1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tiết 09: ĐẠO HÀM CỦA CÁC HÀM SỐ SƠ CẤP CƠ BẢN doc

7 726 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 188,45 KB

Nội dung

Tiết 09: ĐẠO HÀM CỦA CÁC HÀM SỐ CẤP BẢN . A. CHUẨN BỊ: I. Yêu cầu bài: 1. Yêu cầu kiến thức, kỹ năng, tư duy: Học sinh nắm vững Định lý và phương pháp cm các Định lý đó. Biết vận dụng các Định lý đó vào giải quyết các bài tập. Củng cố kiến thức lượng giác L11, qui tắc tính đạo hàm bằng định nghĩa và đạo hàm của hàm hợp. Rèn luyện kỹ năng nhớ, tính toán, tính nhẩm, phát triển tư duy cho học sinh. Rèn luyện tính cẩn thận, chính xác, khoa học cho học sinh. 2. Yêu cầu giáo dục tư tưởng, tình cảm: Qua bài giảng, học sinh say mê bộ môn hơn và hứng thú tìm tòi, giải quyết các vấn đề khoa học. II. Chuẩn bị: Thầy: giáo án, sgk, thước. Trò: vở, nháp, sgk, thước và đọc trước bài(phần 1). B. Thể hiện trên lớp: *Ổn định tổ chức: (1’) I. Kiểm tra bài cũ: (tại chỗ) 4’ CH: Nhắc lại qui tắc tìm đạo hàm bằng định nghĩa. đạo hàm của hsố hợp ĐA: *Quy tắc: 1).Cho x 0 số gia x và tính y = f(x 0 + x) - f(x 0 ) 2).Lập tỷ số y/x 3).Tìm giới hạn 0 0 '( ) lim x y y x x      * u = g(x) đạo hàm theo x. ký hiệu: u x ’ . y = f(u) đạo hàm theo u. ký hiệu: y u ’. thì hàm hợp y = f[g(x)] đạo hàm theo x là ' ' ' x u x y y u  2 2 2 2 2 II. Dạy bài mới: Đặt vấn đề: Ta đã nghiên cứu đạo hàm của một hàm số thường gặp và các phép toán của chúng. Nay ta tiếp tục nghiên cứu đạo hàm của một số hsố khác mà ta hay sử dụng. PHƯƠNG PHÁP tg NỘI DUNG Gọi học sinh đọc định lý và xác định dạng giới hạn? Gv ghi tóm tắt. Gv hướng dẫn học sinh cm: xác định đơn vị đo, xác định sinx. 9 I. Đạo hàm của các hàm số lượng giác: 1. Định lý: x  R 0 sin lim 1 x x x   Chứng minh: Vì x -> 0, nên ta chỉ cần Gv trình bày xác định T. Hãy so sánh S MOH , S q MOA , S TOA ? Xác định S MOH , S q MOA , S TOA ? x  lân cận của 0 thì x còn nằm trong cung nào? xét trong một khoảng nào đó chứa 0, chẳng hạn x  (-/2;/2): *Giả sử x  (0;  /2) Đặt ¼ AM = x(rad). OM giao với trục tang tại T. Ta có: 1 1 1 sin 2 2 2 OMA OMA OAT S S S x x tgx        S Vì x  (0;/2) nên sinx > 0. Chia cả hai vế cho sinx/2, ta được: 1 < x/sinx < 1/cosx  sin 1 x cosx x   * Giả sử x  (-  /2;0) Ta đặt x = -t[t  (0;/2)].  cosx = cos(-t) = cost   sin sin sin t x t x t t     Như cm trên, ta có: sin cos 1 t t t    sin 1 x cosx x   * Vậy  x (-/2;/2), ta đều có: sin 1 x cosx x   lại 0 0 limcos 1&lim1 1 x x x     Theo định lý kẹp giữa ta có: 0 sin lim 1 x x x    * ví dụ: Gv khắc sâu bản chất của định lý. Hãy xác định dạng giới hạn và công thức cần áp dụng. Hs đưa về dạng sin x x Hs tính. Gv cho hsố. Hd học sinh cm bằng cách tính đạo hàm bằng định nghĩa. Công thức cần áp dụng? u = ? y = ? 8 1). 