1. Trang chủ
  2. » Luận Văn - Báo Cáo

Đề phát triển minh họa bgd năm 2022 môn toán đặng việt đông đề 3 bản word có giải

26 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 1,49 MB

Nội dung

Đ phát triển minh họa BGD năm 2022 - Môn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n minh họa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ a BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ NG VIỆT ĐÔNG - ĐỀ T ĐÔNG - ĐỀ 3 Bản word có giảin word có giản word có giảii Câu Câu Câu Số phức đối z 5  7i A z 5  7i B  z   7i C  z   7i D  z 5  7i S : x  y   z   16  S  bằng: không gian Oxyz , cho mặt cầu   Bán kính A B 32 C 16 D Cho hàm số y  x  x  Điểm không thuộc đồ thị hàm số cho? A Câu  0;3 B Câu Câu Tìm họ nguyên hàm hàm số: f ( x ) ( x )  14 x C x C A B Cho hàm số f  x f  x C x( x  1)  C có điểm cực trị B log x > Tập nghiệm bất phương trình ổ 4ử ỗ - Ơ; ữ ữ ỗ - Ơ ;3 ữ ỗ 9ứ A ố B ) 2 có bảng xét dấu đạo hàm  2;3 f  x  ( x  1)  C D sau: C D C ( 4;+Ơ ổ 4ữ ỗ 0; ữ ỗ ữ ỗ D è ø ) Thể tích khối chóp có diện tích đáy 2a , chiều cao a 2a 3 2a 3 a3 V A B C V 2a D  Tập xác định hàm số y  x  \  0 A  B Câu 10 Nghiệm phương trình A x 1 Câu 11 D D ( Câu   2;  3 2 Hàm số A Câu C Khối trụ tích 20 chiều cao Diện tích đáy khối trụ A 5 B 15 5 C Câu   1;  Nếu A B x 3 f  x  dx 5 f  x  dx 3  0;  log   x  log  x   C C D  2;  x D x 7 B  tính tích phân C I f  x  dx D  Câu 12 Cho số phức z 2  3i Số phức w 3 z A w   9i B w 6  9i C w 6  9i D w   9i Oxyz , cho phương trình tổng quát mặt phẳng Câu 13 Trong mặt phẳng tọa độ  P  : x  y  z  0 Một véc tơ pháp tuyến mặt phẳng  P  có tọa độ là:   1;  3;   1; 3;   1;  3;    1;  3;  A B C D r r 2 u = ( 1;0; 0) Oxyz b + c −25 Câu 14 Trong không gian , cho hai vectơ Tọa độ - 3u là: A ( 3;0;0) B ( 6;0;0) C ( 3;1; - 1) D ( - 3;0;0) Câu 15 Trong hình vẽ bên, điểm M biểu diễn số phức z Số phức z y M O -3 A z   2i B z   2i x C z 3  2i D z 3  2i C x  D x  Q log a b 2c log b  2;log c  a a Câu 17 Cho Tính Q  Q  A B C Q 10 D Q 12 Câu 16 Tiệm cận đứng đồ thị hàm số A x 3 B x 1 y x x    Câu 18 Hình vẽ bên đồ thị hàm số nào? y O A y x 1 x B y x x 1 x C y x 1 2x  D d: Câu 19 Trong không gian Oxyz , điểm thuộc đường thẳng A P   1;2;1 B Q  1;  2;  1 C N   1;3;2  y 2x 1 x x 1 y  z    1 3 ? D P  1;2;1 Câu 20 Có cách chọn học sinh từ nhóm gồm học sinh nam học sinh nữ A B 12 C D 35 ' ' ' Câu 21 Cho hình lăng trụ đứng ABC A B C Gọi H trực tâm ABC Thể tích khối lăng trụ tính được theo công thức sau đây? A V =S Δ ABC CC ' 1 V = S A ' A V = S A' H Δ ABC V =S Δ ABC A ' H C 3 Δ ABC B D 1   ;    đạo hàm hàm số y log (2 x  1)  x là: Câu 22 Trên khoảng  2 ln y' 1 y'  1 y'  1 (2 x  1).ln 2x  2x  A B C Câu 23 Cho hàm số y  f  x D y'  1 2x  có bảng biến thiên hình vẽ Mệnh đề đúng?   ;    3;  B Hàm số nghịch biến khoảng   ;  3 C Hàm số nghịch biến khoảng   ;  3 D Hàm số đồng biến khoảng A Hàm số đồng biến khoảng Câu 24 Cho khối nón tích khối nón  a bán kính đáy a Chiều cao khối nón a A a B 3a C 2a D Câu 25 Biết f  x  dx 4 A Câu 26 Cho cấp số cộng A 3 f  x  dx Giá trị B  un  C 64 có u1  , u5 5 Tìm công sai d B C  f  x  2 x  sin x Câu 27 Họ nguyên hàm hàm số 2 A x  cot x  C B x  tan x  C 2 C x  cot x  C D x  tan x  C y  f  x Câu 28 Cho hàm số có bảng biến thiên sau: Giá trị cực tiểu hàm số cho D 12 D  A C B D  y = x3 - x + x +1 [1;3] lần lượt Câu 29 Hàm số đạt giá trị lớn giá trị nhỏ đoạn hai điểm x1 x2 Khi x1 + x2 A B C  ;1 Câu 30 Hàm số sau nghịch biến khoảng ? 