1. Trang chủ
  2. » Luận Văn - Báo Cáo

Chapter 8 Gear Train.pdf

9 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Gear Train
Tác giả TS. Phan Công Bình
Trường học Hochiminh City University Of Technology
Thể loại theoretical contents
Năm xuất bản 2021
Thành phố Ho Chi Minh City
Định dạng
Số trang 9
Dung lượng 1,66 MB

Nội dung

Microsoft PowerPoint Chapter 8 GEAR TRAIN 28/10/2021 1 TS Phan Công Bình binhpc@hcmute edu vn binhpc tpm@gmail com Theoretical contents I Overview II Classification III Transmission Ratio IV Problem 1[.]

Trang 1

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com

I Overview

II Classification

III Transmission Ratio

IV Problem

28-Oct-21

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

2

28-Oct-21

The gears are matching together in series or parallel

Transmitting and distributing motion

Increasing or decreasing rotation speed

Large ratio and far centre distance

1 Overview

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

3

28-Oct-21

2 Classification.

Gear drives system

(Planar, universal) Gear drives system

(Planar, universal)

Open Differential Open Differential Planetary differentialdifferentialClose Close

Combination

Trang 2

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21

Centerlines of all gears are fixed

a Simple gear drive system (hệ thường)

2 Classification.

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

5

28-Oct-21

Epicyclic gear system has at least 1 gear’s centerline motion

b Epicyclic gear system (hệ ngoại luân)

2 Classification.

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

6

28-Oct-21

Degree of freedom:

W = 3𝑛 − 2𝑝 − 𝑝4 = 3.3 − 2.3 − 2 = 1

Z1 C

Z’2

Z3

Z2

C Z2

Z1

Z3 Z’2

b Epicyclic gear system

Planetary gear (hành tinh)is at least 1 fixed center gear

The gear that the centerline is in the main axis of the system is so-called center gear

2 Classification.

Trang 3

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21

Open differential: (Vi sai hở) All center gears are moveable

b Epicyclic gear system

2 Classification.

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

8

28-Oct-21

Degree of freedom:

W = 3𝑛 − 2𝑝 − 𝑝4 = 3.4 − 2.4 − 2 = 2

Z1 C

Z’2

Z3

Z2

Open differential All center gears are moveable

C

𝒁𝒃

𝒁𝒂

Z1

Z’2

C

Z2

Z3

Za

Zb

b Epicyclic gear system

2 Classification.

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

9

28-Oct-21

9

28-Oct-21

Close differential (vi sai kín) 2 in 3 kinematic links (C, Z1, Z3) are engaged

each other

Z1

C

Z’2

Z3

Z’4

Z2

Z’1

Z’3

Z4

Degree of freedom:

W = 3𝑛 − 2𝑝 − 𝑝4 = 3.5 − 2.5 − 4 = 1

Z1

Z’2

C

Z2

Z3

Z4

Z’3

Z’4

Z5

b Epicyclic gear system

2 Classification.

Trang 4

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21

Simple gearing coupling with a epicyclic (planetary, open differential, close

differential)

C Z’2

Z2

Z’3

Zd

Z3

Z1

Zb

Za

c Combination gear system

2 Classification.

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

11

28-Oct-21

(+): Inside engage (𝜔 ↑↑ 𝜔) (−): Outside engage (𝜔 ↑↓ 𝜔)

• If 𝑢 < 0 gear 1 and n gear are opposite direction

• If 𝑢 > 0 gear 1 and n gear are same direction

For Universalgear (bevel gear) Determining (+) (-) in reality

a Simple gear system

Ratio of 1 gearing

Ratio of simple gear system

3 Transmission ratio

ω

ω

 1 1  2

12

u

ω

ω

n

Z n

u

(−1)kPlanar where,kis number of outside engage

±

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

12

28-Oct-21

Z1

Z2 Z’2

Z3

Z’3

Z4

Planary

Universal

Given:

Z1 = 20 Z2 = 40 Z’2= 20

Z3 = 50 Z’3= 40 Z4 = 20 Calculating u13?

Z1

Z’2

C

Z2

Z3

Z4

Z’3

Exercise

a Simple gear system

3 Transmission ratio

Trang 5

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21

• If arm Cis stationary, angular velocity of each link will be −𝜔

b Epicyclic system

theangular velocitiesof

the various gears in the

system is taken by

transforming the arm C

into stationary observer

3 Transmission ratio

𝐾ℎâ𝑢 1 𝑍1 𝜔 − 𝜔

𝐾ℎâ𝑢 2 (𝑍2 & 𝑍′2) 𝜔 − 𝜔

Kℎâ𝑢 3 (𝑍3) 𝜔− 𝜔

𝐾ℎâ𝑢 4 (𝑪): 0

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

14

28-Oct-21

In absolute system 𝑢 = −1 = 5

0

b Epicyclic system

Planetary gear

Z1

C

Z’2

Z3

Z2

Given: Z1=20; Z2=60;

Z’2=30; Z3=50

13/

3 1 c C

1

c

(Arm C and Z1are oppositedirection)

In reference frame C

3 Transmission ratio

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

15

28-Oct-21

Z1

C

Z’2

Z3

Z2

Given: Z1=20; Z2=60; Z’2=30; Z3=50

ω =8 rad/s ω =1 rad/s

Z and C are the opposite direction Calculating:

ω =? rad/s and direction Z3?

