1. Trang chủ
  2. » Luận Văn - Báo Cáo

ứng dụng định lý vi-et giải một số dạng toán phương trình bậc 2 – quy về bậc 2 có tham số

23 8,5K 3

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 1,06 MB

Nội dung

Ứng dụng định Vi-et giải một số dạng toán phương trình bậc hai quy về bậc hai chứa tham số. 1 Ứng dụng định Vi-et giải một số dạng tốn phương trình bậc hai quy về bậc hai chứa tham số. MỞ ĐẦU 1/ do chọn đề tài: Trong chương trình môn Toán bậc THPT hiện nay rất nhiều bài tốn tham số liên quan tới phương trình bậc 2, quy về bậc 2, và trong số đó xuất hiện nhiều và đa dạng các bài tốn “Tìm điều kiện để một phương trình nghiệm, một nghiệm, hai nghiệm, ba nghiệm, bốn nghiệm …”. Đây thực chất là các bài tốn so sánh nghiệm của một phương trình bậc hai với một số thực α , nếu xem xét các dạng tốn này theo quan điểm, chương trình bộ sách giáo khoa cũ thì các em học sinh khơng khó để thể giải quyết bởi vì trong chương trình sách giáo khoa cũ lớp 10, các em được trang bị đầy đủ nội dung các định thuận, đảo về dấu tam thức bậc 2 các hệ quả. Nhưng hiện nay theo bộ sách giáo khoa mới đang phát hành thì phần kiến thức liên quan tới định đảo và các hệ quả đã được giảm tải. Đứng trước vấn đề “Khơng cơng cụ đó thì cần tìm hướng nào để bằng kiến thức các em đang được học trong sách giáo khoa các em vẫn thể giải được các dạng tốn đó?”. Với suy nghĩ nhằm giúp các em tìm tòi, phát hiện, tạo hứng thú trong q trình học bộ mơn Tốn, và hơn nữa là góp phần nâng cao chất lượng giảng dạy, nay tơi viết đề tài sáng kiến kinh nghiệm: Ứng dụng định Vi-et giải một số dạng tốn phương trình bậc 2 quy về bậc 2 tham số”. 2 /Nội dung sáng kiến kinh nghiệm : I. Phần mở đầu. II. Nội dung đề tài. A. sở thuyết liên quan đến đề tài nghiên cứu. B. Bài tập vận dụng. C. Bài tập thực hành. III. Kết quả và bài học kinh nghiệm. 2 Ứng dụng định Vi-et giải một số dạng tốn phương trình bậc hai quy về bậc hai chứa tham số. NỘI DUNG SÁNG KIẾN KINH NGHIỆM . A. SỞ THUYẾT. I.KIẾN THỨC CẦN NHỚ. 1) PHƯƠNG TRÌNH BẬC HAI. a) Định nghĩa. • Phương trình bậc hai đối với ẩn x R ∈ phương trình dạng: ( ) ( ) 2 ax 0 1 0bx c a+ + = ≠ b) Cách giải. • Tính 2 4b ac∆ = −  Nếu 0 ∆ < thì phương trình (1) vơ nghiệm.  Nếu 0 ∆ = thì phương trình (1) nghiệm kép 1 2 2 b x x a = = − .  Nếu 0∆ > thì phương trình (1) hai nghiệm phân biệt 1 2 , 2 2 b b x x a a − − ∆ − + ∆ = = c) Định Vi-et Dấu các nghiệm.  Định lý: Nếu phương trình bậc hai ẩn x R ∈ : ( ) ( ) 2 ax 0 1 0bx c a+ + = ≠ hai nghiệm 1 2 ,x x thì 1 2 1 2 , . b c S x x P x x a a − = + = = = .  Dấu các nghiệm: Phương trình (1) hai nghiệm trái dấu 0P ⇔ < .  Phương trình (1) hai nghiệm cùng dấu 0 0P ∆ ≥  ⇔  >  .  