2x  y x 3 A B y  x  21x  60 x   D   x2  x C y  x  x  15 x  D log a  2log b 2 , mệnh đề Câu 31 Với a, b số thực dương tùy ý thỏa mãn đúng? 2 A a 9b B a 9b C a 6b D a 9b y mp  ABCD  Câu 32 Cho ABCD nửa lục giác tâm O Lấy điểm S không thuộc cho SOB vuông cân S (tham khảo hình bên) S A D O B C Góc hai đường thẳng SB CD A 30 B 90 Câu 33 Nếu 1 f ( x)dx   f  x   x  dx A  B C 45 D 60  C  D M  2;  1;  P :3 x  y  z  0 Câu 34 Trong không gian Oxyz , cho điểm mặt phẳng   Phương P trình mặt phẳng (Q) qua M song song với mặt phẳng   A x  y  z  21 0 B x  y  z  21 0 C 3x  y  z  12 0 D 3x  y  z  12 0  i  z 2  i    2i  i Câu 35 Cho số phức z thỏa mãn  Số phức liên hợp z A  i B  i C   i D   i Câu 36 Cho hình lăng trụ đứng ABC ABC  có AA 2 a, tam giác ABC vuông cân AB BC a  ABC  Khoảng cách từ điểm C  đến mặt phẳng 2a 2a a A B 2a C D Câu 37 Từ hộp chứa 16 cầu gồm cầu đỏ cầu xanh, lấy ngẫu nhiên đồng thời ba Xác xuất để lấy được cầu đỏ 17 27 A 20 B 20 C 28 D 28 M  1; 2;1 N  3;1;   Câu 38 Trong không gian Oxyz , cho hai điểm Đường thẳng MN có phương trình x 1 y  z 1 x y z      B 1 3 A x 1 y  z 1 x y z      D 1 3 C Câu 39 Bất phương trình A Câu 40 Cho hàm số x  x  ln  x   0 B y  f  x liên tục  có đồ thị hình vẽ sau Số nghiệm phương trình A có nghiệm ngun? C D Vơ số   f  f  e x  1 B C D f  x  cos x.cos 2 x, x   F  x Biết nguyên hàm 121 F    f  x 225 , F    thỏa mãn 242 208 121 149 A 225 B 225 C 225 D 225 Câu 41 Cho hàm số f  x có f   0 Câu 42 Cho hình chóp S ABC có đáy tam giác ABC cạnh a , tam giác SBA vuông B , tam  SAB   ABC  60 Tính thể giác SAC vng C Biết góc hai mặt phẳng tích khối chóp S ABC theo a 3a 3a 3a 3a A B 12 C D z   m  1 z  m  3m  0 ( m tham số z ,z thực) Tổng giá trị ngun m để phương trình có hai nghiệm thỏa mãn z12  z22 6 Câu 43 Trên tập hợp số phức, xét phương trình A B C D z   2i 1 z2   8i 2 Câu 44 Cho hai số phức z1 ; z2 thỏa mãn ; Tìm giá trị nhỏ biểu P  z1   2i  z2   8i  z1  z thức A 30 B 25 C 35 D 20 (C ) Gọi E điểm thuộc (C ) cho tiếp tuyến Câu 45 Cho hàm số y = x - 3x + 3có đồ thị (C ) E cắt (C ) điểm thứ hai F diện tích hình phẳng giới hạn đường thẳng 27 C ( ) (C ) F cắt (C ) điểm thứ hai Q Diện tích hình EF với 64 Tiếp tuyến (C ) phẳng giới hạn đường thẳng FQ với 27 27 459 135 A B C 64 D 64 Câu 46 Trong không gian với hệ tọa độ Oxyz , cho hai mặt phẳng ( P) : x  y  z  0, (Q) : x  my  (m  1) z  2019 0 Khi hai mặt phẳng  P  ,  Q  tạo với góc nhỏ Q mặt phẳng   qua điểm M sau đây? A M (2019;  1;1) B M (0;  2019;0) C M ( 2019;1;1) D M (0;0;  2019) Câu 47 Cho hình nón đỉnh S có bán kính đáy 3a Gọi A B hai điểm thuộc đường tròn đáy cho AB 4a Biết khoảng cách từ tâm đáy đến mặt phẳng ( SAB ) 2a , diện tích tồn phần hình nón cho 2 4 a 15  8 a 15  A 15 a B C 15 a D Câu 48 Có số nguyên x  ( 5;5) cho ứng với x , tồn giá trị nguyên   12.62 y  x  39 y  ( 10;10) thỏa mãn A B 35 y x2   7 x 52 y.8 ? C