Microsoft PowerPoint Chapter 8 GEAR TRAIN 28/10/2021 1 TS Phan Công Bình binhpc@hcmute edu vn binhpc tpm@gmail com Theoretical contents I Overview II Classification III Transmission Ratio IV Problem 1[.]
Trang 1TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com
I Overview
II Classification
III Transmission Ratio
IV Problem
28-Oct-21
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
2
28-Oct-21
The gears are matching together in series or parallel
Transmitting and distributing motion
Increasing or decreasing rotation speed
Large ratio and far centre distance
1 Overview
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
3
28-Oct-21
2 Classification.
Gear drives system
(Planar, universal) Gear drives system
(Planar, universal)
Open Differential Open Differential Planetary differentialdifferentialClose Close
Combination
Trang 2TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21
Centerlines of all gears are fixed
a Simple gear drive system (hệ thường)
2 Classification.
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
5
28-Oct-21
Epicyclic gear system has at least 1 gear’s centerline motion
b Epicyclic gear system (hệ ngoại luân)
2 Classification.
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
6
28-Oct-21
Degree of freedom:
W = 3𝑛 − 2𝑝 − 𝑝4 = 3.3 − 2.3 − 2 = 1
Z1 C
Z’2
Z3
Z2
C Z2
Z1
Z3 Z’2
b Epicyclic gear system
Planetary gear (hành tinh)is at least 1 fixed center gear
The gear that the centerline is in the main axis of the system is so-called center gear
2 Classification.
Trang 3TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21
Open differential: (Vi sai hở) All center gears are moveable
b Epicyclic gear system
2 Classification.
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
8
28-Oct-21
Degree of freedom:
W = 3𝑛 − 2𝑝 − 𝑝4 = 3.4 − 2.4 − 2 = 2
Z1 C
Z’2
Z3
Z2
Open differential All center gears are moveable
C
𝒁𝒃
𝒁𝒂
Z1
Z’2
C
Z2
Z3
Za
Zb
b Epicyclic gear system
2 Classification.
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
9
28-Oct-21
9
28-Oct-21
Close differential (vi sai kín) 2 in 3 kinematic links (C, Z1, Z3) are engaged
each other
Z1
C
Z’2
Z3
Z’4
Z2
Z’1
Z’3
Z4
Degree of freedom:
W = 3𝑛 − 2𝑝 − 𝑝4 = 3.5 − 2.5 − 4 = 1
Z1
Z’2
C
Z2
Z3
Z4
Z’3
Z’4
Z5
b Epicyclic gear system
2 Classification.
Trang 4TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21
Simple gearing coupling with a epicyclic (planetary, open differential, close
differential)
C Z’2
Z2
Z’3
Zd
Z3
Z1
Zb
Za
c Combination gear system
2 Classification.
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
11
28-Oct-21
(+): Inside engage (𝜔 ↑↑ 𝜔) (−): Outside engage (𝜔 ↑↓ 𝜔)
• If 𝑢 < 0 gear 1 and n gear are opposite direction
• If 𝑢 > 0 gear 1 and n gear are same direction
For Universalgear (bevel gear) Determining (+) (-) in reality
a Simple gear system
Ratio of 1 gearing
Ratio of simple gear system
3 Transmission ratio
ω
ω
1 1 2
12
u
ω
ω
n
Z n
u
(−1)kPlanar where,kis number of outside engage
±
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
12
28-Oct-21
Z1
Z2 Z’2
Z3
Z’3
Z4
Planary
Universal
Given:
Z1 = 20 Z2 = 40 Z’2= 20
Z3 = 50 Z’3= 40 Z4 = 20 Calculating u13?
Z1
Z’2
C
Z2
Z3
Z4
Z’3
Exercise
a Simple gear system
3 Transmission ratio
Trang 5TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21
• If arm Cis stationary, angular velocity of each link will be −𝜔
b Epicyclic system
theangular velocitiesof
the various gears in the
system is taken by
transforming the arm C
into stationary observer
3 Transmission ratio
𝐾ℎâ𝑢 1 𝑍1 𝜔 − 𝜔
𝐾ℎâ𝑢 2 (𝑍2 & 𝑍′2) 𝜔 − 𝜔
Kℎâ𝑢 3 (𝑍3) 𝜔− 𝜔
𝐾ℎâ𝑢 4 (𝑪): 0
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
14
28-Oct-21
In absolute system 𝑢 = −1 = 5
0
b Epicyclic system
Planetary gear
Z1
C
Z’2
Z3
Z2
Given: Z1=20; Z2=60;
Z’2=30; Z3=50
13/
3 1 c C
1
c
(Arm C and Z1are oppositedirection)
In reference frame C
3 Transmission ratio
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
15
28-Oct-21
Z1
C
Z’2
Z3
Z2
Given: Z1=20; Z2=60; Z’2=30; Z3=50
ω =8 rad/s ω =1 rad/s
Z and C are the opposite direction Calculating:
ω =? rad/s and direction Z3?