Phương trình (1) hai nghiệm cùng dương 0 0 0 P S ∆ ≥   ⇔ >   >  .  Phương trình (1) hai nghiệm cùng âm 0 0 0 P S ∆ ≥   ⇔ >   <  . 2) PHƯƠNG PHÁP GIẢI TỐN. Trong phần này tơi sẽ trình bày phương pháp giải quyết một cách tổng qt một số dạng tốn liên quan đến phương trình bậc 2, và quy về bậc 2 trong tập số thực R: Thay vì so sánh nghiệm của một phương trình bậc 2 với một số thực α , ta sẽ biến đổi để đưa về so sánh nghiệm của phương trình bậc 2 với số 0. Bài tốn 1. Cho phương trình: ( ) ( ) 2 ax 0 1 0,bx c a x R+ + = ≠ ∈ a) Tìm điều kiện để phương trình (1) nghiệm: x α ≥ . b) Tìm điều kiện để phương trình (1) nghiệm: x α ≤ . c) Tìm điều kiện để phương trình (1) hai nghiệm thỏa: 1 2 x x α < < . d) Tìm điều kiện để phương trình (1) hai nghiệm thỏa: 1 2 x x α < < . e) Tìm điều kiện để phương trình (1) hai nghiệm thỏa: 1 2 x x α < < . 3 Ứng dụng định Vi-et giải một số dạng toán phương trình bậc hai quy về bậc hai chứa tham số. Giải. • Đặt t x x t α α = − ⇒ = + , thay vào pt (1) ta được pt: ( ) ( ) 2 2 2 0 2at a b t a b c α α α + + + + + = a) Để phương trình (1) nghiệm x α ≥ pt (2) nghiệm 0t ≥  TH1 : Phương trình (2) nghiệm 1 2 0 0t t P≤ ≤ ⇔ ≤ .  TH 2 : Phương trình (2) nghiệm 1 2 0 0 0 0 t t P S ∆ ≥   ≤ ≤ ⇔ ≥   ≥  b) Phương trình (1) nghiệm x α ≤ pt (2) nghiệm 0t ≤  TH1 : Phương trình (2) nghiệm 1 2 0 0t t P≤ ≤ ⇔ ≤ .  TH2 : Phương trình (2) nghiệm 1 2 0 0 0 0 t t P S ∆ ≥   ≤ ≤ ⇔ ≥   ≤  c) Phương trình (1) 2 nghiệm thỏa 1 2 x x α < < ⇔ pt (2) 2 nghiệm 1 2 0 0t t P< < ⇔ < . d) Phương trình (1) 2 nghiệm thỏa 1 2 x x α < < ⇔ pt (2) 2 nghiệm 1 2 0 0 0 0 t t P S ∆ >   < < ⇔ >   >  . e) Phương trình (1) 2 nghiệm thỏa 1 2 x x α < < ⇔ pt (2) 2 nghiệm 1 2 0 0 0 0 t t P S ∆ >   < < ⇔ >   <  . (Với ( ) ( ) ( ) 2 2 2 1 2 1 2 2 2 4 , . , a b a b c a b a a b c P t t S t t a a α α α α α α − + + + ∆ = + − + + = = = + = ) Nhận xét: Thoạt nhìn thì bài toán này mang đậm dấu ấn dùng kiến thức so sánh nghiệm của một tam thức bậc 2 với số thực α , và bằng cách làm như trên ta đã hướng dẫn học sinh giải quyết bài toán một cách dễ dàng dựa vào định Viet và các ứng dụng, tránh không sử dụng kiến thức về tam thức bậc 2 đã được giảm tải trong sách giáo khoa. Bài toán 2. Cho phương trình: ( ) ( ) ( ) ( ) ( ) 1x a x b x c x d k+ + + + = với a c b d + = + . a) Tìm điều kiện để phương trình (1) nghiệm. b) Tìm điều kiện để phương trình (1) 2 nghiệm phân biệt. c) Tìm điều kiện để phương trình (1) 3 nghiệm phân biệt. d) Tìm điều kiện để phương trình (1) 4 nghiệm phân biệt. Giải. • Ta biến đổi phương trình (1) ( ) ( ) ( ) 2 2 2x a c x ac x b d x bd k     ⇔ + + + + + + =     • Đặt ( ) ( ) 2 2 0 2 a c t x a c x t +   = + + + ≥  ÷   , thay vào (2) ta được phương trình: ( ) ( ) 2 2 2 2 0 3 2 2 2 a c a c a c t ac bd t ac bd k       + + +     + + − + − − − =        ÷  ÷                 a) Phương trình (1) nghiệm phương trình (2) nghiệm 0t ≥  TH1 : Phương trình (2) nghiệm 1 2 0 0t t P≤ ≤ ⇔ ≤ . 