy những mẫu xe ô tô tự lái được sản xuất bởi chính các doanh nghiệp Việt Nam.
2.1.5 Điều trị ung thư và áp dung trong Y học
Hiện nay, Trí tuệ nhân tạo cũng đã từng bước dần đi vào Y học ở một mức độ cao hơn Đến năm 2018, Bệnh viện Da khoa tỉnh Phú Thọ là cơ sở y tế đầu tiên đưa bộ dữ liệu gồm 1,5 triệu hồ sơ bệnh án của bệnh nhân ung thư Hoa Kỳ vào dùng tại phòng khám - tư van sử dụng trí tuệ nhân tạo điều trị ung thư.
49 https://tuoitre.vn/dieu-khien-giao-thong-thong-minh-o-tphcm-ra-sao-1123453.htm, truy cập lần cuối
3° https://vietnambiz.vn/chu-tich-fpt-software-hoang-nam-tien-thang-10-fpt-se-gioi-thieu-xe-tu-lai-19046.html,
truy cập lần cuối 21/3/2018.
Trang 37Dịch vụ y tế có nhiều tiềm năng ứng dụng trí tuệ nhân tạo, hiện các kỹ thuật như chụp CT, MRI, robot phau thuật hay sử dung bộ dữ liệu để hỗ trợ quyết định như tại Bệnh viện Đa khoa tỉnh Phú Thọ đều là ứng dụng Trí tuệ nhân tạo Tiến tới đây, ứng dụng công nghệ phải tiến lên một bước dé bệnh viện các tuyến có thé chuyên phim chụp để chuyên gia có thể đọc phim từ xa, hỗ trợ cung cấp dữ liệu để bác sĩ tuyến dưới chan đoán chính xác hơn, đồng thời phát triển mô hình bệnh viện thông minh.
Bác sĩ có thé kê đơn thuốc qua giọng nói và không cần phải kê đơn bang cách ghi ra giấy, các phần mềm hiện có có thể hiểu giọng nói và có thé hiểu yêu cầu bằng tiếng Việt Ngay sau khi bác sĩ kê đơn qua giọng nói, phần mềm sẽ tim trong bộ dit liệu đang lưu trữ để xem các bác sĩ giỏi cho đơn thuốc trong trường hợp bệnh lý tương tự đó như thế nào, đồng thời có phản hồi với bác sĩ trong trường hợp chi phí thuốc quá cao hoặc thuốc chưa phù hợp.
2.1.3 Trí tuệ nhân tạo tại Việt Nam trong 10 năm tới
Sau khi phỏng vấn lấy ý kiến Công ty cổ phần ASILLA Vietnam°! và Công ty cô phần NAL Việt Nam”? (hai bảng ý kiến của doanh nghiệp chỉ tiết xem tại Phụ lục) chuyên về Trí tuệ nhân tạo và công nghệ thông tin tại Việt Nam và Nhật Bản, đại diện đồng sáng lập của công ty đã trả lời và nhóm tác giả thấy rang van dé trí tuệ nhân tao tại Việt Nam trong mười năm tới sẽ có những điểm hấp dẫn, thu hút và có thê là thế mạnh của chúng ta Theo ý kiến của đồng sáng lập công ty cổ phan NAL Việt Nam -anh Phạm Mạnh Lân, đã trả lời phiếu lấy ý kiến do-anh nghiệp của nhóm tác giả, về cơ bản, tất cả các lĩnh vực trong cuộc sông đều có thé áp dụng Trí tuệ nhân tạo Trong mười năm tới, anh cho rằng các ngành liên quan đến dịch vụ Internet, viễn thông, thương mại điện tử, bán lẻ, tài chính/ngân hàng, giáo dục sẽ là những ngành hấp dẫn, có thế mạnh và sẽ phát triển mạnh mẽ hơn với sự hỗ trợ của Trí tuệ nhân tạo Tiếp đó là các lĩnh vực khó hơn như y té, nghiên cứu khoa hoc cũng sẽ được cap nhật, phát huy tối đa tiềm năng cũng như từng bước tiếp nhận những sáng kiến khoa học của các
nước phát triển về trí tuệ nhân tạo (Nhật Bản, Mỹ, Trung Quốc ) Thậm chí các
ngành phi chức năng như Luật cũng có thê áp dụng được “Những ngành như Khoa học xã hội, nghệ thuật, tâm lý học có lẽ cần nhiều thời gian hơn nữa Câu chuyện giống như tự động hóa, tự động hóa 100% và tự động hóa 10% thì cũng là áp dụng, Trí tuệ nhân tạo cơ bản là áp dụng được tất cả các lĩnh vực và áp dụng được bao 5! Công ty cô phần Công nghệ ASILLA Việt Nam là một trong những chi nhánh công ty Nhật Ban
(https://www.asilla.jp/) chuyên vềKỹ thuật phần mềm và Trí tuệ nhân tạo được đặt tại Việt Nam.