D  x 1  3a  at  Δ :  y   t  z 2  3a    a  t  Câu 49 Trong không gian với hệ toạ độ Oxyz , cho đường thẳng Biết a M  1;1;1 thay đổi tồn mặt cầu cố định qua điểm tiếp xúc với đường thẳng Δ Tìm bán kính mặt cầu A B C D Câu 50 Cho hàm số đa thức bậc bốn y  f  x , biết hàm số có ba điểm cực trị x  3, x 3, x 5 Có tất giá trị nguyên tham số m cho hàm số điểm cực trị A B C BẢNG ĐÁP ÁNNG ĐÁP ÁN  g  x   f e x 3 x  m D  có 1.B 11.C 21.A 31.B 41.C 2.A 12.C 22.A 32.C 42.B 3.C 13.C 23.D 33.A 43.D 4.A 14.D 24.B 34.C 44.B 5.A 15.B 25.D 35.D 45.B 6.A 16.A 26.A 36.A 46.C 7.D 17.A 27.C 37.A 47.B 8.B 18.A 28.D 38.B 48.C 9.C 19.A 29.D 39.C 49.A 10.A 20.B 30.B 40.B 50.D LỜI GIẢI CHI TIẾTI GIẢNG ĐÁP ÁNI CHI TIẾTT Câu Câu Số phức đối phức đối c đố phức đối i a z 5  7i A z 5  7i B  z   7i D  z 5  7i Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐÔNG - ĐỀ n B Số phức đối phức đối c đố phức đối i a z  z Suy  z   7i S  : x  y   z   16  S  bằng:ng:  Oxyz không gian , cho mặt cầu t cầu u Bán kính a A B 32 C 16 D Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n A S : x2  y2   z   Mặt cầu t cầu u   Câu C  z   7i Lời giảii giản word có giảii 16 có bán kính bằng:ng R 4 Cho hàm số phức đối y  x  x  Điểm m i không thuộc đồ thị hàm số cho?c đồ thị hàm số cho? thị hàm số cho? hàm số phức đối cho? 0;3  1;   2;  3 2;3 A  B  C  D  Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n C Thay tọa độ đáp án.a độc đồ thị hàm số cho? đáp án Câu Khố phức đối i trụ tích có thểm tích bằng:ng 20 chiều cao u cao bằng:ng Diện tích đáy khối trụ bằngn tích đáy a khố phức đối i trụ tích bằng:ng A 5 B 15 D 5 C Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n A Dựa vào cơng thức tính thể tích khối trụ ta có a vào cơng thức đối c tính thểm tích a khố phức đối i trụ tích ta có B 5 Câu 2 Tìm họa độ đáp án nguyên hàm a hàm số phức đối : f ( x ) ( x )  14 x C x C 2 A B C x( x  1)  C Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n A f ( x)dx (x )dx  x Ta có Câu Cho hàm số phức đối f  x C có bảng xét dấu đạo hàm ng xét dấu đạo hàm u a đạo hàm o hàm f  x  sau: ( x  1)  C D Hàm số phức đối A f  x có điểm m cựa vào cơng thức tính thể tích khối trụ ta có c trị hàm số cho? B C D Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n A y  f  x  Từ bảng xét dấu hàm số bảng xét dấu đạo hàm ng xét dấu đạo hàm u a hàm số phức đối sau ta có bảng xét dấu đạo hàm ng biến thiên hàm số n thiên a hàm số phức đối Quan sát bảng xét dấu đạo hàm ng biến thiên hàm số n thiên ta thấu đạo hàm y hàm số phức đối Câu f  x log x > Tập nghiệm bất phương trình p nghiện tích đáy khối trụ bằngm a bấu đạo hàm t phng trỡnh ng trỡnh ổ 4ử ỗ - Ơ; ữ ữ ỗ - Ơ ;3 ữ ỗ 9ứ A è B ( ) y  f  x có bố phức đối n điểm m cựa vào cơng thức tính thể tích khối trụ ta có c trị hàm số cho? ( C Lời giảii giản word cú giii 4;+Ơ ) ổ 4ữ ỗ 0; ữ ç ÷ ç D è ø Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n D Ta cú ổ 4ữ ỗ 0; ữ ỗ ỗ ố 9ữ ứ Cõu ổử 2÷ log x > Û < x < ỗ < x < ữ ỗ ữ ỗ ố3 ứ Vp nghim ca bất phương trình y tập nghiệm bất phương trình p nghiện tích đáy khối trụ bằngm a bấu đạo hàm t phương trình ng trình Thểm tích khố phức đối i chóp có diện tích đáy khối trụ bằngn tích đáy bằng:ng 2a , chiều cao u cao bằng:ng a 2a 3 2a 3 a3 V 3 A B C V 2a D Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n B Thểm tích khố phức đối i chóp có diện tích đáy khối trụ bằngn tích đáy bằng:ng 2a , chiều cao u cao bằng:ng a 1 2a 3 V  Bh  2a a  3 Câu  Tập nghiệm bất phương trình p xác đị hàm số cho?nh a hàm số phức đối y  x  \  0 A  B C  0;  Lời giảii giản word có giảii D  2;  Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n C Do số phức đối  không nguyên nên tập nghiệm bất phương trình p xác đị hàm số cho?nh a hàm số phức đối C log   x  log  x   Câu 10 Nghiện tích đáy khối trụ bằngm a phương trình ng trình A x 1  0;  Chọa độ đáp án.n đáp án x C B x 3 D x 7 Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n A 2 x   log   x  log  x      5  x 2 x  x     x 1 Vập nghiệm bất phương trình y nghiện tích đáy khối trụ bằngm a phương trình ng trình x 1 Chọa độ đáp án.n đáp án#A Câu 11 Nến thiên hàm số u A f  x  dx 5 f  x  dx 3 B  tính tích phân C I f  x  dx D  Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐÔNG - ĐỀ n C Ta có 4 f  x  dx  f  x  dx f  x  dx  I f  x  dx 5  2 3 Câu 12 Cho số phức đối phức đối c z 2  3i Số phức đối phức đối c w 3 z A w   9i B w 6  9i C w 6  9i nên chọa độ đáp án.n đáp án C D w   9i Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n C Ta có 3z 3   3i  6  9i Câu 13 Trong mặt cầu t phẳng tọa độ ng tọa độ đáp án.a độc đồ thị hàm số cho? Oxyz , cho phương trình ng trình tổng quát mặt phẳngng quát a mặt cầu t phẳng tọa độ ng  P  : x  y  z  0 Mộc đồ thị hàm số cho?t véc tơng trình pháp tuyến thiên hàm số n a mặt cầu t phẳng tọa độ ng  P  có tọa độ đáp án.a độc đồ thị hàm số cho? là:   1;  3;   1; 3;   1;  3;    1;  3;  A B C D Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n C  P  : x  y  z 1 0 nên mộc đồ thị hàm số cho?t véc tơng trình pháp tuyến thiên hàm số n Phương trình ng trình tổng quát mặt phẳngng quát a mặt cầu t phẳng tọa độ ng  P  có tọa độ đáp án.a độc đồ thị hàm số cho?  2;  6;  8 hay  1;  3;   a mặt cầu t phẳng tọa độ ng r r 2 u = ( 1; 0;0) Oxyz b + c −25 Câu 14 Trong khơng gian , cho hai vectơng trình Tọa độ đáp án.a độc đồ thị hàm số cho? a - 3u là: A ( 3;0;0) B ( 6;0;0) C ( 3;1; - 1) D ( - 3;0;0) Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n D Ta có: r - 3u = ( - 3;0;0) Câu 15 Trong hình vẽ bên, điểm m M biểm u diễn số phức n số phức đối phức đối c z Số phức đối phức đối c z y M O -3 A z   2i B z   2i x C z 3  2i D z 3  2i Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n B Từ bảng xét dấu hàm số hình vẽ ta có z   2i , suy z   2i Câu 16 Tiện tích đáy khối trụ bằngm cập nghiệm bất phương trình n đức đối ng a đồ thị hàm số cho? thị hàm số cho? hàm số phức đối A x 3 B x 1 y x x  C x  D x  Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n A TXĐ D  \  3 Ta có: lim x  3 x   x Suy tiện tích đáy khối trụ bằngm cập nghiệm bất phương trình n đức đối ng đường thẳng ng thẳng tọa độ ng x 3   Q log a b 2c Câu 17 Cho log a b 2;log a c 3 Tính A Q 7 B Q 4 C Q 10 D Q 12 Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n A Câu 18 Hình vẽ bên i đồ thị hàm số cho? thị hàm số cho? a hàm số phức