Open differential
b Epicyclic system
3 Transmission ratio
Trang 6TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21
In reference frame C
(Z3 and Z1are the same direction)
Open differential
b Epicyclic system
1 13/
3
c C c
13
u
In absolute system
1 3 4 5 c
Assuming direction Z1+
Or C
-𝑢 / = 𝑢 where,
3 Transmission ratio
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
17
28-Oct-21
Z1
C
Z’2
Z3
Z’4
Z2
Z’1
Z’3
Z4
Given: Z1=20; Z2=60; Z’2=20; Z3=40 Z’1=20; Z’4=40; Z4=20; Z’3=40 ω =8 rad/s
Calculating ω =? rad/s
Close differential
In reference frame C 𝑢 / =
Z . Z Z′ = 6
ω − ω = 6 (ω − ω ) =>ω = Close differential: 𝑢 = = −1 Z’4Z’1 Z’3Z
=>ω =+ ;nên ω = + = + rad/s
b Epicyclic system
3 Transmission ratio
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
18
28-Oct-21
𝑈 = 𝑈 𝑈
𝑈 =
𝑈 / =ω − ω
ω − ω = 1 −
ω ω
𝑈 = (−1)𝑍 𝑍
𝑍′ 𝑍 =
−𝑍 𝑍′
Determining the sign ( + or -)
following the ‘’k’’ indication
𝑈 = −𝑍𝑍
Simple gear Planetary gear
c Combination
Z1
Z2
Z4
Z3
Z’2
3 Transmission ratio
Trang 7TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21
Problem Solution Method
1 Determine kind of gear train
Planar: based on pair of external gearing k
Space: based on realistic schematic diagram
2 Epicyclic gear train
1
13/
3
C
C
C
2 3
'
1 2
Z
Z
Z Z
Planetary:ω = 0
Direction (the same or opposite)
Given 2 of 3 speed C, Z1, Z3
Close differentialClose differential equation
3 Combination Solve the Epicyclic
Determine the remained variable in Simple train Note: The notation must be based on the realistic schematic diagram
Open differential
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
20
28-Oct-21
Q 1.
𝐴𝑙𝑙 𝑔𝑒𝑎𝑟 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑚𝑜𝑑ule
𝐻𝑒𝑟𝑒, Z = 2Z , Z = 20, Z = 40, Z′ = 35, Z = 70 teeth
Gear Z has n = 120 𝑟𝑝𝑚 , n = 70 𝑟𝑝𝑚 ,
𝑍 𝑎𝑛𝑑 𝑙𝑖𝑛𝑘 𝐶 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
D𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐞 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑛 𝑎𝑛𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑍
Problem
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
21
28-Oct-21
Solution Q1.
Problem
1 13/
3
'
1 3
3 (1) 4
C C
C
C
n n u
n n Z Z
Z Z
n
Epicyclic gear
Simple gear
1
2 (2) 2
ab
a b
u
n
n n
3 2 3 (1) & (2)
4
a C
n
Assumption C +
or Za+
(120) 3(70)
4
Z3rotates at 37,5 rpm and the same direction Arm C
Conclusion
Trang 8TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21
Q 2.
a.Degree of freedom W of gear?
b.Direction of gear?
c.Rotation speed n3of gear Z3?
d.Rotation speed nbof gear Zb?
Given: Z1=20; Z2=80; Z’2=40; Z3=40
Z = 2Z , n = 400 𝑟𝑝𝑚 , n = 200 𝑟𝑝𝑚
Z and C are opposite direction of rotation
Calculate:
Z1
Z’2
C
Z2
Z3
Za
Zb
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
23
28-Oct-21
Solution 2.
Assume Z1+
C-Za+
Z1
Z’2
C
Z2
Z3
Za
Zb
Problem
1 3
4
4
C C C C
u
n n n
2 (2) 2
ab
a
u
n
5 2 (1) & (2)
4
a
n n n
3
5(400) (200) 2 4
300 / n
v p
Z3rotates at 300 rpm and opposite direction Z1(or the same Arm C)
Conclusion:
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
24
28-Oct-21
Q 3.
a.Degree of freedom W of gear?
b.Rotation speed n3of gear Z3?
c.Rotation speed n5of gear Z5?
Z1= Z’2= Z’3= 50, Z2= Z3= 25,
Z4= 100, Z’4= 20, Z5= 40
Rotation speed n1= 800 (rpm) Calculating:
Problem
Trang 9TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21 28-Oct-21
Q 4. Z
a= 25, Zb= 50, 𝑍 = 25, 𝑍 = 50, 𝑍′ = 15, 𝑍 = 30
Gear Zaand arm C turn same direction
Rotation speed na= 200 (rpm), nc= 100 (rpm)
Determine the direction and rotation speed n3of gear Z3?
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 28-Oct-21
26
28-Oct-21
Q5. Z
1= Z5= Z4= 30, Z2=60, Z3= 80, Z6=140
n1= 960 rpm Determine
a) DOF of the given gear train?
b) nCand rotating direction of Arm C
(compared to direction of Z1)?
IV Problem
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com
27
28-Oct-21