Microsoft PowerPoint Chapter 2 PLANAR KINEMATIC ANALYSIS 15/9/2021 1 15 Sep 21 Mechanisms and Machine Components Design CHAPTER 2 KINEMATIC ANALYSIS OF PLANAR MECHANISMS 1 DEPARTMENT OF EDUCATION AND[.]
Trang 1Mechanisms and Machine Components
Design
CHAPTER 2: KINEMATIC ANALYSIS OF
PLANAR MECHANISMS
DEPARTMENT OF EDUCATION AND TRAINING
HOCHIMINH CITY UNIVERSITY OF TECHNOLOGY
AND EDUCATION
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com
Theoretical contents
I Position Analysis
II Velocity Analysis
III Acceleration Analysis
2
15-Sep-21
Trang 2TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com
II Links rotate around point O ( Hình 1)
• Velocity vector : 𝑉 = 𝜔 𝑙
Value : 𝑉 = 𝜔 𝑙
Direction: ┴ OA and aligned with 𝜔
• Acceleration : 𝑎 = 𝑎 + 𝑎
Normal Acc : 𝑎 = 𝜔 𝑙 = : Hướng từ A → O
Tangent Acc : 𝑎 = 𝜀 𝑙 : ┴ OA and aligned with 𝜀̅
15-Sep-21
I Link translating motion (tịnh tiến):
• Velocity of all point are the same
• Tangent with trajectory
• Acceleration Vectors are collinear
Kinematic theory
Hình 1
ω A
A
O
A O
V
A
𝑎 𝑎
𝜀
B
4
III Planar kinematics (song phẳng): ( Hình 2)
• Velocity : 𝑉 = 𝑉 + 𝑉
• Acceleration : 𝑎 = 𝑎 + 𝑎 + 𝑎
Fig 2
IV Coincident A ( A1& A2≡ A ) ( Hình 3)
Khâu 1 quay quanh trục cố định hoặc chuyển
động song phẳng với vận tốc 𝜔
• Velocity : 𝑉 = 𝑉 + 𝑉
• Acceleration : 𝑎 = 𝑎 + 𝑎 + 𝑎
where,
Relative Acc 𝑎 : // sliding direction Link 1&2
Coriolix Acc 𝑎 = 𝜔 ˄𝑉 : Phương chiều của
𝑉 đã quay 90° theo chiều 𝜔
A
B
B A
V
A
V
ωA
B
V
𝑎
𝑎
𝑎 𝑎 Kinematic theory
1
A
Trang 3TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 15-Sep-21 15-Sep-21
1.1 Position analysis of mechanism
15-Sep-21
- As shown in the given mechanism, determine the tracking of points and links
belong to mechanism
Ex: determine the tracking point C if link AB rotates 1 revolution
I Position Analysis
e
A
B
C
2
3
B8
B1
B2
B3
B4
B5
B6
B7
C1
C3
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com
e
A
B
C
2
3
B8
B1
B2
B3
B4
B5
B6
B7
C8
C1
C7
C2
C4 C5
15-Sep-21
6
15-Sep-21
1.2 Example
I Position Analysis
Trang 4TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com
EX2: Determine the trajectory of point B,C and swing angle γ α of link C if
link AB rotates 1 revolution
AB
BC CD AD
0,5m
0,8m
B1
B2
B3
B4
B5
B6
B7
D
C
3 1
2
4
B
C1
C3
1.2 Example
I Position Analysis
8
B 1
B 2
B 3
B 4
D
C
3 1
2
4
B
γ α
C 1
C 8
C 2
C 3
C 4
C 5
C 6
C 7
1.2 Example
I Position Analysis
Trang 5TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 15-Sep-21 15-Sep-21
VD: Given mechanism ABCD
𝑙 = 𝑙 = 0,5𝑚; ω1= 10 rad/s
a) Draw diagram
b) Determine 𝑉 , ω2, ω3
Solve:
𝑉 = ω1.𝑙 =5m/s
2.2 Example
II Velocity Analysis
𝑉
𝑉 𝑉
A
B
C
D
ω1
300
1
2
3
4
ω2
ω3
A
D
ω1
300
1
2
3
4
B and C belong to link 2
𝑉 = 𝑉 +𝑉 (1)
C and D belong to link 3
𝑉 = 𝑉 +𝑉 (2)
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com
P
c
┴ CD
300 b
15-Sep-21
10
15-Sep-21
V B
V CB BC
V CD
II Velocity Analysis
2.2 Example
* Draw diagram tutorial
• Set 1 point P ( Coordinate)
• S𝑒𝑡 𝑠𝑐𝑎𝑙𝑒 𝑉 µ =
Velocity diagram
• From (1) draw Pb =
µ and draw bx┴ BC
• From (2) draw Pd =
µ =0=>d≡P draw Py ┴CD Then, bx& Py cut at point c
Trang 6TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 15-Sep-21 15-Sep-21
Velocity diagram
2.2 Example
II Velocity Analysis
0 2
2
3 cos 30 10 ( / )
2 0.5
10 3( / )
CB
CB
CB
m
V
rad s
3
3
10( / )
10(rad/ s)
CD CD C
CD AD
CD
CD
m V
• Từ họa đồ ta có:
Pc = 2 Pb ⟺ V c =2V b =10m/s
𝑉
𝑉
P
c
300
b
𝑉
12
1
10
AB BC CD
rad
s
a) Draw velocity diagram
b) Determine 𝑉 , ω2, ω3
4
3
2
ω1
A
D
B
1
2
3
300
Exercise 2:
1
2
, ?