đối nào? y O x   ;    3;  B Hàm số phức đối nghị hàm số cho?ch biến thiên hàm số n khoảng xét dấu đạo hàm ng   ;  3 C Hàm số phức đối nghị hàm số cho?ch biến thiên hàm số n khoảng xét dấu đạo hàm ng   ;  3 D Hàm số phức đối đồ thị hàm số cho?ng biến thiên hàm số n khoảng xét dấu đạo hàm ng A Hàm số phức đối đồ thị hàm số cho?ng biến thiên hàm số n khoảng xét dấu đạo hàm ng Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n D D  \   3 Tập nghiệm bất phương trình p xác đị hàm số cho?nh: y '  Ta có , x  D Câu 24 Cho khố phức đối i nón có thểm tích khố phức đối i nón bằng:ng  a bán kính đáy bằng:ng a Chiều cao u cao a khố phức đối i nón bằng:ng a A a B 3a C 2a D Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n B 3V 3. a V   r 2h  h   3a r  a2 Ta có: Câu 25 Biến thiên hàm số t 5 f  x  dx 4 3 f  x  dx A Giá trị hàm số cho? a B bằng:ng C 64 Lời giảii giản word có giảii D 12 Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n D Ta có 3 f  x  dx 3f  x  dx 3.4 12 Câu 26 Cho cấu đạo hàm p số phức đối cộc đồ thị hàm số cho?ng A  un  có u1  , u5 5 Tìm cơng sai d B C  Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n A Ta có u5 u1  4d    4d  d 2 Câu 27 Họa độ đáp án nguyên hàm a hàm số phức đối f  x  2 x  sin x D  A x  cot x  C C x  cot x  C B x  tan x  C D x  tan x  C Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐÔNG - ĐỀ n C  Ta có f  x dx  x  sin Câu 28 Cho hàm số phức đối y  f  x  dx x  cot x  C x có bảng xét dấu đạo hàm ng biến thiên hàm số n thiên sau: Giá trị hàm số cho? cựa vào cơng thức tính thể tích khối trụ ta có c tiểm u a hàm số phức đối cho bằng:ng A B C Lời giảii giản word có giảii D  Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n D Dựa vào cơng thức tính thể tích khối trụ ta có a vào BBT a hàm số phức đối , giá trị hàm số cho? cựa vào cơng thức tính thể tích khối trụ ta có c tiểm u a hàm số phức đối cho bằng:ng  y = x3 - x + x +1 [1;3] Câu 29 Hàm số phức đối đạo hàm t giá trị hàm số cho? lới n nhấu đạo hàm t giá trị hàm số cho? nhỏa nhấu đạo hàm t đoạo hàm n lầu n lược theo công thức nào sau đây?t tạo hàm i hai điểm m x1 x2 Khi x1 + x2 bằng:ng A B C Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐÔNG - ĐỀ n D D Tập nghiệm bất phương trình p xác đị hàm số cho?nh: D =  éx = Î [1;3] y ¢= Û x - x + = Û ê êx = Î [1;3] y ¢= x - x + ; ê ë 29 17 11 y ( 1) = y ( 2) = y ( 3) = , , Ta có:  17 y   x 2  max  1;3   y  29  x 1   Do đó,  1;3 Vập nghiệm bất phương trình y hàm số phức đối đạo hàm t giá trị hàm số cho? lới n nhấu đạo hàm t giá trị hàm số cho? nhỏa nhấu đạo hàm t đoạo hàm n x1 = x2 = Þ x1 + x2 =    ;1 Câu 30 Hàm số phức đối sau nghị hàm số cho?ch biến thiên hàm số n khoảng xét dấu đạo hàm ng ? 