1. Trang chủ
  2. » Luận Văn - Báo Cáo

Chapter 2 Planar Kinematic Analysis.pdf

10 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Kinematic Analysis Of Planar Mechanisms
Tác giả TS. Phan Cụng Bỡnh
Trường học Hochiminh City University Of Technology And Education
Chuyên ngành Mechanisms And Machine Components Design
Thể loại thesis
Năm xuất bản 2021
Thành phố Hochiminh City
Định dạng
Số trang 10
Dung lượng 1,99 MB

Nội dung

Microsoft PowerPoint Chapter 2 PLANAR KINEMATIC ANALYSIS 15/9/2021 1 15 Sep 21 Mechanisms and Machine Components Design CHAPTER 2 KINEMATIC ANALYSIS OF PLANAR MECHANISMS 1 DEPARTMENT OF EDUCATION AND[.]

Trang 1

Mechanisms and Machine Components

Design

CHAPTER 2: KINEMATIC ANALYSIS OF

PLANAR MECHANISMS

DEPARTMENT OF EDUCATION AND TRAINING

HOCHIMINH CITY UNIVERSITY OF TECHNOLOGY

AND EDUCATION

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com

Theoretical contents

I Position Analysis

II Velocity Analysis

III Acceleration Analysis

2

15-Sep-21

Trang 2

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com

II Links rotate around point O ( Hình 1)

• Velocity vector : 𝑉 = 𝜔 𝑙

Value : 𝑉 = 𝜔 𝑙

Direction: ┴ OA and aligned with 𝜔

• Acceleration : 𝑎 = 𝑎 + 𝑎

Normal Acc : 𝑎 = 𝜔 𝑙 = : Hướng từ A → O

Tangent Acc : 𝑎 = 𝜀 𝑙 : ┴ OA and aligned with 𝜀̅

15-Sep-21

I Link translating motion (tịnh tiến):

• Velocity of all point are the same

• Tangent with trajectory

• Acceleration Vectors are collinear

Kinematic theory

Hình 1

ω A

A

O

A O

V 

A

𝑎 𝑎

𝜀

B

4

III Planar kinematics (song phẳng): ( Hình 2)

• Velocity : 𝑉 = 𝑉 + 𝑉

• Acceleration : 𝑎 = 𝑎 + 𝑎 + 𝑎

Fig 2

IV Coincident A ( A1& A2≡ A ) ( Hình 3)

 Khâu 1 quay quanh trục cố định hoặc chuyển

động song phẳng với vận tốc 𝜔

• Velocity : 𝑉 = 𝑉 + 𝑉

• Acceleration : 𝑎 = 𝑎 + 𝑎 + 𝑎

where,

Relative Acc 𝑎 : // sliding direction Link 1&2

Coriolix Acc 𝑎 = 𝜔 ˄𝑉 : Phương chiều của

𝑉 đã quay 90° theo chiều 𝜔

A

B

B A

V

A

V 

ωA

B

V 

𝑎

𝑎

𝑎 𝑎 Kinematic theory

1

A

Trang 3

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 15-Sep-21 15-Sep-21

1.1 Position analysis of mechanism

15-Sep-21

- As shown in the given mechanism, determine the tracking of points and links

belong to mechanism

Ex: determine the tracking point C if link AB rotates 1 revolution

I Position Analysis

e

A

B

C

2

3

B8

B1

B2

B3

B4

B5

B6

B7

C1

C3

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com

e

A

B

C

2

3

B8

B1

B2

B3

B4

B5

B6

B7

C8

C1

C7

C2

C4 C5

15-Sep-21

6

15-Sep-21

1.2 Example

I Position Analysis

Trang 4

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com

EX2: Determine the trajectory of point B,C and swing angle γ α of link C if

link AB rotates 1 revolution

AB

BC CD AD

0,5m

0,8m

  

B1

B2

B3

B4

B5

B6

B7

D

C

3 1

2

4

B

C1

C3

1.2 Example

I Position Analysis

8

B 1

B 2

B 3

B 4

D

C

3 1

2

4

B

γ α

C 1

C 8

C 2

C 3

C 4

C 5

C 6

C 7

1.2 Example

I Position Analysis

Trang 5

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 15-Sep-21 15-Sep-21

VD: Given mechanism ABCD

𝑙 = 𝑙 = 0,5𝑚; ω1= 10 rad/s

a) Draw diagram

b) Determine 𝑉 , ω2, ω3

Solve:

𝑉 = ω1.𝑙 =5m/s

2.2 Example

II Velocity Analysis

𝑉

𝑉 𝑉

A

B

C

D

ω1

300

1

2

3

4

ω2

ω3

A

D

ω1

300

1

2

3

4

B and C belong to link 2

𝑉 = 𝑉 +𝑉 (1)