4 Ứng dụng định Vi-et giải một số dạng toán phương trình bậc hai quy về bậc hai chứa tham số.  TH2 : Phương trình (2) nghiệm 1 2 0 0 0 0 t t P S ∆ ≥   ≤ ≤ ⇔ ≥   ≥  b) Để phương trình (1) hai nghiệm phân biệt ta xét 2 trường hợp sau:  TH1 : Phương trình (2) nghiệm 1 2 0 0t t P< < ⇔ < .  TH2 : Phương trình (2) nghiệm 1 2 0 0 0 t t S ∆ =  < = ⇔  >  c) Phương trình (1) 3 nghiệm phân biệt phương trình (2) 2 nghiệm thỏa: 1 2 0 0 0 0 t t P S ∆ >   = < ⇔ =   >  . d) Phương trình (1) 4 nghiệm phận biệt phương trình (2) 2 nghiệm thỏa: 1 2 0 0 0 0 t t P S ∆ >   < < ⇔ >   >  (Trong đó là biệt thức của phương trình (2), 1 2 1 2 . ,P t t S t t= = + ) Nhận xét: Trong các tài liệu sách giáo khoa, hoặc sách tham khảo, cách giải đưa ra đối với dạng toán này là đặt: ( ) 2 t x a c x= + + với điều kiện ( ) 2 4 a c t − + ≥ , khi đó để giải quyết các yêu cầu nêu trên học sinh sẽ lúng túng, đôi khi là không thể giải quyết nhất là đối với các em học sinh lớp 10,vì các em không được trang bị công cụ để so sánh nghiệm một phương trình bậc 2 với một số thực khác 0. Bài toán 3. Cho phương trình: ( ) ( ) 4 3 2 ax 0 1 0bx cx bx a a+ + + + = ≠ a) Tìm điều kiện để phương trình (1) nghiệm dương. b) Tìm điều kiện để phương trình (1) nghiệm âm. c) Tìm điều kiện để phương trình (1) nghiệm. d) Tìm điều kiện để phương trình (1) 4 nghiệm phân biệt. Giải • Ta thấy x = 0 không là nghiệm của phương trình (1), chia cả hai vế phương trình (1) cho 2 0x ≠ , ta được: ( ) 2 1 1 2 0 2a x b x c a x x     + + + + − =  ÷  ÷     (Thông thường tới đây học sinh sẽ đặt ( ) 1 2t x t x = + ≥ , khi đó nhận được phương trình 2 2 0at bt c a+ + − = và việc giải quyết các yêu cầu đặt ra sẽ khó khăn vì học sinh không được trang bị công cụ. Để giúp học sinh vượt qua trở ngại này chúng ta giải quyết như sau). a) Vì 0x > , đặt ( ) 1 2 0t x t x = + − ≥ suy ra 1 2x t x + = + , thay vào phương trình (2) được: ( ) 2 4 2 2 0at a b t a b c+ + + + + = (3). • Để phương trình (1) nghiệm 0x > thì phương trình (3) nghiệm 0t ≥ , ta xét:  TH1 : Phương trình (3) nghiệm 1 2 0 0t t P≤ ≤ ⇔ ≤ 5 Ứng dụng định Vi-et giải một số dạng toán phương trình bậc hai quy về bậc hai chứa tham số.  