5 Công ty cô phan NAL Việt Nam là một trong những công ty chuyên vềKỹ thuật phần mềm hang đầu tại Việt
Nam (https://nal.vn/) Công ty chuyên phát trién phần mềm, đào tao kỹ sư chất lượng, nghiên cứu và phát triển
kỹ thuật phần mềm, đào tạo kỹ sư chất lượng, nghiên cứu và phát triển sản phẩm dịch vụ trong mảng ứng dụng
giải pháp web, ứng dụng di động, tư vấn máy tính và quản trị hệ thống máy vi tính, dịch vụ hỗ trợ giáo dục, giải
pháp nghiên cứu nghiệp vụ cho thị trường Nhật Bản, các nước Châu Á và các nước khác trên thế giới.
Trang 38nhiêu/mức độ sâu thế nào thì là các bài toàn thực tế cần giải trong đặc thù các ngành và các doanh nghiệp.” — Anh Phạm Mạnh Lân nhận định.
Cũng theo hai doanh nghiệp này, các doanh nghiệp công nghệ thông tin tại Việt Nam hoàn toàn có thé nghiên cứu, vận hành và phát triển các công nghệ sử dụng Học sâu trong thời gian tới Anh cũng lạc quan cho rằng “Không cần mất đến mười năm, và điều này phụ thuộc vào câu chuyện là chúng ta nắm bắt công cụ để giải quyết các bài toán của xã hội hay bài toán của các doanh nghiệp hay chúng ta nghiên cứu chuyênsâu”.
Sau khi lay phiếu ý kiến doanh nghiệp trực tiếp hoạt động trong lĩnh vực nay, Giám đốc điều hành công ty Cổ phần ASILLA Việt Nam - Anh Nguyễn Thanh Hải cho rằng trong những năm tới, các ứng dụng của Trí tuệ nhân tạo sẽ tiếp tục tiếp cận sâu và rộng rãi trên nhiều lĩnh vực khác nhau trong cuộc sống Anh cũng nhận định những lĩnh vực sẽ đi đầu và sôi động nhất sẽ gồm an ninh giám sát, khi mà giờ đây Trí tuệ nhân tạo có thê quản lý các camera giám sát, hỗ trợ cho lực lượng bảo vệ, công an trong quá trình quản lý cũng như truy bắt tội phạm Bên cạnh đó, Trí tuệ nhân tạo sẽ tham gia vào quá trình tự động hoá trong sản xuất, kiểm tra sản phẩm trong Sản xuất công nghiệp Các công việc như tài chính ngân hàng, số sách kế toán, hậu cần cho doanh nghiệp cũng thể được đảm nhiệm và tiễn hành chúng một cách trơn tru và hiệu quả hơn con người Thậm chí, sang lĩnh vực bán hàng, chăm sóc khách hàng, Trí tuệ nhân tạo cũng có thể làm rất tốt thông qua các phần mềm Chat Box.