C and D belong to link 3

𝑉 = 𝑉 +𝑉 (2)

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com

P

c

┴ CD

300 b

15-Sep-21

10

15-Sep-21

V  B

V  CB  BC

V  CD

II Velocity Analysis

2.2 Example

* Draw diagram tutorial

• Set 1 point P ( Coordinate)

• S𝑒𝑡 𝑠𝑐𝑎𝑙𝑒 𝑉 µ =

Velocity diagram

• From (1) draw Pb =

µ and draw bx┴ BC

• From (2) draw Pd =

µ =0=>d≡P draw Py ┴CD Then, bx& Py cut at point c

Trang 6

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 15-Sep-21 15-Sep-21

Velocity diagram

2.2 Example

II Velocity Analysis

0 2

2

3 cos 30 10 ( / )

2 0.5

10 3( / )

CB

CB

CB

m

V

rad s

  

3

3

10( / )

10(rad/ s)

CD CD C

CD AD

CD

CD

m V

• Từ họa đồ ta có:

Pc = 2 Pb ⟺ V c =2V b =10m/s

𝑉

𝑉

P

c

300

b

𝑉

12

1

10

AB BC CD

rad

s

a) Draw velocity diagram

b) Determine 𝑉 , ω2, ω3

4

3

2

ω1

A

D

B

1

2

3

300

Exercise 2:

1

2

, ?

AB

c

rad

V

C B CB

V   V   V 

Exercise 1:

2.2 Example

II Velocity Analysis

Trang 7

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com

A

D

ω1

300

1

2

3

4

3

1 10

0,5

AB BC

rad const

s

m

a) Draw Acceleration Diagram

b) a c,  2, 3 ?

t

n

2

B BA t BA 1 AB

BA

ω =const=>ε =0 a =ε l =0;





 

B & C belong to Link 2

n t

C B CB CB

C D CD CD

a =a +a +a     (2)

2

3

ω =10 3 (rad / s)

ω =10 (rad / s)

n 2

2

B BA 1 AB

n 2

2

CB 2 CB

m

s m

a =ω l =150

s



2 D

n 2

2

CD 3 CD

m

s

m

s

𝑎 𝑎

𝑎

𝑎 𝑎

III Acceleration Analysis

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com

π

300

600

14

Draw Acceleration Diagram

• π : gốc (cực)

b

a

a

  

BC

CB

CD t t

t

(1)   a = a +a +a   

(2)   a = a +a +a   

CB t

a

CD

a  a / cos 60  437.2m / s

CB

a  a tan 60  410m / s

a  a  a

𝑎

𝑎

𝑎 𝑎

𝑎

𝑎

CD

 III Acceleration Analysis

Trang 8

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com

// AC

┴BC

P

ω1

A

B

C

1

2

3

300

4

ω2

C 2

C 2

rad 0,6m; 10 s

a)v , ?

b)a , ?

  

 

 

B 1 AB m

V     6 s

Solution

* C3& C4≡ C (Link 3 sliding in Link 4 )

C3 C4 C3C4

V   V   V  (2)

c b

m

C B CB

V   V   V (1) 

* B & C belong to Link 2

1 Velocity

𝑉 𝑉

𝑉

b

c

III Acceleration Analysis

// AC

π

300

ω1

A

B

C

1

2

3

300

4

16

n t

C B CB CB

a   a   a   a 

* C3& C4≡ C (Link 3 is sliding in Link 4 )

(khâu 3 trượt trên khâu 4 cố định)

t

C C3 C4 C3C4

a   a   a   a 

t CB a

* B & C belong to Link 2

1

n 2

B BA 1 AB

const

 

n 2

CB 2 BC t

CB



2 Acceleration

𝑎

𝑎 𝑎

𝑎

b

c

c B

3

a a tan 30 60 m / s

2

III Acceleration Analysis EX2:

Trang 9

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 15-Sep-21 15-Sep-21

ω1

A

C

1

4 B

2

vB

1

C 2

C 2

rad

 

 

3

C B CB

C C3 C4 C3C4

C

CB 2 BC B

2

m

v 50.0,4 20 s

rad

  

Solve:

p

C

//AC b

3.2 Example

III Acceleration Analysis

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 15-Sep-21

18

15-Sep-21

Exercise 3:

t

BA 1 AB

n BA

B BA t

BA

n 2

2

BA 1 AB

a

m

s

* B and C belong link 2

n t

C B CB CB

n 2

2

CB 2 BC

m

s

3 4

C 3 C4 C3C4

2 C

t

3 2 BC

2

m

s

0

  

b C

┴BC

3.2 Example

III Acceleration Analysis

Trang 10

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 15-Sep-21

Ngày đăng: 27/02/2024, 23:36

w