Microsoft PowerPoint Chapter 5 BELT DRIVE 14/3/2023 1 14 Mar 23 1 THEORY OF MACHINE AND MACHINE DESIGN Chapter 4 BELT DRIVES DEPARTMENT OF EDUCATION AND TRAINNING HOCHIMINH CITY UNIVERSITY OF TECHNOLO[.]
Trang 11
THEORY OF MACHINE AND MACHINE DESIGN
Chapter 4: BELT DRIVES
DEPARTMENT OF EDUCATION AND TRAINNING
HOCHIMINH CITY UNIVERSITY OF TECHNOLOGY
AND EDUCATION
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com
Target
I Overview of belt drives
II Understand the mechanism of transmission problems
III Calculation and design drives belts
2
14-Mar-23
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com
Theoretical contents
3
14-Mar-23
I Overview
II Sequence of calculation and design the belt drives
III Exercise
Trang 2TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
4
14-Mar-23
Overview
1 Structure.
1 Driving pulley 2 Driven pulley 3 Belt 4 Idler pulley
4 3
1
2
3
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
5
14-Mar-23
2 Operating principle.
Depend on friction force between belt and pulley
Movement and energy are transmitted from driving pulley to driven pulley
Overview
6
Belt tension generates friction force
2 Operating principle.
Overview
Trang 3TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
7
14-Mar-23
3 Classification.
Cross-section of belt:
• Flat belt
• V belt
• Ribbed belt
• Round belt
• Timing belt
Overview
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
8
14-Mar-23
Flat belt :
• Cross section 𝑏𝑥𝛿 𝑚𝑚
• Include: leather belt, rubber belt,
3 Classification.
Overview
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
9
14-Mar-23
V belt :
• Isosceles trapezoid section, contact the belt groove with two sides
• In structure, V-belt include:
Top fabric 1
Tension cords
Cushion rubber
Compression rubber 4
3 Classification.
Overview
Trang 4TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
10
14-Mar-23
V belt :
• Cross-section is standardized
3 Classification.
Overview
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
11
14-Mar-23
V belt:
3 Classification.
Overview
12
4 Advantages, disadvantages and range of use
Disadvantages:
• Large structural framework
• Belt ratio is not stable
• Large force acting on shaft
• Low lifetime(1000h - 5000h)
Advantages:
Overview
• Working with high speed range
• Simple structure
• Smooth working
• Against overload
• Drive transmission for two far axes
Trang 5TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com
Theoretical contents
13
14-Mar-23
I Overview
II Sequence of calculation and
design the belt drives
III Exercise
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
14
14-Mar-23
2 Select belt and cross section.
the cross section of V belt
is selected by the Figure based on the given parameters:
+ Power P + Rotating speed n
Sequence of calculation and design the belt drives
P (kW) Power of driving shaft
n (rpm) Rotation speed of driving shaft
u Ratio
1 Initial parameters
A
B
C
D E
5000
3150
2000
1250
800
500
315
200
2 3.15 5 8 12.5 20 31.5 50 80 125 200 400
Power P, kW
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
15
14-Mar-23
Sequence of calculation and design the belt drives
d1, d2(mm) : Pitch circle diameters
a (mm) : Center distance
α1, α2 : Angle of wrap
Trang 6TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
16
14-Mar-23
4 Select diameter of pulley.
Sequence of calculation and design the belt drives
Select diameter of
driving pulley 𝒅𝟏
according to Table
4.13
Standardized to
select 𝑑 (mm): 63,
71, 80, 90, 100,
112, 125, 140, 160,
180, 200, 224, 250,
280, 315, 335, 400,
450, 500, 630, 710,
800, 900, 1000,
Nên chọn 𝑑 ≈
1,2 𝑑 , chỉ khi
nào yêu cầu kích
thước thật nhỏ
𝑑 = 𝑑
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
17
14-Mar-23
a) Validation velocity of the belt
Sequence of calculation and design the belt drives
4 Select diameter of pulley.
1
1
60.1000
d n
v
1
Calculation and select pitch circle diameter of the driven pulley d2:
v1< 25 m/s for V - belts
v1< 40 m/s for Narrow V belts
Chọn 𝑑 𝑡ℎ𝑒𝑜 𝑑ã𝑦 𝑡𝑖ê𝑢 𝑐ℎ𝑢ẩ𝑛 𝑔ầ𝑛 𝑣ớ𝑖 𝑔𝑖á 𝑡𝑟ị 𝑡í𝑛ℎ 𝑡𝑜á𝑛 𝑛ℎấ𝑡
18
5 Length and center distance.
Sequence of calculation and design the belt drives
Select center distance asbased on table and can be obtained by the formula
Assumed Centre distance (a):
0,55dd h a 2dd
Length of belt (l):
2
s
s
Based on the assumed center distance as, the length of belt is obtained by
following Equation:
Then, the belt length is standardized and given in Table 4.13
Trang 7TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
19
14-Mar-23
6 Determine center distance
Sequence of calculation and design the belt drives
Calculation exactly center distance (a):
2 2
l
Based on the selected length of belt, the center distance is re-defined by
4
where,
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
20
14-Mar-23
Condition: 𝛽 ≤ 10° ⇒ 𝛽 ≈ sin 𝛽 =
𝑑 − 𝑑
Validation of the wrap angle: 𝛼 ≥120°for the V belt
𝛼 ≥150°for the Flat belt
7 Angle of wrap.
Sequence of calculation and design the belt drives
𝛼 = 𝜋 − 2𝛽 𝑟𝑎𝑑
𝛼 = 𝜋 + 2𝛽 (𝑟𝑎𝑑)
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
21
14-Mar-23
8 Calculation the number of belt.
Sequence of calculation and design the belt drives
Number of belt is calculated by formula:
1 0
[ ]
d
l u z
PK z
P C C C C
+ Cz: Coefficient of load’s effect Table 4.18
+ Cα: Coefficient of angle wrap’s effect Table 4.15
Or calculation according to formula:
+ Cu: Coefficient of ratio’s effect Table 4.17
+ Cl: Coefficient of length’s effect Table 4.16
l: Real length of belt
l0: Experimental length of belt on Table 4.19 and 4.20
+ P0 (kW) Power permit on Table 4.19 for V- belt
Table 4.20 for Flat belt + Kd: Coefficients of dynamic load Table 4.7
+ P1 (kW) Power of driving pulley
0
1 0,0025(180 )if150 180 (≤ 6)
Trang 8TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
22
14-Mar-23
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
23
14-Mar-23
Table 4.17
Cu 1 1,07 1,11 1,12 1,13 1,135 1,14
Table 4.18
Cz 1 0,95 0,9 0,85
Table 4.15
α 180 170 160 150 140 130 120 110 100 90 80 70
Cα 1 0,98 0,95 0,92 0,89 0,86 0,82 0,78 0,73 0,68 0,62 0,56
Table 4.16
l/l0 0,5 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,4
Cl 0,86 0,89 0,95 1,0 1,04 1,07 1,10 1,13 1,15 1,20
8 Calculation the number of belt.
Sequence of calculation and design the belt drives
24
Cross section
and laboratory
length lo (mm)
Diameter of
driving pulley
d1(mm)
Velocity (m/s)
