1. Trang chủ
  2. » Giáo Dục - Đào Tạo

TIỂU LUẬN PHÂN TÍCH TỶ LỆ THẤT NGHIỆP TẠI VIỆT NAM 2020 - 2023

20 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Phân tích tỷ lệ thất nghiệp tại Việt Nam 2020 - 2023
Tác giả Nguyễn Diễm Quỳnh
Người hướng dẫn Th.S Trần Mạnh Tường
Trường học Trường Đại học Tài chính – Marketing
Chuyên ngành Ngôn ngữ lập trình và phân tích dữ liệu
Thể loại Tiểu luận
Năm xuất bản 2024
Thành phố TP. Hồ Chí Minh
Định dạng
Số trang 20
Dung lượng 157,52 KB

Nội dung

Nhận nhiệm vụ của thầy, thông qua bài tiểu luận này em xin trình bày những gì mà em đã tìm hiểu về môn học, và cụ thể hơn ở đây em lựa chọn đề tài “Phân tích tỷ lệ thất nghiệp ở nước ta

Trang 1

BỘ TÀI CHÍNH TRƯỜNG ĐẠI HỌC TÀI CHÍNH – MARKETING

- -TIỂU LUẬN PHÂN TÍCH TỶ LỆ THẤT NGHIỆP TẠI VIỆT NAM

2020 - 2023 Ngôn ngữ lập trình và phân tích dữ liệu

Giảng viên hướng dẫn: Th.S Trần Mạnh Tường Sinh viên thực hiện: Nguyễn Diễm Quỳnh

MSSV: 2221004276

TP Hồ Chí Minh ngày 25 tháng 03 năm 2024

Trang 2

PHÂN TÍCH TỶ LỆ THẤT NGHIỆP Ở NƯỚC TA NĂM 2020 - 2023

 I FILE DATA

 II Lời cảm ơn

 III Phần mở đầu

 IV Phân tích tỷ lệ thất nghiệp

 V Kết luận

 VI Tài liệu tham khảo

TIỂU LUẬN

Nguyễn Diễm Quỳnh

19:31:56, 24 - 03 - 2024

PHÂN TÍCH TỶ LỆ THẤT NGHIỆP Ở NƯỚC TA NĂM 2020 - 2023

I FILE DATA

https://drive.google.com/drive/folders/1sTGmJMWRHtVi3nGEAui2uSUu2WznCnKF

II Lời cảm ơn

Lời đầu tiên, em xin gửi lời cảm ơn chân thành nhất đến Giảng viên – ThS.Trần Mạnh Tường Trong quá trình học tập và tìm hiểu bộ môn “Ngôn ngữ lập trình và phân tích dữ liệu”, em đã nhận được sự quan tâm giúp đỡ, hướng dẫn rất tận tình, tâm huyết của thầy Thầy đã giúp em tích lũy thêm nhiều kiến thức để có cái nhìn sâu sắc và hoàn thiện hơn về bộ môn này Từ những kiến thức mà thầy truyền tải, chúng em đã dần hiểu được tầm quan trọng của ngôn ngữ lập trình R này mà bấy lâu nay còn nhiều thắc mắc và chưa rõ Nhận nhiệm vụ của thầy, thông qua bài tiểu luận này em xin trình bày những gì mà em đã tìm hiểu về môn học, và cụ thể hơn ở đây em lựa chọn đề tài “Phân tích tỷ lệ thất nghiệp ở nước ta năm 2020 đến 2023”

Có lẽ kiến thức là vô hạn mà sự tiếp nhận kiến thức của bản thân mỗi người luôn tồn tại những hạn chế nhất định Do đó, trong quá trình hoàn thành bài tiểu luận, chắc chắn em không tránh khỏi những thiếu sót Vì vậy, em rất mong nhận được những đóng góp đến từ thầy để bài tiểu luận của nhóm được hoàn thiện hơn

Trang 3

Kính chúc thầy sức khỏe, hạnh phúc và thành công trên con đường sự nghiệp giảng dạy của mình

III Phần mở đầu

Dân số Việt Nam có những biến đổi nhân khẩu học mạnh mẽ với một số đặc trưng nổi bật: Dân số đang trong thời kỳ cơ cấu dân số vàng, xu hướng già hóa dân số vẫn đang diễn ra nhanh chóng; tốc độ đô thị hóa cao; mức sinh giảm xuống thấp nhất trong giai đoạn 2020-2023; các chương trình chăm sóc sức khoẻ bà mẹ và trẻ

em nói riêng và công tác bảo vệ sức khoẻ, nâng cao mức sống cho nhân dân nói chung đạt được những thành công nhất định, tỷ lệ tử vong ở Việt Nam tiếp tục duy trì ở mức thấp, tuổi thọ trung bình cao trong nhiều năm trở lại đây