2x  y x 3 A B y  x  21x  60 x  C y  x  x  15 x  Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n B y D Lời giảii giản word có giảii   x2  x   ;1 Hàm số phức đối y  x  21x  60 x  xác đị hàm số cho?nh [1;3] lầu n lược theo công thức nào sau đây?t tạo hàm i hai điểm m y ' = - x + 42 x - 60 y ' < " x ẻ ( - Ơ ; 2) ẩ ( 5; +Ơ ) ị y ' < " x ẻ ( - Ơ ;1) ;1 Do hàm số phức đối nghị hàm số cho?ch biến thiên hàm số n log a  2log b 2 , mện tích đáy khối trụ bằngnh cao i Câu 31 Với i a, b số phức đối thựa vào cơng thức tính thể tích khối trụ ta có c dương trình ng tùy ý thỏaa mãn đúng? 2 A a 9b B a 9b C a 6b D a 9b Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐÔNG - ĐỀ n B a  log   2 log a  2log b 2  log a  log b 2 b  a 9b Ta có: mp  ABCD  Câu 32 Cho ABCD nửa lục giác tâm a lụ tích c giác cao u tâm O Lấu đạo hàm y điểm m S không thuộc đồ thị hàm số cho?c cho SOB vng cân tạo hàm i S (tham khảo hình bên).o hình bên) S A D O B C Góc hai đường thẳng ng thẳng tọa độ ng SB CD A 30 B 90 Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n C C 45 Lời giảii giản word có giảii D 60 S A D O B C  Do OB / / CD nên góc SB CD bằng:ng góc SB OB bằng:ng SBO  Theo giảng xét dấu đạo hàm thiến thiên hàm số t, SOB tam giác vuông cân tạo hàm i S  SBO 45 Câu 33 Nến thiên hàm số u 1 f ( x)dx   f  x   x  dx A  B  bằng:ng  C Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n A Ta có  f  x   x  dx f ( x)dx  2 xdx   x 0 1  D M  2;  1;  Câu 34 Trong không gian Oxyz , cho điểm m mặt cầu t phẳng tọa độ ng  P  :3x  y  z  0 P song song với i mặt cầu t phẳng tọa độ ng   Phương trình ng trình a mặt cầu t phẳng tọa độ ng (Q) qua M A x  y  z  21 0 B x  y  z  21 0 C 3x  y  z  12 0 D 3x  y  z  12 0 Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n C M  2;  1;  P Mặt cầu t phẳng tọa độ ng (Q) song song với i mặt cầu t phẳng tọa độ ng   nên nhập nghiệm bất phương trình n vectơng trình  qua điểm m n  3;  2;1 P pháp tuyến thiên hàm số n a mặt cầu t phẳng tọa độ ng   làm vectơng trình pháp tuyến thiên hàm số n Phương trình ng trình a x     y  1   z   0  3x  y  z  12 0 mặt cầu t phẳng tọa độ ng (Q) là:   i  z 2  i    2i  i Câu 35 Cho số phức đối phức đối c z thỏaa mãn  Số phức đối phức đối c liên hợc theo công thức nào sau đây?p a z bằng:ng A  i B  i C   i D   i Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n D   i  z 2  i    2i  i    i  z 2  i     4i  i    i  z 2  i  3i  4i    i  z   4i   4i    4i    i    2i  12i  4i  10  10i  z      i 3 i 10 10 10 Vập nghiệm bất phương trình y z   i Câu 36 Cho hình lăng trụ tích đức đối ng ABC ABC  có AA 2 a, tam giác ABC vuông cân AB BC a Khoảng xét dấu đạo hàm ng cách từ bảng xét dấu hàm số điểm m C  đến thiên hàm số n mặt cầu t phẳng tọa độ ng  ABC  bằng:ng 2a 2a a A B 2a C D Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐÔNG - ĐỀ n A Tức đối giác BCC B hình chữ nhập nghiệm bất phương trình t, nên BC  B ' C cắt trục hồnh điểm có hồnh độ âm nên loại t tạo hàm i trung điểm m đườngi đường thẳng ng  d  C ,  ABC   d  B,  ABC   Dựa vào công thức tính thể tích khối trụ ta có ng đường thẳng ng cao BI , BH a tam giác ABC , BBI  BH   ABC  Ta có: 1 1 1 1  2  2   2 2  2 2 2 BH BI BB BA BC BB a a  2a  4a  BH  2a  d  C ,  ABC    2a Câu 37 Từ bảng xét dấu hàm số mộc đồ thị hàm số cho?t hộc đồ thị hàm số cho?p chức đối a 16 quảng xét dấu đạo hàm cầu u gồ thị hàm số cho?m quảng xét dấu đạo hàm cầu u đỏa quảng xét dấu đạo hàm c ầu u xanh, l ấu đạo hàm y ng ẫu nhiên đồngu nhiên đ thị hàm số cho?ng thờng thẳng i ba quảng xét dấu đạo hàm Xác xuấu đạo hàm t đểm lấu đạo hàm y được theo cơng thức nào sau đây?c nhấu đạo hàm