O
lo = 1320
63
112
0,33 0,48 0,49 0,75 0,83 1,33 1,04 1,78
1,14 1,8 2,12 1,88 2,3 A
lo = 1700
112
140
180
0,7 0,78 0,8 0,84
1,08 1,25 1,38
1,85 2,0 2,20 2,47
2,4 2,75,2,9 2,3,14 3,27
2,73 3,44 4,06
2,85 3,75 4,46
lo = 2240
125
224
0,92 1,2 1,35 1,38 2,30 2,25 4,0 4,47
2,61 5,53
-5,34 7,38
-5,93 8,22
Table 4.19 Value allowable power [P0] of V belt
Sequence of calculation and design the belt drives
8 Calculation the number of belt.
Trang 9TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
25
14-Mar-23
Cross section
and laboratory
length lo (mm)
Diameter of
driving pulley
d1(mm)
Velocity (m/s)
B
lo = 3750
200
280
355
1,83 2,3 2,46 2,84
2,73 3,77 4,29
4,55 6,59 7,57
5,75 8 8,82 10,51
6,28 10,27 12,42
-9,69 11 12,27 15,62 Г
lo = 6000
355
630
-6,67 10,76 11,17 17,46 14,91 23,60 16,5 27,89 17,51 32,19
Table 4.19 Value allowable power [P0] of V belt
Sequence of calculation and design the belt drives
8 Calculation the number of belt.
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
26
14-Mar-23
Cross section
and laboratory
length lo (mm)
Diameter of
driving pulley
d1(mm)
Velocity (m/s)
YO
lo = 1600
63
90
112
180
0,71 0,93 1,46
0,93 1,46 1,88
1,46 2,74 3,54 4
1,77 3,74 4,93
1,85 4,23 6,14
-2,69 5,85 7 7,28
YA
lo = 2500
180
224
2 2,12 2,34
3,05 3,26 5,33 6,02 7,53 8,46 9,15 10,3 10,85
10,26 11,85
Table 4.20 Value allowable power [P0] of V belt
Sequence of calculation and design the belt drives
8 Calculation the number of belt.
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
27
14-Mar-23
Sliding curve ε(ψ) – effect curve η(ψ)
9 Sliding phenomenon of belt drive.
Set coefficient of tension:
F F
Sequence of calculation and design the belt drives
Trang 10TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
28
14-Mar-23
Elastic Sliding :
Sequence of calculation and design the belt drives
Cause of the belt is
elastic strain The more
flaccid of belt, the more
stretched so sliding
increase
Slippery Sliding :
Cause of the belts chains is overload, tangential force Ftis higher than friction Fms,
The sliding slippery occurred atACB arcon pulley
AC Sliding arc BC Static arc
9 Sliding phenomenon of belt drive.
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
29
14-Mar-23
Tension in the belt:
10 Tension in the belt
Or Fr= 2.F0.sin(α1/2)
(Common Fr= ( 2 – 3)Ft
Sequence of calculation and design the belt drives
30
10 Tension in the belt
F0 Initial force is necessary for transmitting power P1 or torqueT1.
• Tangential force cause by T1:
• Tension of the side F1: F1 = F0 + Ft /2
• Tension of the side F2: F2 = F0 – Ft /2
According to Euler’s formula about friction,
We have: F1= F2.efα
Sequence of calculation and design the belt drives
0
fα
F
Trang 11TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
31
14-Mar-23
Bending stress:
Stress diagram:
11 Stresses in belt.
If belt material according Hook’s law: σu= E.ε
(E: Young module; ε Elongation)
Sequence of calculation and design the belt drives
ε =δ 𝑑
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
32
14-Mar-23
11 Stresses in belt.
Tensile stress:
Stress due to initial tension:
Stress tension on driving side:
Stress tension on driven side:
Stress due to centrifugal forces: (condition v>20m/s)
0 0 F A
1
2
t F F
2
t F A
2
V
Sequence of calculation and design the belt drives
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
33
14-Mar-23
Exercise
Q.1
There is the flat belt drives with Power P1=6,5kW and the rotation speed of
the faster shaft n1=1420 rpm and the remained shaft n2=565 rpm The
center distance a is 1800mm The velocity of belt is from 14,5 m/s to 15,5
m/s The pitch circle diameter of pulleys are standardized in the given
range: 160, 180, 200, 224, 250, 280, 315, 400, 450, 500, 560, 630, 710
(mm)
1) Determine diameter of driving pulley d1and driven pulley d2?
2) Validate the wrap angle α1?