AB
c
rad
V
C B CB
V V V
Exercise 1:
2.2 Example
II Velocity Analysis
Trang 7TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com
A
D
ω1
300
1
2
3
4
3
1 10
0,5
AB BC
rad const
s
m
a) Draw Acceleration Diagram
b) a c, 2, 3 ?
t
n
2
B BA t BA 1 AB
BA
ω =const=>ε =0 a =ε l =0;
B & C belong to Link 2
n t
C B CB CB
C D CD CD
a =a +a +a (2)
2
3
ω =10 3 (rad / s)
ω =10 (rad / s)
n 2
2
B BA 1 AB
n 2
2
CB 2 CB
m
s m
a =ω l =150
s
2 D
n 2
2
CD 3 CD
m
s
m
s
𝑎 𝑎
𝑎
𝑎 𝑎
III Acceleration Analysis
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com
π
300
600
14
Draw Acceleration Diagram
• π : gốc (cực)
b
a
a
BC
CB
CD t t
t
(1) a = a +a +a
(2) a = a +a +a
CB t
a
CD
a a / cos 60 437.2m / s
CB
a a tan 60 410m / s
a a a
𝑎
𝑎
𝑎 𝑎
𝑎
𝑎
CD
III Acceleration Analysis
Trang 8TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com
// AC
┴BC
P
ω1
A
B
C
1
2
3
300
4
ω2
C 2
C 2
rad 0,6m; 10 s
a)v , ?
b)a , ?
B 1 AB m
V 6 s
Solution
* C3& C4≡ C (Link 3 sliding in Link 4 )
C3 C4 C3C4
V V V (2)
c b
m
C B CB
V V V (1)
* B & C belong to Link 2
1 Velocity
𝑉 𝑉
𝑉
b
c
III Acceleration Analysis
// AC
π
300
ω1
A
B
C
1
2
3
300
4
16
n t
C B CB CB
a a a a
* C3& C4≡ C (Link 3 is sliding in Link 4 )
(khâu 3 trượt trên khâu 4 cố định)
t
C C3 C4 C3C4
a a a a
t CB a
* B & C belong to Link 2
1
n 2
B BA 1 AB
const
n 2
CB 2 BC t
CB
2 Acceleration
𝑎
𝑎 𝑎
𝑎
b
c
c B
3
a a tan 30 60 m / s
2
III Acceleration Analysis EX2:
Trang 9TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 15-Sep-21 15-Sep-21
ω1
A
C
1
4 B
2
vB
1
C 2
C 2
rad
3
C B CB
C C3 C4 C3C4
C
CB 2 BC B
2
m
v 50.0,4 20 s
rad
Solve:
p
C
//AC b
3.2 Example
III Acceleration Analysis
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 15-Sep-21
18
15-Sep-21
Exercise 3:
t
BA 1 AB
n BA
B BA t
BA
n 2
2
BA 1 AB
a
m
s
* B and C belong link 2
n t
C B CB CB
n 2
2
CB 2 BC
m
s
3 4
C 3 C4 C3C4
2 C
t
3 2 BC
2
m
s
0
b C
┴BC
3.2 Example
III Acceleration Analysis
Trang 10TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 15-Sep-21