3.1 Lí do chọn đề tài

a) Tầm quan trọng:

khỏe của nền kinh tế

phòng Phân tích tỷ lệ thất nghiệp giúp đánh giá hiệu quả của các chính sách kinh tế và xã hội

b) Tính thực tiễn:

pháp giảm thiểu thất nghiệp

của người dân

c) Tính thời sự:

hoạch định chính sách, doanh nghiệp và người lao động

d) Tính khoa học:

nhau

Trang 4

 Việc sử dụng các phương pháp khoa học giúp đảm bảo tính chính xác và khách quan của kết quả phân tích

e) Khả năng áp dụng:

thực tế

động, tư vấn cho doanh nghiệp về chiến lược tuyển dụng, v.v

3.2 Mục tiêu nghiên cứu

kinh tế, xã hội, nhân khẩu học, v.v

nghiệp

pháp về phát triển kinh tế, giáo dục đào tạo, an sinh xã hội,

3.3 Phạm vi nghiên cứu

a) Khung thời gian

b) Phạm vi địa lý:

c) Đối tượng nghiên cứu:

Trang 5

o Người lao động ở khu vực nông thôn

d) Nội dung nghiên cứu:

IV Phân tích tỷ lệ thất nghiệp

4.1 Giới thiệu tổng quan

a) Khái niệm

Tỷ lệ thất nghiệp là tỷ số phần trăm giữa số người thất nghiệp và lực lượng lao động trong một quốc gia, khu vực hoặc nhóm dân số cụ thể

b) Nội dung

Diễn biến:

2023 có xu hướng giảm

dịch Covid-19

Covid-19 tiếp tục diễn ra

tế và các giải pháp hỗ trợ của Chính phủ

mức trước đại dịch.

Điểm tích cực:

Tỷ lệ thất nghiệp giảm cho thấy sự phục hồi của nền kinh tế sau đại dịch Covid-19 Các giải pháp của Chính phủ như hỗ trợ đào tạo, dạy nghề, tạo việc làm đã phát huy hiệu quả

Hạn chế:

Trang 6

 Tỷ lệ thất nghiệp vẫn ở mức cao so với các nước trong khu vực Nhóm lao động trẻ (15-24 tuổi) có tỷ lệ thất nghiệp cao hơn so với nhóm lao động độ tuổi khác

Hide

# Tạo dataframe từ vectơ chứa dữ liệu

data <-data.frame(Năm =c( "2020" , "2021" , "2022" , "2023" ),

` Số người thất nghiệp ` =c( 1270.7 , 1488.5 , 1100.2 , 1083.7 ))

Lực lượng lao động

Hide

head(data)

Giới thiệu về bộ dữ liệu

Hide

library(xlsx)

## Warning: package 'xlsx' was built under R version 4.3.3

Hide

dq <-read.xlsx(file.choose(), sheetIndex = 1 header = T)

Hide

is.data.frame(dq)

## [1] TRUE

Trang 7

 Kiểm tra xem “dq” có phải là data frame hay không, nếu đúng thì TRUE và ngược lại

Hide

length(dq)

## [1] 29

cho ra kết quả độ dài, ở đây là số cột của “dq”: 29 cột

Hide

names(dq)

## [1] "NA." "Quý.I năm.2020" "Quý.II năm.2020"

## [4] "X6.tháng.năm.2020" "Quý.III năm.2020" "X9.tháng.năm.2020"

## [7] "Quý.IV.năm.2020" "Năm.2020" "Quý.I năm.2021"

## [10] "Quý.II năm.2021" "X6.tháng.năm.2021" "Quý.III năm.2021"

## [13] "X9.tháng.năm.2021" "Quý.IV.năm.2021" "Năm.2021"

## [16] "Quý.I năm.2022" "Quý.II năm.2022" "X6.tháng.năm.2022"

## [19] "Quý.III năm.2022" "X9.tháng.năm.2022" "Quý.IV.năm.2022"

## [22] "Năm.2022" "Quý.I năm.2023" "Quý.II năm.2023"

## [25] "X6.tháng.năm.2023" "Quý.III năm.2023" "X9.tháng.năm.2023"

## [28] "Quý.IV.năm.2023" "Năm.2023"

Hide

dim(dq)

