Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
1,69 MB
Nội dung
BÀI DIỆN TÍCH HÌNH CHỮ NHẬT Mục tiêu Kiến thức + Nắm khái niệm diện tích đa giác + Nắm cơng thức tính diện tích hình chữ nhật, cơng thức tính diện tích hình vng, cơng thức tính diện tích tam giác vng Kĩ + Tính diện tích hình vng, hình chữ nhật, tam giác vng Trang I LÍ THUYẾT TRỌNG TÂM Khái niệm Hình chữ nhật tứ giác có góc vng Cơng thức tính diện tích hình chữ nhật Diện tích hình chữ nhật tích hai kích thước S a.b (S diện tích, a chiều dài, b chiều rộng hình chữ nhật) Cơng thức tính diện tích hình vng, tam giác vng Diện tích hình vng bình phương cạnh S a Diện tích tam giác vng nửa tích hai cạnh góc vng S a.b II CÁC DẠNG BÀI TẬP Dạng 1: Diện tích hình chữ nhật Phương pháp giải - Cơng thức diện tích hình chữ nhật: S hcn a.b với Ví dụ: Cho hình chữ nhật có chu vi 30m, a, b độ dài hai kích thước hình chữ nhật chiều dài chiều rộng 3m Tính diện tích - Một số cơng thức liên hệ cần ghi nhớ hình hình chữ nhật chữ nhật Chu vi hình chữ nhật: a b Độ dài đường chéo hình chữ nhật a b2 Bước Thiết lập mối quan hệ chiều dài, chiều rộng hình chữ nhật Gọi a, b chiều dài chiều rộng hình chữ nhật, với a b Hình chữ nhật có chu vi 30m nên Trang 2 a b 30 hay a b 15 Mà theo giả thiết, ta có a b 3 nên suy 15 a 9 m ; b a 9 6 m Bước 2: Áp dụng cơng thức, tính diện tích hình chữ Khi đó, diện tích hình chữ nhật cho nhật S a.b 6.9 54 m Ví dụ mẫu Ví dụ Cho hình chữ nhật có chiều dài chiều rộng 3cm Biết đường chéo hình chữ nhật dài 15cm Tính diện tích hình chữ nhật Hướng dẫn giải Gọi chiều dài hình chữ nhật có độ dài a (cm) a Do chiều dài chiều rộng 3cm nên hình chữ nhật có chiều rộng a 3 cm Mà đường chéo hình chữ nhật dài 15cm nên ta có a a 3 152 a a 6a 225 2a 6a 216 0 a 3a 108 0 a 12a 9a 108 0 a 12 a 0 a 12 0 a 12 (thỏa mãn) a (loại) a 0 Vậy hình chữ nhật có chiều dài 12cm, chiều rộng 12 9 cm Khi đó, diện tích hình chữ nhật S 9.12 108 cm Ví dụ Cho đa giác có hình dạng kích thước hình vẽ sau Tính diện tích đa giác Hướng dẫn giải Ta chia đa giác ban đầu thành hình chữ nhật khơng có điểm chung hình Chú ý: có nhiều cách chia bên hình nhiên cần chia để Trang cạnh hình chữ Diện tích hình chữ nhật kí hiệu S1 , S2 , S3 nhật tính độ Hình chữ nhật S1 gồm hai kích thước 6m, 3m nên ta có: dài S1 3.6 18 m Hình chữ nhật S gồm hai kích thước 3 m , 1 3 m nên ta có: S 3.3 9 m Hình chữ nhật S3 gồm hai kích thước 4m, 3m nên ta có: S3 4.3 12 m Vậy diện tích đa giác ban đầu