TH2 : Phương trình (3) nghiệm 1 2 0 0 0 0 t t P S ∆ ≥   ≤ ≤ ⇔ ≥   ≥  b) Vì 0x < , đặt ( ) 1 2 0t x t x = + + ≤ suy ra 1 2x t x + = + , thay vào phương trình (2) được: ( ) 2 4 2 2 0at b a t a b c+ − + − + = (4) • Để phương trình (1) nghiệm 0x < thì phương trình (3) nghiệm 0t ≤ , ta xét:  TH1 : Phương trình (3) nghiệm 1 2 0 0t t P≤ ≤ ⇔ ≤  TH2 : Phương trình (3) nghiệm 1 2 0 0 0 0 t t P S ∆ ≥   ≤ ≤ ⇔ ≥   ≤  c) Để phương trình (1) nghiệm thì hoặc phương trình (3) nghiệm 0t ≥ , hoặc phương trình (4) nghiệm 0t ≤ . (Đây chính là kết quả tổng hợp của phần a và b). d) Để phương trình (1) 4 nghiệm phân biệt ta xét các trường hợp sau;  TH1 : Phương trình (3) 2 nghiệm thỏa: 1 1 2 1 1 0 0 0 0 t t P S ∆ >   < < ⇔ >   >   TH2 : Phương trình (4) 2 nghiệm thỏa: 2 1 2 2 2 0 0 0 0 t t P S ∆ >   < < ⇔ >   <   TH3 : Đồng thời phương trình (3), phương trình (4) hai nghiệm trái dấu 1 2 0 0 P P <  ⇔  <  Nhận xét: Với cách tiếp cận này học sinh cũng thể dễ dàng giải quyết các bài toán như: Tìm điều kiện để phương trình 2 nghiệm, 3 nghiệm. Bài toán 4. Cho phương trình ( ) ( ) ( ) ( ) 2 2 2 ax ax 0 1 0; 0bx c bx c a α β γ α + + + + + + = ≠ ≠ a) Tìm điều kiện để phương trình (1) nghiệm. b) Tìm điều kiện để phương trình (1) 4 nghiệm phân biệt. c) Tìm điều kiện để phương trình (1) 2 nghiệm phân biệt. Giải. • Xét a > 0 (với a < 0, làm tương tự) • Ta 2 2 2 2 4 2 4 b b ac ax bx c a x a a   −   + + = + −    ÷       nên đặt 2 2 4 ax 4 b ac t bx c a − = + + + khi đó 0t ≥ . • Thay vào phương trình (1) ta được phương trình sau: ( ) ( ) 2 0t k t k α β γ − + − + = (2) với 2 4 4 b ac k a − = • Phương trình (2): ( ) 2 2 2 0t k t k k α β α α β γ + − + − + = (3) a) Để phương trình (1) nghiệm thì phương trình (3) nghiệm 0t ≥  TH1 : Phương trình (2) nghiệm 1 2 0 0t t P≤ ≤ ⇔ ≤ . 6 Ứng dụng định Vi-et giải một số dạng toán phương trình bậc hai quy về bậc hai chứa tham số.  TH2 : Phương trình (2) nghiệm 1 2 0 0 0 0 t t P S ∆ ≥   ≤ ≤ ⇔ ≥   ≥  b) Để phương trình (1) 4 nghiệm phân biệt thì pt (3) 2 nghiệm thỏa 1 2 0 0 0 0 t t P S ∆ >   < < ⇔ >   >  c) Để phương trình (1) 2 nghiệm phân biệt thì phương trình (3) 2 nghiệm thỏa 1 2 0t t< < , hoặc phương trình (3) 2 nghiệm thỏa 1 2 0 t t< = .  TH1 : Phương trình (2) nghiệm 1 2 0 0t t P< < ⇔ < .  TH2 : Phương trình (2) nghiệm 1 2 0 0 0 t t S ∆ =  < = ⇔  >  (Trong đó là biệt thức của pt (3), 1 2 1 2 , .S t t P t t= + = ) Nhận xét: Khi gặp dạng toán này các em học sinh thường đặt 2 axt bx c= + + với điều kiện ( ) 2 4 4 b ac t a − − ≥ nếu a > 0, ( ) 2 4 4 b ac t a − − ≤ nếu a < 0. Phương trình nhận được 2 0t t α β γ + + = , và để giải quyết các yêu cầu của bài toán học sinh sẽ gặp trở ngại vì cần so sánh nghiệm của một phương trình bậc 2 với một số thực khác 0. Chính vì thế với cách giải đã trình bày ở trên tạo cho các em học sinh rất hứng thú, vì các em thể sử dụng một công cụ đơn giản, quen thuộc là định Viet để giải dạng toán này. Bài toán 5. Cho phương trình ( ) 2 2 ax 0 