## [1] 91 29

Xác định các thông tin của dq

Thực hiện thống kê mô tả datasets này ta được kết quả như sau, ý nghĩa các cột:

Data summary

Trang 8

Number of rows 91

_

Column type frequency:

Hide

library(skimr)

skim(dq)

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace

Trang 9

skim_variable n_missing complete_rate min max empty n_unique whitespace

Trang 10

skim_variable n_missing complete_rate min max empty n_unique whitespace

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist

Quý.III năm.2023 25 0.73 9703.71 14541.12 1.83 7.45 435.45 19459.93 52416.10 ▇▁▂

▁▁

X9.tháng.năm.2023 25 0.73 9687.38 14509.86 1.60 7.23 428.95 19378.57 52318.70 ▇▁▂

▁▁

Quý.IV.năm.2023 25 0.73 9728.20 14583.40 1.61 7.41 431.43 19509.57 52529.61 ▇▁▂

▁▁

Năm.2023 25 0.73 9697.60 14528.15 1.61 7.27 429.55 19411.36 52371.39 ▇▁▂

▁▁

4.2 Số người thất nghiệp trong độ tuổi lao động

a) Biểu đồ cột

Hide

# Load required library

library(ggplot2) Hide

Trang 11

# Tạo dataframe từ vectơ chứa dữ liệu

data <-data.frame( Nam =c( "2020" , "2021" , "2022" , "2023" ),

So_nguoi_that_nghiep =c( 1270.7 , 1488.5 , 1100.2 , 1083.7 ),

So_nguoi_that_nghiep_trong_do_tuoi_lao_dong =c( 1233.2 , 1428.5 , 1079.9 , 1065.3 ))

Hide

# Tăng kích thước biểu đồ

options( repr.plot.width = 20 , repr.plot.height = 10 )

Hide

ggplot(data, aes( x = Nam)) +

geom_col(aes( y = So_nguoi_that_nghiep), fill = "skyblue" , alpha = 0.7 , position =position_dodge( width

= 5 )) +

geom_line(aes( y = So_nguoi_that_nghiep_trong_do_tuoi_lao_dong, group = 1 color = "Số người thất nghiệp trong độ tuổi lao động" ), size = 1.5 )

geom_point(aes( y = So_nguoi_that_nghiep_trong_do_tuoi_lao_dong, color = "Số người thất nghiệp trong độ tuổi lao động" ), size = 3 )

labs( title = "Số người thất nghiệp theo năm và độ tuổi lao động" ,

x = "Năm" ,

y = "Nghìn người" ,

color = "Chú thích" )

theme_minimal() +

scale_color_manual( values =c( "Số người thất nghiệp trong độ tuổi lao động" = "orange" )) +

guides( color =guide_legend( title = "Loại số liệu" )) +

theme( text =element_text( size= 20 ))

## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.

## Please use `linewidth` instead ℹ Please use `linewidth` instead.

## This warning is displayed once every 8 hours.

## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was

## generated.

Trang 12

Nhận xét - Thông qua biểu đồ ta nhìn thấy được số người thất nghiệp qua từng

năm từ 2020 - 2023, những người này đều trong độ tuổi lao động

người

là tương đối bằng nhau

độ tuổi lao động, giảm 14,6 nghìn người so với năm trước Tỷ lệ thất nghiệp trong độ tuổi lao động năm 2023 là 2,28%, giảm 0,06 điểm phần trăm so với năm trước

b) Tỷ lệ phần trăm

Hide

# Load required library

library(ggplot2)

Hide

Trang 13

# Tạo dataframe từ vectơ chứa dữ liệu

data <-data.frame( Nam =c( "2020" , "2021" , "2022" , "2023" ),

So_nguoi_that_nghiep =c( 1270.7 , 1488.5 , 1100.2 , 1083.7 ),

So_thanh_nien_tu_15_den_24_tuoi =c( 444.5 , 435.4 , 406.1 , 437.3 ))

Phương pháp tính toán:

Tỷ lệ thất nghiệp = (Số người thất nghiệp / Lực lượng lao động) x 100%

Hide

# Tạo biến lưu trữ tổng số người thất nghiệp

tong_so_nguoi_that_nghiep <- 33946.27

# Tạo biến lưu trữ tổng số thanh niên thất nghiệp

tong_thanh_nien_that_nghiep <- 11891.42

# Tính tỷ lệ phần trăm

ty_le_phan_tram <- (tong_thanh_nien_that_nghiep / tong_so_nguoi_that_nghiep) *100

# In kết quả

print(paste( "Tỷ lệ phần trăm thanh niên thất nghiệp:" , ty_le_phan_tram, "%" ))

## [1] "Tỷ lệ phần trăm thanh niên thất nghiệp: 35.0301226025717 %"

Nhận xét

rằng hơn 1/3 thanh niên trong độ tuổi lao động không có việc làm

Tác động:

xã hội, gia tăng tội phạm, và ảnh hưởng đến sức khỏe tinh thần của thanh niên

giảm năng suất lao động và thu hẹp thị trường tiêu dùng

Nguyên nhân:

thiếu kỹ năng, thiếu kinh nghiệm, và sự cạnh tranh cao trong thị trường lao động

Do nhiều doanh nghiệp phải đóng cửa hoặc thu hẹp quy mô hoạt động

Giải pháp:

Trang 14

 Cần có nhiều giải pháp để giảm tỷ lệ thất nghiệp thanh niên: Ví dụ như cải thiện hệ thống giáo dục và đào tạo, tạo ra nhiều việc làm hơn, và hỗ trợ khởi nghiệp cho thanh niên

c) Biểu đồ tròn

Hide

# Tạo biểu đồ tròn

pie_data <-c(ty_le_phan_tram, 100- ty_le_phan_tram)

names(pie_data) <-c( "Thanh niên thất nghiệp" , "Người khác" )

Hide

# Vẽ biểu đồ tròn

pie(pie_data, main = "Tỷ lệ phần trăm thanh niên thất nghiệp từ 15 đến 24 tuổi\ntrong tổng số người thất nghiệp trong 4 năm" , labels =c(sprintf( "%.1f%%" , ty_le_phan_tram), sprintf( "%.1f%%" , 100

-ty_le_phan_tram)))

legend( "topright" , legend =c( "Thanh niên thất nghiệp" , "Người khác" ), fill =c( "lightblue" , "lightgreen" ))

Nhận xét

Trang 15

Ta có thể thấy rằng số thanh niên thất nghiệp trong độ tuổi từ 15-24 là rất lớn chiếm tới 35% Điều này là một tín hiệu vô cùng xấu đối với cơ cấu lao động của đất nước Đây là độ tuổi lao động chính, tạo ra nhiều của cải vật chất nhưng điều đáng tiếc là đất nước chúng ta vẫn chưa thế tạo ra những cơ hội để tận dụng lực lượng này

4.3 Tỷ lệ thất nghiệp theo giới tính và theo vị trí

a) Tỷ lệ thất nghiệp nam và nữ 2020-2023

Hide

# Import gói ggplot2

library(ggplot2)

Hide

# Dữ liệu

nam_thanh_thi <-c( 3.82 , 4.33 , 2.82 , 2.73 )

nu_thanh_thi <-c( 2.04 , 2.50 , 2.04 , 2.00 )

nam_nong_thon <-c( 2.19 , 3.15 , 2.36 , 2.31 )

nu_nong_thon <-c( 3.27 , 3.26 , 2.32 , 2.24 )

years <-c( 2020 , 2021 , 2022 , 2023 )

Hide

# Tạo dataframe từ dữ liệu

data <-data.frame(

nam_thanh_thi = nam_thanh_thi,

nu_thanh_thi = nu_thanh_thi,

nam_nong_thon = nam_nong_thon,

nu_nong_thon = nu_nong_thon,

years = years

)

Hide

# Tăng kích thước biểu đồ

options( repr.plot.width = 10 , repr.plot.height = 10 )

# Biểu đồ 1: Nam và Nữ

ggplot(data, aes( x = nam_thanh_thi, y = nu_thanh_thi)) +

geom_point(aes( color = "Thành thị" ), size = 3 )

geom_point(aes( x = nam_nong_thon, y = nu_nong_thon, color = "Nông thôn" ), size = 3 )

geom_smooth( method = "lm" , se = FALSE , color = "black" )

labs( title = "Tỉ lệ thất nghiệp nam và nữ" ,

x = "Nam" ,

y = "Nữ" ,

color = "Loại" ) # Đặt tên cho chú thích

theme_minimal() +

Trang 16

theme( text =element_text( size = 12 )) + # Tăng cỡ chữ

scale_color_manual( values =c( "blue" , "red" ), labels =c( "Thành thị" , "Nông thôn" )) # Đặt nhãn cho chú thích