là: S1 S S3 18 12 39 m Bài tập tự luyện dạng Câu 1: Gọi a, b a, b hai kích thước hình chữ nhật Diện tích hình chữ nhật A S 2 a b C S ab B S ab D S 2ab Câu 2: Cho hình chữ nhật ABCD có chiều dài 12cm diện tích 60cm2 Chiều rộng hình chữ nhật A 5cm B 10cm C 6cm D 2,5cm Câu 3: Khi tăng chiều dài hình chữ nhật lên lần, đồng thời giảm chiều rộng lần diện tích hình chữ nhật A tăng lần B tăng 12 lần C giảm lần D tăng lần Câu 4: Cho hình chữ nhật có chu vi 30cm chiều dài chiều rộng 3cm Diện tích hình chữ nhật B 222, 75cm2 A 54cm2 C 192cm D 72cm2 Câu 5: Cho hình chữ nhật có chu vi 54cm Biết chiều dài chiều rộng hình chữ nhật tỉ lệ với Tính diện tích hình chữ nhật Câu 6: Hồn thành bảng thơng tin sau cho hình chữ nhật tương ứng Hình chữ nhật Chiều dài (cm) Chiều rộng (cm) ABCD MNPQ EFGH 24 GHIK Đường chéo (cm) Diện tích cm Chu vi (cm) 20 25 44 Câu 7: Cho hình chữ nhật ABCD có AB 2 AD Trên cạnh AB lấy điểm I cho IA 2.IB a) Chứng minh S IAD SIBC SICD 2 b) Chứng minh S ABCD AC Trang c) Biết S AID 12cm Tính diện tích hình chữ nhật ABCD HƯỚNG DẪN GIẢI BÀI TẬP TỰ LUYỆN 1–B 2–A 3–D 4–A Câu Gọi x, y độ dài chiều dài chiều rộng hình chữ nhật (x>y>0) Do chu vi hình chữ nhật 54 cm nên ta có x y Mà theo giả thiết, ta có 54 27 x y x y x y 27 3 54 Theo tính chất dãy tỷ số nhau, ta có Khi đó, ta có: x 3.5 15 cm ; y 3.4 12 cm Vậy diện tích hình chữ nhật x y 15.12 180 cm Câu Hình chữ nhật Chiều dài Chiều rộng Đường chéo Diện tích Chu vi (cm) (cm) (cm) cm (cm) 24 15 7 10 41 25 274 48 20 168 105 28 18 62 44 ABCD MNPQ EFGH GHIK Câu a) Dựng IH CD ( H CD ) Xét tứ giác AIHD có: IAD ADH IHD 90 Suy AIHD hình chữ nhật IH AD BC 1 Ta có S ICD IH CD AD.CD 2 Mà S ABCD AD.CD SICD S ABCD Mặt khác, ta có: S ABCD SICD S IAD SICB SIAD SICB S ABCD S ICD S ABCD 1 S ABCD SIAD S ICB S ABCD 2 Vậy S IAD SICB SICD Trang b) Ta có S ABCD AB AD Mà AB 2 AD 2 BC ABC vng B nên ta có: AC AB AD AD AD 5 AD (định lý Py-ta-go) 2 Do đó, ta có S ABCD AB AD 2 AD AC c) Do IAD vng A nên ta có: S IAD AD AI 1 Ta có: IBC vuông B nên S IBC BC.BI AD.BI 2 1 1 Mà AI 2 BI hay BI AI nên ta có: S IBC AD.BI SIAD 12 6 cm 2 2 Theo chứng minh trên, ta có: S ABCD 2 S IAD S ICB 2 12 36 cm Dạng 2: Diện tích hình vng Phương pháp giải Cơng thức tính diện tích hình vng: S a với a cạnh hình vng Ví dụ: Cho hình chữ nhật ABCD có chiều dài 11m Chú ý: Chu vi hình vng 4a diện tích 55m Tính diện tích hình vng có chu vi với hình chữ nhật ABCD Hướng dẫn giải Bước Xác định độ dài cạnh hình