1b x c α + + + = với 0, 0a α > ≠ . a) Tìm điều kiện để phương trình (1) nghiệm. b) Tìm điều kiện để phương trình (1) 4 nghiệm phân biệt. c) Tìm điều kiện để phương trình (1) nghiệm duy nhất. Giải. • ĐK x R∈ . • Đặt ( ) 2 0t x t α α = + − ≥ suy ra ( ) 2 2 x t α α = + − , thay vào pt (1) ta được phương trình: ( ) ( ) 2 2 0 2at a b t b c α α + + + + = a) Để phương trình (1) nghiệm thì phương trình (2) nghiệm 0t ≥  TH1 : Phương trình (2) nghiệm 1 2 0 0t t P≤ ≤ ⇔ ≤ .  TH2 : Phương trình (2) nghiệm 1 2 0 0 0 0 t t P S ∆ ≥   ≤ ≤ ⇔ ≥   ≥  b) Để phương trình (1) 4 nghiệm phân biệt thì pt (2) 2 nghiệm thỏa 1 2 0 0 0 0 t t P S ∆ >   < < ⇔ >   >  c) Để phương trình (1) nghiệm duy nhất ta xét 2 trường hợp sau:  TH1 : Phương trình (2) nghiệm 1 2 0 0 0 0 t t P S ∆ >   < = ⇔ =   <  . 7 Ứng dụng định Vi-et giải một số dạng toán phương trình bậc hai quy về bậc hai chứa tham số.  TH2 : Phương trình (2) nghiệm 1 2 0 0 0 t t S ∆ =  = = ⇔  =  (Trong đó là biệt thức của pt (3), 1 2 1 2 , .S t t P t t= + = ) Nhận xét: Với dạng toán này hầu hết các sách tham khảo đều đặt ( ) 2 t x t α α = + ≥ , và đưa về phương trình bậc 2 dạng: 2 0at bt c a α + + − = , khi đó để giải quyết các câu hỏi đặt ra thì đều phải sử dụng tới định đảo về dấu tam thức bậc 2 và các hệ quả, hoặc sử dụng công cụ đạo hàm. Cả hai cách này đều không phù hợp với tư duy, kiến thức của học sinh lớp 10, 11 và ngay cả đối với học sinh lớp 12, bởi vì công cụ dùng đạo hàm để giải không phải lúc nào cũng tối ưu. Bài toán 6. Cho phương trình: ( ) 2 ax 1bx c x α + + = − a) Tìm điều kiện để phương trình (1) nghiệm. b) Tìm điều kiện để phương trình (1) 2 nghiệm phân biệt. c) Tìm điều kiện để phương trình (1) nghiệm duy nhất. Giải. • Phương trình (1) ( ) ( ) 2 2 0 ax 2 x bx c x α α − ≥   ⇔  + + = −   • Đặt t x α = − , vì 0x α − ≥ nên ta điều kiện 0t ≥ , thay vào (2) ta được phương trình: ( ) ( ) ( ) 2 2 1 2 0 3a t a b t a b c α α α − + + + + + = a) Để phương trình (1) nghiệm thì pt (3) nghiệm 0t ≥  TH1 : Xét 1a = , thay vào phương trình (3) tìm nghiệm 0 t giải bất phương trình 0 0t ≥ .  TH2 : Phương trình (3) nghiệm 1 2 1 0 0 a t t P ≠  ≤ ≤ ⇔  ≤  .  TH3 : Phương trình (3) nghiệm 1 2 1 0 0 0 0 a t t P S ≠   ∆ ≥  ≤ ≤ ⇔  ≥   ≥  b) Để phương trình (1) 2 nghiệm phân biệt thì pt (3) 2 nghiệm 1 2 1 0 0 0 0 a t t P S ≠   ∆ >  ≤ < ⇔  ≥   >  c) Để phương trình (1) nghiệm duy nhất thì phương trình (3) đúng 1 nghiệm 0t ≥  TH1 : Xét 1a = , thay vào phương trình (3) tìm nghiệm 0 t giải bất phương trình 0 0t ≥  TH2 : Phương trình (3) nghiệm 1 2 1 0 0 a t t P ≠  < < ⇔  <  .  TH3 : Phương trình (3) nghiệm 1 2 1 0 0 0 0 a t t P S ≠   ∆ >  < = ⇔  =   <  8 Ứng dụng định Vi-et giải một số dạng toán phương trình bậc hai quy về bậc hai chứa tham số.  