Open differential

b Epicyclic system

3 Transmission ratio

Trang 6

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21

In reference frame C

(Z3 and Z1are the same direction)

Open differential

b Epicyclic system

1 13/

3

c C c

13

u

In absolute system

1 3 4 5 c

Assuming direction Z1+

Or C

-𝑢 / = 𝑢 where,

3 Transmission ratio

  

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

17

28-Oct-21

Z1

C

Z’2

Z3

Z’4

Z2

Z’1

Z’3

Z4

Given: Z1=20; Z2=60; Z’2=20; Z3=40 Z’1=20; Z’4=40; Z4=20; Z’3=40 ω =8 rad/s

Calculating ω =? rad/s

Close differential

In reference frame C 𝑢 / =

Z . Z Z′ = 6

ω − ω = 6 (ω − ω ) =>ω = Close differential: 𝑢 = = −1 Z’4Z’1 Z’3Z

=>ω =+ ;nên ω = + = + rad/s

b Epicyclic system

3 Transmission ratio

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

18

28-Oct-21

𝑈 = 𝑈 𝑈

𝑈 =

𝑈 / =ω − ω

ω − ω = 1 −

ω ω

𝑈 = (−1)𝑍 𝑍

𝑍′ 𝑍 =

−𝑍 𝑍′

Determining the sign ( + or -)

following the ‘’k’’ indication

𝑈 = −𝑍𝑍

Simple gear Planetary gear

c Combination

Z1

Z2

Z4

Z3

Z’2

3 Transmission ratio

Trang 7

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21

Problem Solution Method

1 Determine kind of gear train

Planar: based on pair of external gearing k

Space: based on realistic schematic diagram

2 Epicyclic gear train

1

13/

3

C

C

C

  2 3

'

1 2

Z

Z

Z Z

Planetary:ω = 0

Direction (the same or opposite)

Given 2 of 3 speed C, Z1, Z3

Close differentialClose differential equation

3 Combination Solve the Epicyclic

Determine the remained variable in Simple train Note: The notation must be based on the realistic schematic diagram

Open differential

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

20

28-Oct-21

Q 1.

𝐴𝑙𝑙 𝑔𝑒𝑎𝑟 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑚𝑜𝑑ule

𝐻𝑒𝑟𝑒, Z = 2Z , Z = 20, Z = 40, Z′ = 35, Z = 70 teeth

Gear Z has n = 120 𝑟𝑝𝑚 , n = 70 𝑟𝑝𝑚 ,

𝑍 𝑎𝑛𝑑 𝑙𝑖𝑛𝑘 𝐶 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

D𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐞 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑛 𝑎𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑍

Problem

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

21

28-Oct-21

Solution Q1.

Problem

1 13/

3

'

1 3

3 (1) 4

C C

C

C

n n u

n n Z Z

Z Z

n

Epicyclic gear

Simple gear     

 1  

2 (2) 2

ab

a b

u

n

n n

 

 3 2 3 (1) & (2)

4

a C

n

Assumption C +

or Za+

(120) 3(70)

4

Z3rotates at 37,5 rpm and the same direction Arm C

Conclusion

Trang 8

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21

Q 2.

a.Degree of freedom W of gear?

b.Direction of gear?

c.Rotation speed n3of gear Z3?

d.Rotation speed nbof gear Zb?

Given: Z1=20; Z2=80; Z’2=40; Z3=40

Z = 2Z , n = 400 𝑟𝑝𝑚 , n = 200 𝑟𝑝𝑚

Z and C are opposite direction of rotation

Calculate:

Z1

Z’2

C

Z2

Z3

Za

Zb

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

23

28-Oct-21

Solution 2.

Assume Z1+

C-Za+

Z1

Z’2

C

Z2

Z3

Za

Zb

Problem

1 3

4

4

C C C C

u

n n n

    

2 (2) 2

ab

a

u

n

5 2 (1) & (2)

4

a

n n n

  3

5(400) (200) 2 4

300 / n

v p

Z3rotates at 300 rpm and opposite direction Z1(or the same Arm C)

Conclusion:

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

24

28-Oct-21

Q 3.

a.Degree of freedom W of gear?

b.Rotation speed n3of gear Z3?

c.Rotation speed n5of gear Z5?

Z1= Z’2= Z’3= 50, Z2= Z3= 25,

Z4= 100, Z’4= 20, Z5= 40

Rotation speed n1= 800 (rpm) Calculating:

Problem

Trang 9

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21

Q 4. Z

a= 25, Zb= 50, 𝑍 = 25, 𝑍 = 50, 𝑍′ = 15, 𝑍 = 30

Gear Zaand arm C turn same direction

Rotation speed na= 200 (rpm), nc= 100 (rpm)

Determine the direction and rotation speed n3of gear Z3?

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21

26

28-Oct-21

Q5. Z

1= Z5= Z4= 30, Z2=60, Z3= 80, Z6=140

n1= 960 rpm Determine

a) DOF of the given gear train?

b) nCand rotating direction of Arm C

(compared to direction of Z1)?

IV Problem

TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com

27

28-Oct-21

Ngày đăng: 27/02/2024, 23:36

TỪ KHÓA LIÊN QUAN