vng Từ giả thiết, ta xác định chiều rộng hình chữ nhật là: 55 :11 5 m Chu vi hình chữ nhật 11 32 m Do hình vng có chu vi với hình chữ nhật nên ta xác định cạnh hình vng Bước 2: Áp dụng cơng thức để tính tốn diện tích đại lượng cần tìm 32 : 8 m Khi đó, diện tích hình vng 82 64m Ví dụ mẫu Ví dụ Cho hình vng ABCD Biết tăng độ dài cạnh hình vng lên lần diện tích hình vng tăng thêm 200cm so với ban đầu Tính chu vi hình vng ban đầu Hướng dẫn giải Gọi a a cm độ dài cạnh hình vng ban đầu 2 Diện tích hình vng a cm Khi tăng độ dài cạnh lên lần, diện tích Trang hình vng 3a 9a diện tích hình vng tăng lên 200cm nên ta có 9a a 200 8a 200 a 25 a 5 Vậy chu vi hình vng ban đầu là: 4a 4.5 20 cm Bài tập tự luyện dạng Câu 1: Hình vng ABCD có chu vi 32m, diện tích hình vng ABCD A S ABCD 16m B S ABCD 36m C S ABCD 64m D S ABCD 56m Câu 2: Gấp đôi tất cạnh hình vng Ta hình vng có diện tích tăng A lần B lần C lần D 16 lần Câu 3: Cho hình vng ABCD có O giao điểm hai đường chéo Lấy điểm E cạnh BC, lấy điểm F cạnh CD cho BE CF Chứng minh: a) OE OF b) SOECF S ABCD c) Biết AB 6cm Tính diện tích lục giác ABEOFD Câu 4: Cho hình vng ABCD Biết tăng độ dài cạnh hình vng thêm 3cm diện tích hình vng tăng thêm 45cm2 Tính diện tích hình vuông ABCD ban đầu HƯỚNG DẪN GIẢI BÀI TẬP TỰ LUYỆN 1–C 2–B Câu a) Do tứ giác ABCD hình vng tâm O nên OA OB OC OD ; BD, CA phân giác ABC , BCD Xét OBE OCF có: OB OC ; OBE OCF 45 ; BE CF (giả thiết) OBE OCF (c.g c ) (hai góc tương ứng) BOE COF Khi đó, ta có: BOE COE COF COE EOF COB 90 OE OF b) Từ chứng minh trên, ta có: S OBE SOCF SOCF S OCE S OBE S OCE S OECF SOBC 1 Mà SOAB SOBC SOCD SODA S ABCD SOECF S ABCD 4 Trang c) 2 Có S ABCD AB 6 36 cm Mà S ABCD S ABEOFD SOECF S ABEOFD S ABCD SOECF S ABCD S ABCD 3 S ABEOFD S ABCD 36 27 cm 4 Câu Gọi a độ dài cạnh hình vng ban đầu a 0 (cm) 2 Diện tích hình vng S1 a cm Khi tăng cm, hình vng có cạnh a + (cm) Diện tích hình vng S a 3 cm Từ giả thiết, ta có S S1 45 a 3 a 45 a 6a a 45 6a 36 0 a 6 (thỏa mãn) 2 Vậy hình vng ABCD ban đầu có diện tích S1 6 36 cm Dạng Diện tích tam giác vng Phương pháp giải Cơng thức diện tích tam giác vng S ab Ví dụ: Cho tam giác ABC vng A có: AB 12cm, BC 15cm Tính diện tích tam giác ABC Bước Xác định độ dài hai cạnh góc vng Áp dụng định lý Py-ta-go tam giác vng ABC, ta có tam giác vng BC AB AC AC BC AB 152 122 225 144 81 Trang AC 9 cm Bước Tính diện tích tam giác Vậy diện tích tam giác ABC là: 1 AB AC 9.12 54 cm 2 Ví dụ mẫu Ví dụ Cho tam