Theo kết quả khảo sát lay y kién doanh nghiép, Tri tué nhan tao — cu thé la ap dụng công nghệ Hoc sâu (Deep learning), có thé tạo ra giá tri cho xã hội Trong tương
lai gan, cac san pham, ứng dung cua Tri tuệ nhân tạo sẽ được áp dung nhiều trong
nhiều lĩnh vực, thay thế dần con người trong những hoạt động thủ công có tính lặp đi lặp lại, từ đó tăng năng suất sản xuất, tạo ra nhiều hơn giá trị thặng dư cho xã hội Ngoài ra, sản phẩm của Trí tuệ nhân tạo cũng sẽ đem lại cuộc sống tiện nghi hơn cho con người trong mọi hoạt động đời sống Các doanh nghiệp công nghệ thông tin tại Việt Nam có thể nghiên cứu, vận hành và phát triển các công nghệ sử dụng Học sâu (Deep learning) trong 10 năm tới Công nghệ Học sâu (Deep learning) là một mang công nghệ còn khá mới mẻ trên thế giới, tuy nhiên tiềm năng ứng dụng của nó là rất lớn Hiện tại ở Việt Nam có khá ít các doanh nghiệp công nghệ thông tin thực hiện nghiên cứu và ứng dụng trong mảng này Tuy nhiên, về mặt năng lực, các doanh nghiệp của Việt Nam hoàn toàn có thê tiếp cận, tham gia vào mảng này.
Cũng từ bảng khảo sát ý kiến doanh nghiệp thực tiễn, nhóm tác giả cũng thấy được những van đề nỗi trội liên quan đến Trí tuệ nhân tạo áp dụng công nghệ học sâu như sau:
Trang 39- Vấn đề quyên riêng tư, bảo vệ thông tin cá nhân từ người sử dụng: những dữ liệu cá nhân có thé được sử dụng trong quá trình xây dựng, vận hành sản phẩm Trí tuệ nhân tạo Vi dụ những hình anh, âm thanh mà các camera, sensor ghi lại được ở nơi công cộng về cá nhân nào đó liệu có được phép sử dụng? Những thông tin cá nhân mà người dùng đưa lên mạng xã hội, các đơn vị vận hành mạng xã hội đó có quyền tuỳ ý sử dụng hay không?;
- Vấn đề bản quyền của sản phẩm, dit liệu, giải pháp kỹ thuật đặt ra;
- _ Tính đúng đắn của mô hình tính toán/ mô hình giải thuật sử dụng trong các giải pháp;
- Trach nhiệm các bên liên quan khi sử dụng các giải pháp trí tuệ nhân tao; - Van đề đạo đức khi phát triển các giải pháp trí tuệ nhân tạo;
Thêm vào đó, sau chuyên thăm chính thức Việt Nam vào tháng 3 năm 2017, ông Francis Gurry - Tổng giám đốc Tổ chức Sở hữu Trí tuệ Thế giới (WIPO) đã đưa ra đánh giá về năng lực đôi mới sáng tạo của Việt Nam trong khu vực và trên thé giới hiện nay như sau: “7rong lĩnh vực đổi mới sáng tao, sở hữu trí tuệ thì châu A dang trở thành nguôn cung cấp chính cho hoạt động đổi mới sáng tạo và đổi mới khoa học công nghệ, trong đó Việt Nam đóng một vai tro ngày càng quan trọng Tuy nhiên, công cuộc đổi mới sáng tạo mang tính lâu dài, đòi hỏi phải có chính sách cùng sự tham gia của các thành phần kinh tế Ở Việt Nam, tôi thấy rằng các chính sách trong lĩnh vực bảo vệ sở hữu trí tuệ cũng như đổi mới sảng tạo đã được ban hành Trong tương lai, tôi nghĩ rằng đổi mới sáng tạo sẽ hiện diện khắp nơi, trong mọi hoạt động của nên kinh tế Việt Nam”.
Việt Nam thật sự đã bước vào hành trình chuyên biến của cuộc cách mạng mới cùng các nước khác trên thế giới Thời gian gần đây chúng ta đã nghe và thấy các cụm từ “Cách mang công nghiệp 4.0”, “Kỷ nguyên số hóa”, “Trí tuệ nhân tạo” xuất hiện ở mọi phương tiện thông tin đại chúng Sự phát triển nhanh chóng của Trí tuệ nhân tạo — bước đột phá mới trong quá trình phát triển của loài người Mặc dù tưởng chừng như Trí tuệ nhân tạo là một vẫn đề rất mới nhưng thực ra nó ton tại đã vài thập kỷ, có rất nhiều bài viết viết về chúng nhưng mới đây, khi được áp dụng công nghệ Học sâu (Deep Learning), nó đã thực sự tạo ra được những bước tiễn mới cho con người, có thể thay thế con người trong lao động và sáng tạo ra sản phẩm có tính độc lập hơn hăn so với nguồn dit liệu đầu vào của chúng.