## `geom_smooth()` using formula = 'y ~ x'

Nhận xét:

2020-2023

đoạn này

Nguyên nhân:

hưởng nặng nề bởi dịch COVID-19 như du lịch, dịch vụ, sản xuất

bởi dịch COVID-19 như y tế, giáo dục, hành chính

Trang 17

 Chăm sóc gia đình: Nữ giới thường gánh vác trách nhiệm chăm sóc gia đình nhiều hơn nam giới, nên có thể ưu tiên các công việc có thời gian linh hoạt hơn

b) Tỷ lệ thất nghiệp ở thành thị và nông thôn 2020-2023

Hide

# Biểu đồ 2: Thành thị và Nông thôn

ggplot(data, aes( x = nam_thanh_thi, y = nam_nong_thon)) +

geom_point(aes( color = "Nam" ), size = 3 )

geom_point(aes( x = nu_thanh_thi, y = nu_nong_thon, color = "Nữ" ), size = 3 )

geom_smooth( method = "lm" , se = FALSE , color = "black" )

labs( title = "Tỉ lệ thất nghiệp thành thị và nông thôn" ,

x = "Thành thị" ,

y = "Nông thôn" ,

color = "Loại" ) # Đặt tên cho chú thích

theme_minimal() +

theme( text =element_text( size = 12 )) + # Tăng cỡ chữ

scale_color_manual( values =c( "blue" , "red" ), labels =c( "Nam" , "Nữ" )) # Đặt nhãn cho chú thích

## `geom_smooth()` using formula = 'y ~ x'

Trang 18

=> Tỷ lệ thất nghiệp ở Việt Nam có xu hướng giảm trong giai đoạn 2020-2023, tuy nhiên tỷ lệ thất nghiệp ở thành thị cao hơn và khoảng cách tỷ lệ thất nghiệp giữa nam và nữ ở thành thị lớn hơn so với ở nông thôn Cần có các giải pháp hỗ trợ việc làm cho cả nam và nữ ở thành thị, đặc biệt là nam giới trong các ngành bị ảnh hưởng bởi dịch COVID-19

Kết luận

hơn nam qua mọi năm, điều này cũng dễ hiểu khi lực lượng lao động là nam chiếm ưu thế bởi sức khỏe, các chế độ như thai sản,… luôn ít hơn so với nữ

tình hình kinh tế và chính trị như đại dịch, suy thoái, nên tỷ lệ này luôn bất

ổn định theo tình hình đó Những người ở khu vực nông thôn ít ảnh hưởng bởi yếu tố kể trên và họ cũng có thể có đa dạng công việc hơn

V Kết luận

5.1 Kết quả

giảm nhẹ trong năm 2022 và 2023 (6 tháng đầu năm)

trình độ học vấn thấp và ở các ngành nghề bị ảnh hưởng bởi dịch COVID-19

5.2 Nguyên nhân

doanh nghiệp phải thu hẹp hoạt động, cắt giảm nhân sự

lao động có kỹ năng cao hơn

Trang 19

5.3 Giải pháp

a) Giải pháp về phía Chính phủ:

b) Giải pháp về phía doanh nghiệp:

c) Giải pháp về phía người lao động:

5.4 Kết luận

thất nghiệp và tạo ra nhiều việc làm hơn cho người lao động

trường lao động một cách nghiêm trọng Nhiều doanh nghiệp phải đóng cửa hoặc thu hẹp hoạt động, dẫn đến việc cắt giảm nhân sự Điều này khiến cho

tỷ lệ thất nghiệp tăng cao

nông nghiệp sang công nghiệp và dịch vụ Điều này đòi hỏi lao động phải có

Trang 20

kỹ năng cao hơn để đáp ứng nhu cầu của thị trường lao động Nhu cầu lao động không đồng đều: Nhu cầu lao động giữa các ngành nghề và khu vực không đồng đều Một số ngành nghề thiếu lao động trong khi một số ngành nghề khác lại có dư thừa lao động

duy trì hoạt động, tạo việc làm cho người lao động

cầu thị trường

việc làm phù hợp

VI Tài liệu tham khảo

Ngày đăng: 29/03/2024, 19:19

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w