giác ABC vng A, có BC 25cm chu vi tam giác 56cm Tính diện tích tam giác ABC Hướng dẫn giải Tam giác ABC có chu vi 56cm nên ta có : AB BC AC 56 AB AC 56 BC 56 25 31 cm Đặt AB b b giả sử AB AC Suy AC 31 b Áp dụng định lý Py-ta-go tam giác ABC, ta có: BC AB AC 2 b 31 b 252 b2 b 62b 961 625 2b 62b 336 0 b 31b 168 0 b 24b 7b 168 0 b b 24 b 24 0 b 24 b 0 b 24 0 b 0 b 24 b 7 AC 31 24 7 Khi AC 31 24 Do AB AC nên ta chọn AB b 24cm; AC 7cm 1 Vậy diện tích tam giác ABC là: S ABC AB AC 24.7 84 cm 2 Bài tập tự luyện dạng Câu Tam giác vng ABC có diện tích 30cm2 hai cạnh góc vng 7cm Chu vi tam giác vng A 20cm B 18cm C 30cm D 25cm Trang Câu Cho tam giác ABC vng A, có diện tích 84cm2 độ dài cạnh huyền BC 25cm Chu vi tam giác ABC A 50cm B 58cm C 29cm D 56cm Câu Cho tam giác ABC vng A, có hiệu độ dài hai cạnh góc vng 7cm độ dài cạnh huyền BC 13cm a) Tính độ dài cạnh góc vng tam giác ABC b) Tính diện tích tam giác ABC Câu Cho tam giác ABC vuông A có hai cạnh góc vng 3cm diện tích 54cm2 Tính độ dài cạnh huyền tam giác Câu Cho tam giác ABC cân A, đường cao AD, BE, CF đồng quy H a) Chứng minh rằng: S BDHF SCDHE b) Tìm điều kiện ABC để S AHF S CHD HƯỚNG DẪN GIẢI BÀI TẬP TỰ LUYỆN 1–C 2–D Câu a) Đặt AB = a với a>0 (Giả sử AB AC ) Từ giả thiết, ta có AC = a + Áp dụng định lí Py-ta-go tam giác ABC, ta có AB AC BC 2 a a 132 a a 14a 49 169 2a 14a 120 0 a a 60 0 a 12a 5a 60 0 a 12 a 0 a 0 (do a + 12>0) a 5 Vậy độ dài cạnh góc vng tam giác ABC là: AB = cm, AC = 5+7=12 cm b) 1 Khi S ABC AB AC 5.12 30 cm 2 Câu Theo giả thiết, ABC có hai cạnh góc vng cm nên ta đặt AB a a AC a Vì diện tích ABC 54cm2 nên ta có phương trình: a a 3 54 Trang 10 a 3a 108 a 3a 108 0 a 12a 9a 108 0 a 12 a 0 a 0 a 12 a 9 hay AB 9cm AC 9 12 cm Khi áp dụng định lý Py-ta-go ABC , ta có BC AB AC 92 122 81 144 225 hay BC 15 cm Câu a) ABC cân đỉnh A, suy AD đường cao, đồng thời trung tuyến, đường phân giác Xét ABD ACD có: AD chung; AB = AC; BD = CD ABD ACD (c.g c) SABD S ACD (1) Xét AHF AHE có: AH chung; HAF HAE ; AFH AEH 90 AHF AHE ( cạnh huyền – góc nhọn ) SAHF S AHE (2) Từ (1) (2), ta có: S ABD S AHF S ACD S AHE S BDHF SCDHE b) Theo chứng minh trên, ta có S ABD SACD Mà S ABD SACD SABC , suy S ABD SACD S ABC Ta cần S AHF S CHD SAHF S BDHF SCHD S BDHF SABD SCBF 1 1 Nên theo trên, ta có S CBF S ABD SABC CF BF CF BA BF BA 2 2 Khi đó, F trung điểm AB Vậy CF đường cao, đồng thời trung tuyến ABC Suy ABC cân C Do ABC tam giác Vậy ABC tam giác S AHF S CHD Trang 11