t quảng xét dấu đạo hàm cầu u đỏa bằng:ng 17 27 A 20 B 20 C 28 D 28 Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n A Lấu đạo hàm y ngẫu nhiên đồngu nhiên đồ thị hàm số cho?ng thờng thẳng i quảng xét dấu đạo hàm 16 quảng xét dấu đạo hàm cầu u, ta có s ố phức đối ph ầu n tửa lục giác tâm c a không gian m ẫu nhiên đồngu n    C163 là: Gọa độ đáp án.i A: “lấu đạo hàm y được theo công thức nào sau đây?c nhấu đạo hàm t quảng xét dấu đạo hàm cầu u đỏa”  A : “lấu đạo hàm y được theo công thức nào sau đây?c quảng xét dấu đạo hàm màu xanh” Ta có   P A    C n A n    16 C  20 Vập nghiệm bất phương trình y xác suấu đạo hàm t cầu n tìm là:   n A C93   P  A  1  P A 1  17  20 20 M  1; 2;1 N  3;1;   Câu 38 Trong không gian Oxyz , cho hai điểm m Đường thẳng ng thẳng tọa độ ng MN có phương trình ng trình x 1 y  z 1 x y z      B 1 3 A x 1 y  z 1 x y z      D 1 3 C Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐÔNG - ĐỀ n B Gọa độ đáp án.i d đường thẳng ng thẳng tọa độ ng qua A(0;  1;3) song song với i BC  d nhập nghiệm bất phương trình n BC   2;1;1 làm vectơng trình phương phương trình ng Vập nghiệm bất phương trình y d: x y 1 z     2 1 Câu 39 Bấu đạo hàm t phương trình ng trình A x  x  ln  x   0 B có nghiện tích đáy khối trụ bằngm nguyên? C D Vô số phức đối Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐÔNG - ĐỀ n C Điều cao u kiện tích đáy khối trụ bằngn: x    x   x 0  x  x 0  x  x  ln  x  5 0   ln  x  5 0   x 3    x  Cho Bảng xét dấu đạo hàm ng xét dấu đạo hàm u:    x  f  x  0     x 3 Dựa vào cơng thức tính thể tích khối trụ ta có a vào bảng xét dấu đạo hàm ng xét dấu đạo hàm u ta thấu đạo hàm y x    x    4;  3; 0;1; 2;3 Vì Vập nghiệm bất phương trình y có giá trị hàm số cho? nguyên a x thỏaa toán Câu 40 Cho hàm số phức đối y  f  x liên tụ tích c  có đồ thị hàm số cho? thị hàm số cho? hình vẽ sau Số phức đối nghiện tích đáy khối trụ bằngm a phương trình ng trình A B   f  f  e x  1 C Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n B x f  u   3, u  Đặt cầu t u e  , từ bảng xét dấu hàm số đồ thị hàm số cho? thị hàm số cho? suy ra: D Đặt cầu t t 2  f  u  t  , Ứng với nghiệm ng với i đườngi nghiện tích đáy khối trụ bằngm t  , có mộc đồ thị hàm số cho?t nghiện tích đáy khối trụ bằngm u 1 Ứng với nghiệm ng với i đườngi nghiện tích đáy khối trụ bằngm t    1;  , có hai nghiện tích đáy khối trụ bằngm u   0;  Ứng với nghiệm ng với i đườngi nghiện tích đáy khối trụ bằngm t  , có mộc đồ thị hàm số cho?t nghiện tích đáy khối trụ bằngm u  Phương trình ng trình f  t  1 có mộc đồ thị hàm số cho?t nghiện tích đáy khối trụ bằngm t  mộc đồ thị hàm số cho?t nghiện tích đáy khối trụ bằngm t  Vập nghiệm bất phương trình y phương trình ng trình cho có hai nghiện tích đáy khối trụ bằngm Câu 41 Cho hàm số phức đối f  x có f   0 f  x  cos x.cos 2 x, x   121 F    f  x 225 , F    bằng:ng a thỏaa mãn 242 208 121 A 225 B 225 C 225 Biến thiên hàm số t F  x nguyên hàm 149 D 225 Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n C Ta có f  x  cos x.cos 2 x, x   f  x  dx cos x.cos  Có  nên xdx cos x f  x mộc đồ thị hàm số cho?t nguyên hàm a f  x   cos x cos x cos x.cos x dx  dx   dx 2 1 1 cos