TH4 : Phương trình (3) nghiệm 1 2 1 0 0 0 a t t S ≠   ≤ = ⇔ ∆ =   ≥  (Trong đó là biệt thức của phương trình (3), 1 2 1 2 , .S t t P t t= + = ) Nhận xét: Dạng toán này hay xuất hiện trong chuyên đề về phương trình chứa căn, và những bài toán như thế cũng từng xuất hiện trong các đề thi Đại học, Cao đẳng, nhưng tất cả đều đưa ra phương án là đi so sánh nghiệm của phương trình (2) với số thực α . Song với cách giải như trên thì ta đã đưa bài toán về so sánh nghiệm của phương trình (3) với số 0. Bài toán 7.Cho phương trình: ( ) ( ) ( ) 2 log log 1 a a x x x b α β γ + + = − với 0 1a < ≠ . a) Tìm điều kiện để phương trình (1) nghiệm. b) Tìm điều kiện để phương trình (1) 2 nghiệm phân biệt. c) Tìm điều kiện để phương trình (1) nghiệm duy nhất Giải. • Phương trình (1) ( ) 2 0 x 2 x b x x b α β γ − >   ⇔  + + = −   • Đặt t x b x t b= − ⇒ = + , vì 0x b− > nên ta suy ra điều kiện 0t > . Thay vào phương trình (2) ta được phương trình: ( ) ( ) 2 2 2 1 0 3t b t b b α α β α β γ + + − + + + = a) Để phương trình (1) nghiệm thì phương trình (3) nghiệm 0t >  TH1 : Xét 0 α = , thay vào pt (3) tìm nghiệm 0 t giải bất phương trình 0 0t > .  TH2 : Phương trình (3) nghiệm 1 2 0 0 0 t t P α ≠  < < ⇔  <   TH3 : Phương trình (3) nghiệm 1 2 0 0 0 0 0 t t P S α ≠   ∆ ≥  < ≤ ⇔  >   >   TH4 : Phương trình (3) nghiệm 1 2 0 0 0 0 0 t t P S α ≠   ∆ >  = < ⇔  =   >  b) Để phương trình (1) 2 nghiệm phân biệt thì pt (3) 2 nghiệm 1 2 0 0 0 0 0 t t P S α ≠   ∆ >  < < ⇔  >   >  c) Để phương trình (1) nghiệm duy nhất thì phương trình (3) đúng 1 nghiệm 0t >  TH1 : Xét 0 α = , thay vào phương trình (3) tìm nghiệm 0 t giải bất phương trình 0 0t >  TH2 : Phương trình (3) nghiệm 1 2 0 0 0 t t P α ≠  < < ⇔  <  . 9 Ứng dụng định Vi-et giải một số dạng toán phương trình bậc hai quy về bậc hai chứa tham số.  TH3 : Phương trình (3) nghiệm 1 2 0 0 0 0 0 t t P S α ≠   ∆ >  = < ⇔  =   >   TH4 : Phương trình (3) nghiệm 1 2 0 0 0 0 t t S α ≠   < = ⇔ ∆ =   >  Nhận xét: Đây là dạng toán giống với bài toán 6 đã giải quyết ở trên, ta cũng đã đưa về so sánh nghiệm của một phương trình dạng bậc 2 với số 0. B. BÀI TẬP VẬN DỤNG. Bài 1. Cho phương trình: ( ) 2 2 2 1 0 1x mx m m− + − + = a) Tìm m để phương trình (1) nghiệm 1x ≥ . b) Tìm m để phương trình (1) nghiệm 1x ≤ . c) Tìm m để phương trình (1) nghiệm 1 2 1x x< < . d) Tìm m để phương trình (1) nghiệm 1 2 1x x< < . Giải. • Đặt 1 1t x x t= − ⇒ = + , thay vào pt (1) ta được phương trình: ( ) ( ) 2 2 2 1 3 2 0 2t m t m m+ − + − + = a) Để phương trình (1) nghiệm 1x ≥ phương trình (2) nghiệm 0t ≥  TH1 : Phương trình (2) nghiệm 2 1 2 0 0 3 2 0 1 2t t P m m m≤ ≤ ⇔ ≤ ⇔ − + ≤ ⇔ ≤ ≤ .  