Với nhận xét tình hình thực sự triển vọng của Francis Gurry - Tổng giám đốc Tổ chức Sở hữu Trí tuệ Thế giới (WIPO) và sau khi khảo sát trực tiếp hai công ty có hoạt động trong lĩnh vực Công nghệ thông tin và Trí tuệ nhân tạo thì thấy rằng hiện nay, Việt Nam vẫn chưa thật sự được phát triển hết tiềm năng của Trí tuệ nhân tạo Trí
Trang 40tuệ nhân tạo vẫn còn đang trên quá trình thử nghiệm và phát triển trên mọi lĩnh vực Tại Việt Nam, đối với doanh nghiệp và người dùng, Trí tuệ nhân tạo vẫn còn là một
khái niệm khá mới mẻ và lạ lẫm, tuy nhiên những tiềm năng phát triển mà Trí tuệ nhân
tạo có thê mang lại cho doanh nghiệp là điều di nhiên.
2.2 Thực trạng khung pháp lý hiện hành về xác lập quyền sở hữu trí tuệ đối với sản phẩm tạo ra bởi Trí tuệ nhân tạo áp dụng công nghệ Học sâu (Deep Learning)
2.2.1 Khái quát pháp luật Việt Nam hiện hành về quyền sở hữu trí tuệ
Quyên sở hữu trí tuệ có thé được hiểu theo nghĩa khách quan, nghĩa chủ quan và được coi là một quan hệ pháp luật.°°
Theo nghĩa khách quan, quyền sở hữu trí tuệ là tổng hợp các quy phạm pháp luật điều chỉnh các quan hệ xã hội phát sinh trong quá trình sáng tạo, sử dụng, định đoạt và bảo vệ tài sản trí tuệ Theo nghĩa này, quyền sở hữu trí tuệ là pháp luật sở hữu trí tuệ được tạo thành bởi tập hợp các quy phạm pháp luật.
Theo nghĩa chủ quan, quyền sở hữu trí tuệ là những quyền cụ thể của cá nhân, tổ chức là tác giả, chủ sở hữu quyền sở hữu trí tuệ Cụ thé: (i) các quyền nhân thân của tác giả là tác pham van hoc, nghé thuat, khoa hoc; tac gia sang ché, kiéu dang cong nghiệp, thiết kế bố trí mach tích hợp ban dan; tác giả giống cây trồng, (ii) quyền tai sản của chủ sở hữu quyền tác giả, chủ sở hữu công nghiệp, chủ sở hữu giống cây trồng Về nguyên tắc, những quyền nhân thân được bảo hộ vô thời hạn và không thể chuyền giao cho chủ thé khác (trừ những quyền nhân thân gắn với quyền tài sản), và các quyền tai sản có thê chuyên giao va tri giá được băng tiên.
Theo nghĩa là một quan hệ pháp luật: quan hệ pháp luật sở hữu trí tuệ là những quan hệ xã hội giữa các chủ thể của quyền sở hữu trí tuệ với nhau hoặc giữa những chủ thể của quyền sở hữu trí tuệ với các chủ thể khác được quy phạm pháp luật sở hữu trí tuệ điều chỉnh Với ý nghĩa là một quan hệ pháp luật, quyền sở hữu trí tuệ được tạo thành bởi ba yếu tố là chủ thé, khách thé, nội dung.
Theo tổ chức Sở hữu trí tuệ thế giới (WIPO) thì “quyên sở hữu trí tuệ bao gom các quyên liên quan tới các tác phẩm khoa học, nghệ thuật và văn học; chương trình biếu diễn của các nghệ sĩ, các bản ghi âm và chương trình phát thanh, truyền hình, sáng chế trong tất cả các lĩnh vực hoạt động của con người; các phát mình khoa học; các kiểu dáng công nghiệp; các nhãn hiệu hàng hóa, nhãn hiệu dịch vụ, các chỉ dẫn và tên thương mai; bảo hộ chỗng cạnh tranh không lành mạnh và tất cả các quyên khác
33 TS Lê Dinh Nghị - TS Vũ Thi Hải Yến, Giáo trình Luật Sở hữu tri tuệ, Nxb Giao dục Việt Nam, trang 10.