xdx   cos x  cos x  dx  sin x  sin x  sin x  C  20 12 1 f  x   sin x  sin x  sin 3x  C , x   f   0  C 0 20 12 Suy Mà 1 f  x   sin x  sin x  sin 3x, x   20 12 Do Khi đó:   1 1  F     F   f  x  dx  sin x  sin x  sin x  dx 20 12  0  1 242     cos x  cos x  cos 3x   100 36   225 242 121 242 121  F    F       225 225 225 225 Câu 42 Cho hình chóp S ABC có đáy tam giác ABC cao u cạo hàm nh a , tam giác SBA vuông tạo hàm i B ,  SAB   ABC  bằng:ng 60 tam giác SAC vuông tạo hàm i C Biến thiên hàm số t góc hai mặt cầu t phẳng tọa độ ng Tính thểm tích khố phức đối i chóp S ABC theo a 3a 3a 3a 3a A B 12 C D Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n B S D C B A  ABC  , suy SD   ABC  Gọa độ đáp án.i D hình chiến thiên hàm số u a S lên mặt cầu t phẳng tọa độ ng AB   SBD   BA  BD Ta có SD  AB SB  AB (gt) suy Tương trình ng tựa vào cơng thức tính thể tích khối trụ ta có có AC  DC hay tam giác ACD vuông C Dễn số phức thấu đạo hàm y SBA SCA (cạo hàm nh huyều cao n cạo hàm nh góc vng), suy SB SC Từ bảng xét dấu hàm số ta chức đối ng minh được theo công thức nào sau đây?c SBD SCD nên có DB DC  Vập nghiệm bất phương trình y DA đường thẳng ng trung trựa vào cơng thức tính thể tích khối trụ ta có c a BC nên đường thẳng ng phân giác a góc BAC a Ngồi góc hai mặt cầu t phẳng tọa độ ng  SAB   ABC  a SD   a tan SBD  SBD 60  BD  SD BD tan SBD , suy  Ta có DAC 30 , suy DC  1 a2 a3 VS ABC  SABC SD  a  3 12 Vập nghiệm bất phương trình y z   m  1 z  m  3m  0 m ( tham số phức đối z ,z thựa vào cơng thức tính thể tích khối trụ ta có c) Tổng quát mặt phẳngng giá trị hàm số cho? nguyên a m đểm phương trình ng trình có hai nghiện tích đáy khối trụ bằngm thỏaa mãn z12  z22 6 bằng:ng Câu 43 Trên tập nghiệm bất phương trình p hợc theo công thức nào sau đây?p số phức đối phức đối c, xét phương trình ng trình A B C Lời giảii giản word có giảii D Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐƠNG - ĐỀ n D z   m  1 z  m  3m  0  1 Xét z ,z Phương trình ng trình ln có nghiện tích đáy khối trụ bằngm tập nghiệm bất phương trình p hợc theo công thức nào sau đây?p số phức đối phức đối c Theo vi – et ta có z1  z2 2( m  ),z1 z2 m  3m   m  z12  z22 6   z1  z2   z1 z2 6  2m  2m  6    m 2 (thoảng xét dấu đạo hàm mãn) Vập nghiệm bất phương trình y tổng quát mặt phẳngng giá trị hàm số cho? nguyên a m   1 z   2i 1 z2   8i 2 Câu 44 Cho hai số phức đối phức đối c z1 ; z2 thỏaa mãn ; Tìm giá trị hàm số cho? nhỏa nhấu đạo hàm t a biểm u thức đối c A 30 P  z1   2i  z2   8i  z1  z2 B 25 C 35 D 20 Lời giảii giản word có giảii Chọa BGD năm 2022 - Mơn Tốn - ĐẶNG VIỆT ĐÔNG - ĐỀ n B Gọa độ đáp án.i điểm m Gọa độ đáp án.i M  x1 ; y1  A  5;  ; ; N  x2 ; y2  lầu n lược theo công thức nào sau đây?t biểm u diễn số phức n số phức đối phức đối c z1 ; z2 B  6;8  I 1; Từ bảng xét dấu hàm số gt  M thuộc đồ thị hàm số cho?c đường thẳng ng tròn tâm   , bán kính R1 1 ; N thuộc đồ thị hàm số cho?c đường thẳng ng trịn tâm I  2;8  , bán kính R2 2 Mà I1 A 4 4 R1 ; I B 4 2 R2 5  1  1 G  ;2 I1G  I1 A I K  I B    ; K  3;8  16 Lấu đạo hàm y điểm m G ; K cho ; 

Ngày đăng: 23/10/2023, 12:59

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w