TH2 : Phương trình (2) nghiệm : 2 1 2 1 0 1 ' 0 1 0 0 3 2 0 2 2 0 1 0 1 m m m t t P m m m m S m m − ≥ ≥  ∆ ≥   =     ≤ ≤ ⇔ ≥ ⇔ − + ≥ ⇔ ⇔ ≥      ≥      ≥ − ≥ ≤     • Kết luận: với [ ) 1;m∈ +∞ thì phương trình (1) nghiệm 1x ≥ . b) Để phương trình (1) nghiệm 1x ≤ phương trình (2) nghiệm 0t ≤  TH1 : Phương trình (2) nghiệm 2 1 2 0 0 3 2 0 1 2t t P m m m≤ ≤ ⇔ ≤ ⇔ − + ≤ ⇔ ≤ ≤ .  TH2 : Phương trình (2) nghiệm 2 1 2 1 0 ' 0 0 0 3 2 0 1 0 1 0 m t t P m m m S m − ≥  ∆ ≥    ≤ ≤ ⇔ ≥ ⇔ − + ≥ ⇔ =     ≥ − ≤   • Kết luận: với [ ] 1;2m∈ thì phương trình (1) nghiệm 1x ≤ . b) Phương trình (1) 2 nghiệm thỏa 1 2 1x x< < ⇔ phương trình (2) 2 nghiệm: 2 1 2 0 3 2 0 1 2t t m m m< < ⇔ − + < ⇔ < < . • Kết luận: với 1 2m < < thì phương trình (1) hai nghiệm 1 2 1x x< < d) Phương trình (1) 2 nghiệm thỏa 1 2 1x x< < ⇔ phương trình (2) 2 nghiệm: 10 [...]... 02 em đạt HSG cấp Q́c gia, 09 em đạt huy chương khi tham gia thi Olympic 30 4 ) Cụ thể: 1) Kết quả học tập bợ mơn: 18 Ứng dụng định Vi-et giải một số dạng tốn phương trình bậc hai quy về bậc hai chứa tham số Năm học 20 03 20 04 20 04 20 05 20 05 20 06 20 06 20 07 20 07 20 08 20 08 20 09 Đầu năm học (%) Yếu TB Khá Giỏi 0 0 0 0 0 0 21 17 14 12 16 15 63 64 68 66 51 57 26 19 18 22 23 28 ... kinh nghiệm: “ Ứng dụng định Vi-et giải một số dạng tốn về phương trình bậc 2 quy về bậc 2 19 Ứng dụng định Vi-et giải một số dạng tốn phương trình bậc hai quy về bậc hai chứa tham số Rất mong sự góp ý của q thầy, TÀI LIỆU THAM KHẢO 1) Phương pháp giảng dạy môn Toán Tác giả: Vũ Dương Thụy Nguyễn Bá Kim NXB Giáo dục 2) Giải một bài tập như thế nào Tác giả: G.Polya Nhà xuất bản... kinh nghiệm…………………………………… Tài liệu tham khảo……………………………………… 21 Ứng dụng định Vi-et giải một số dạng tốn phương trình bậc hai quy về bậc hai chứa tham số Trang …………………………3………………………… 4………………………… 4…………………… 11……………………… 18……… ……………… 19……………………… 20 ……………… ……… 21 22 Ứng dụng định Viet giải một số dạng tốn chứa tham số về phương trình bậc 2 quy về bậc 2 ... Tìm m để phương trình (1) bốn nghiệm phân biệt 4 3 2 17 Ứng dụng định Vi-et giải một số dạng tốn phương trình bậc hai quy về bậc hai chứa tham số c) Tìm m để phương trình (1) ba nghiệm phân biệt d) Tìm m để phương trình (1) nghiệm duy nhất Bài 5 Cho phương trình: x 2 + ( 3m + 2 ) x 2 + 2 + 2m 2 + 3m − 3 = 0 (1) a) Tìm m để phương trình (1) nghiệm b) Tìm m để phương trình (1) hai... để phương trình (1) nghiệm duy nhất 14 Ứng dụng định Vi-et giải một số dạng tốn phương trình bậc hai quy về bậc hai chứa tham số Giải x −1 ≥ 0  • Phương trình (1) ⇔  2 2 2  x − 2 ( m + 1) x + m + m = ( x − 1) ( 2 )  • Đặt t = x − 1 , vì x − 1 ≥ 0 nên ta điều kiện t ≥ 0 , thay vào