0 sin lim ;( , 0) sin x ax a b bx   Ta có: 0 0 0 sin sin lim sin lim sin sin sin lim x x x ax ax a ax a a ax ax bx bx bx b b b bx bx       2). 0 lim sin x x x  Ta có: 0 0 0 1 1 lim lim 1 sin sin sin lim x x x x x x x x x       2. Đạo hàm của hàm y = sinx: a, Định lý: y = sinx thì y’ = cosx; x  R. b, Chú ý: y = sinu thì y’ = cosu.u’ c, ví dụ: Tính đạo hàm của hsố sau: 1). y = sin(x 2 - 3x + 5) y’ = cos(x 2 - 3x + 5).( x 2 - 3x + 5)’ = (2x - 3) cos(x 2 - 3x + 5) 2). y = sin 3 2x y’ = 3sin 2 x.(sin2x)’ = 3sin 2 x.cos2x.(2x)’ = 6 sin 2 x.cos2x = 6sin4x.sin2x 3. Đạo hàm của hsố y = cosx: a, Định lý: y = cosx  y’ = -sinx b, Chú ý: y = cosu  y’ = -sinu.u’ c,ví dụ: Hs xác định u, y và giải. Cho y = sin(/2 - x). Tính y’?  nội dung định lý. Hãy xác định công thức cần áp dụng? xác định u, y? Cho sin cos x y x  , tính y’?  nội dung định lý. HS xác định công thức rồi 8 7 Tính đạo hàm của hsố: y = cos 3 (3x 2 - 2) 2 Giải: y’ = 3cos 2 (3x 2 - 2) 2 .[cos(3x 2 - 2) 2 ]’ = 3cos 2 (3x 2 - 2) 2 .[-sin(3x 2 - 2) 2 .{(3x 2 - 2) 2 }’] = -3cos 2 (3x 2 - 2) 2 .sin(3x 2 - 2) 2 .2(3x 2 - 2).(3x 2 - 2)’ = - 36.(3x 2 - 2).cos 2 (3x 2 - 2).sin(3x 2 - 2) 4. Đạo hàmm của hsố y = tgx: a, Định lý: 2 1 ' cos y tgx y x    ;  x  R\{/2 + k; k  Z} b, Chú ý: 2 ' ' cos u y tgu y u    ;u  R\{/2 + k; k  Z } c, ví dụ: Tính đạo hàm của hsố y = tg 3 (x 2 + 3x) Giải: Ta có: 2 2 2 ' 3 ( 3 ). ( 3 ) ' y tg x x tg x x        2 2 2 2 2 2 2 2 2 ( 3 )' ' 3 ( 3 ). ( 3 ) ( 3 ) 3(2 3). ( 3 ) x x y tg x x cos x x tg x x x cos x x         5. Đạo hàm của hsố y = cotgx: a, Định lý: 2 1 cot ' sin y gx y x     ;  x ≠ k (k  Z) giải? Cho 1 y tgx  , tính y’? Hs nhận dạng hsố, xác định côn thức rồi áp dụng? 7 b, Chú ý: 2 ' cot ' sin u y gu y u     c, ví dụ: Tính đạo hàm của hsố sau: y = cotg 4 (3x) Giải:   3 3 2 3 2 ' 4cot (3 ). cot (3 ) ' (3 )' 4cot (3 ). sin (3 ) cot (3 ) 12 sin (3 ) y g x g x x g x x g x x            Củng cố: Muốn tính được đạo hàm của hsố, ta phải nhận dạng được hsố và xác định được công thức(nội dung các định lý) III. Hướng dẫn học sinh học và làm bài tập ở nhà:(1’) Viết lại các công thức cho thuộc. Xem ví dụ trong SGK. Làm bài tập 1. . Tiết 09: ĐẠO HÀM CỦA CÁC HÀM SỐ SƠ CẤP CƠ BẢN . A. CHUẨN BỊ: I. Yêu cầu bài: 1. Yêu cầu kiến thức, kỹ năng, tư duy: Học sinh nắm vững Định lý và phương pháp cm các Định lý. bài mới: Đặt vấn đề: Ta đã nghiên cứu đạo hàm của một hàm số thường gặp và các phép toán của chúng. Nay ta tiếp tục nghiên cứu đạo hàm của một số hsố khác mà ta hay sử dụng. PHƯƠNG PHÁP. 4’ CH: Nhắc lại qui tắc tìm đạo hàm bằng định nghĩa. đạo hàm của hsố hợp ĐA: *Quy tắc: 1).Cho x 0 số gia x và tính y = f(x 0 + x) - f(x 0 ) 2).Lập tỷ số y/x 3).Tìm giới hạn 0 0 '(

Ngày đăng: 20/06/2014, 14:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w