Trang 12TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
34
14-Mar-23
1
60000 60000 14,5
195,12
πn
1
60000 60000 15,5 208,57
πn
1 3 1
1 (1100 1300) P 182,64 215,85( )
n
1) Determine diameter of driving pulley d1:
Exercise
Solution 1: Based on velocity of belt
Select d1based on standard values: d1= 200mm
Solution 2: Based on Savơrin formula
Select d1based on standard values : d1= 200mm
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
35
14-Mar-23
1 2 1
2 1 2
502,65
1
500 200
1800
d d
α
a
1) Determine diameter of driven pulley d2:
Select d2base on standard values : d2= 500mm
2) Checking the condition of wrap angle α1:
Exercise
36
Q2:
The flat belt drive includes the pulleys with pitch circle diameters
d1=150mm, d2=600mm Width belt b=50mm and thickness= 6mm The
friction coefficient between the pulley and belt is 0,32; Initial stress
0=2MPa Angle of wrap1=1600and rotating speed n1=1000v/ph
Determine center distance a of belt drives?
Determine initial tension F0andtangential forceFton driving pulley?
Calculating max power P1?
Exercise
Trang 13TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
37
14-Mar-23
Determine center distance a of the belt drives :
𝛼 = 180 − 57𝑑 − 𝑑
𝑎
𝑎 = 57 𝑑 − 𝑑
180 − 160 = 57
600 − 150
20 = 𝟏𝟐𝟖𝟐, 𝟓𝑚𝑚
Determine initial tension 𝐹 and tangential force 𝐹 on driving pulley :
• Cross-section: 𝐴 = 𝑏 ∗ 𝛿 = 50 ∗ 6 = 𝟑𝟎𝟎𝑚𝑚
• 𝐹 =A0= 300x2=600 N
tangential force Ft:
• Condition tension belt 2𝐹 : 𝑒 − 1 ≥ 𝐹 𝑒 + 1
𝐹 =2𝐹 𝑒 − 1
𝑒 + 1 =
2 ∗ 600 ∗ 𝑒, ∗ , − 1
𝑒, ∗ , + 1 = 𝟓𝟎𝟑, 𝟏𝑁 Exercise
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
38
14-Mar-23
Calculating max power P1 :
• Velocity on driving pulley:
𝑣 = 𝑑 𝑛
60 10 =
3.14 ∗ 150 ∗ 1000
60 10 = 𝟕, 𝟖𝟓(m/s)
• Power on the driving pulley:
𝑃 =𝐹 𝑣
1000=
503,1 ∗ 7,85
1000 = 𝟑, 𝟗𝟓𝑘𝑊 Exercise
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
39
14-Mar-23
Q3:
Flat belt drives has center distance a=1800mm, pulley diameter
d1=200mm, d2=600mm Friction coefficient between pulley and belt
f=0,30;Power P1=6,5kWand rotating speed n1=1200rpm
Determine and checking the condition of wrap angle α1?
Determine initial tension F0to the belt chains disappear sliding
slippery
Replace the belt by the other type with the fiction coefficient f=0,35
How the tangential force Ftis increasing?
Exercise
Trang 14TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
40
14-Mar-23
Exercise 1) Determine and validation the condition of wrap angle α1
1
600 200
1800
α
a
α1=167,30 = 2,92 rad
1
1
0,3 2,92
0 0,3 2,92
fα
t
fα
e e
6 1 6 1
1
6,5
1200 P
n
1
1
2
517,3
t
T
d
where,
Hence,
2) Determine initial tension F0to satisfy the working basic condition
TS Phan Công Bình binhpc@hcmute.edu.vn binhpc.tpm@gmail.com 14-Mar-23
41
14-Mar-23
Exercise
1
1
0,35 2,92 ' 0
0,35 2,92
fα
t fα
e e
'
591,04
1,143
517,3
t
t
F
3) How is the tangential force Ftchange?
The tangential force Ftincreasing
42