phương trình (2) ta được phương 2 2 trình: t − 2 ( m − 1) t + m − m = 0 ( 3) a) Để phương trình (1) có. .. nghiệm phân biệt thì pt (3) 2 nghiệm thỏa t1 < 0 < t 2 , hoặc phương trình (3) 2 nghiệm thỏa 0 < t1 = t2 13 Ứng dụng định Vi-et giải một số dạng tốn phương trình bậc hai quy về bậc hai chứa tham số  TH1: Phương trình (2) nghiệm t1 < 0 < t 2 ⇔ P < 0 ⇔ m + 4 < 0 ⇔ m < −4 m 2 + m − 3 = 0 ∆ = 0 −1 + 13 0 < t1 = t2 ⇔  ⇔ ⇔m=  TH2: Phương trình (2) nghiệm 2 S > 0 m + 1 > 0  −1... hợp: 2  TH1: Phương trình (3) nghiệm t1 ≤ 0 ≤ t 2 ⇔ m + m + 6 ≤ 0 (vơ nghiệm) 12 Ứng dụng định Vi-et giải một số dạng tốn phương trình bậc hai quy về bậc hai chứa tham số 3m − 2 ≥ 0 ∆ ' ≥ 0  2   TH2: Phương trình (3) nghiệm t1 ≤ t2 ≤ 0 ⇔  P ≥ 0 ⇔ m + m + 6 ≥ 0 (vơ nghiệm) S ≤ 0 m + 2 ≤ 0   • Kết luận: Khơng tồn tại m để phương trình (1) nghiệm âm c) Để phương trình (1) có. .. thì phương trình nghiệm duy nhất  4 2 Bài 8 Cho phương trình: 4 x +1 − ( 2m − 1) 2 x + 2 + m2 − 3m = 0 ( 1) a) Tìm m để phương trình (1) nghiệm b) Tìm m để phương trình (1) 2 nghiệm phân biệt c) Tìm m để phương trình (1) 4 nghiệm Giải • Đặt t = 2 x +1 − 2 ( t ≥ 0 ) , khi đó 2 x +1 = t + 2 , thay vào phương trình (1) ta được phương trình: 2 2 2 t 2 2 ( 2m − 1) t + m 2 − 11m = 0 2 ( 2) ... trình (2) nghiệm:   m = −6 − 55  ∆=0 m 2 + 12m − 19 = 0  0 < t1 = t2 ⇔  ⇔ ⇔   m = −6 + 55 ⇔ m = −6 + 55  S > 0 m + 1 > 0  m > −1 5  • Kết luận: Với m ∈  ; +∞ ÷∪ −6 + 55 thì phương trình (1) 2 nghiệm 2  { } 11 Ứng dụng định Vi-et giải một số dạng tốn phương trình bậc hai quy về bậc hai chứa tham số c) Phương trình (1) 3 nghiệm phân biệt ⇔ phương trình (2) 2 nghiệm... = 0 2 ( 2) a) Để phương trình (1) nghiệm thì pt (2) nghiệm t ≥ 0 2  TH1: Phương trình (3) nghiệm t1 ≤ 0 ≤ t 2 ⇔ P ≤ 0 ⇔ m − 11m ≤ 0 ⇔ 0 ≤ m ≤ 11 16 Ứng dụng định Vi-et giải một số dạng tốn phương trình bậc hai quy về bậc hai chứa tham số 3m 2 + 7 m + 1 ≥ 0 ∆ ' ≥ 0  2  ⇔ m ≥ 11  TH2: Phương trình (3) nghiệm 0 ≤ t1 ≤ t2 ⇔  P ≥ 0 ⇔ m − 11m ≥ 0 S ≥ 0  2m − 1 ≥ 0   • Kết . Ứng dụng định lý Vi-et giải một số dạng toán phương trình bậc hai – quy về bậc hai có chứa tham số. 1 Ứng dụng định lý Vi-et giải một số dạng tốn phương trình bậc hai – quy về bậc hai có. phương trình (2) có nghiệm 0t ≥  TH1 : Phương trình (2) có nghiệm 1 2 0 0t t P≤ ≤ ⇔ ≤ . 4 Ứng dụng định lý Vi-et giải một số dạng toán phương trình bậc hai – quy về bậc hai có chứa tham số. . : Phương trình (3) có nghiệm 1 2 0 0t t P≤ ≤ ⇔ ≤ 5 Ứng dụng định lý Vi-et giải một số dạng toán phương trình bậc hai – quy về bậc hai có chứa tham số.  TH2 : Phương trình (3) có nghiệm 1 2 0 0

Ngày đăng: 23/06/2014, 12:04

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w