Nghiên cứu quy trình công nghệ sản xuất bột bơ

149 1 0
Nghiên cứu quy trình công nghệ sản xuất bột bơ

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ỦY BAN NHÂN DÂN THÀNH ĐỒN TP HỒ CHÍ MINH THÀNH PHỐ HỒ CHÍ MINH TRUNG TÂM PHÁT TRIỂN SỞ KHOA HỌC VÀ CÔNG NGHỆ KHOA HỌC VÀ CÔNG NGHỆ TRẺ CHƯƠNG TRÌNH KHOA HỌC VÀ CƠNG NGHỆ CẤP THÀNH PHỐ BÁO CÁO TỔNG HỢP KẾT QUẢ NHIỆM VỤ NGHIÊN CỨU KHOA HỌC VÀ CƠNG NGHỆ NGHIÊN CỨU QUY TRÌNH CƠNG NGHỆ SẢN XUẤT BỘT BƠ Cơ quan chủ trì nhiệm vụ: Trung tâm Phát triển Khoa học Công nghệ Trẻ Chủ nhiệm nhiệm vụ: ThS Nguyễn Thị Vân Linh Thành phố Hồ Chí Minh – 2021 ỦY BAN NHÂN DÂN THÀNH ĐỒN TP HỒ CHÍ MINH THÀNH PHỐ HỒ CHÍ MINH TRUNG TÂM PHÁT TRIỂN SỞ KHOA HỌC VÀ CÔNG NGHỆ KHOA HỌC VÀ CÔNG NGHỆ TRẺ CHƯƠNG TRÌNH KHOA HỌC VÀ CƠNG NGHỆ CẤP THÀNH PHỐ BÁO CÁO TỔNG HỢP KẾT QUẢ NHIỆM VỤ NGHIÊN CỨU KHOA HỌC VÀ CƠNG NGHỆ NGHIÊN CỨU QUY TRÌNH CƠNG NGHỆ SẢN XUẤT BỘT BƠ (Đã chỉnh sửa theo kết luận Hội đồng nghiệm thu ngày 01/12/2021) Chủ nhiệm nhiệm vụ: (ký tên) Chủ tịch Hội đồng nghiệm thu (Ký ghi rõ họ tên) Nguyễn Thị Vân Linh Cơ quan chủ trì nhiệm vụ Đồn Kim Thành Thành phố Hồ Chí Minh – 2021 THÀNH ĐỒN TP HỒ CHÍ MINH TRUNG TÂM PHÁT TRIỂN KHOA HỌC VÀ CÔNG NGHỆ TRẺ CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự - Hạnh phúc Tp.HCM, ngày 14 tháng 10 năm 2021 BÁO CÁO THỐNG KÊ KẾT QUẢ THỰC HIỆN NHIỆM VỤ NGHIÊN CỨU KH&CN I THÔNG TIN CHUNG Tên nhiệm vụ: Thuộc: Chương trình/lĩnh vực (tên chương trình/lĩnh vực): Vườn ươm Sáng tạo Khoa học Công nghệ trẻ Chủ nhiệm nhiệm vụ: Họ tên: NGUYỄN THỊ VÂN LINH Ngày, tháng, năm sinh: 14/01/1988 Nam/ Nữ: Nữ Học hàm, học vị: Tiến sĩ Chức danh khoa học: Chức vụ: Phó trưởng khoa kiêm trưởng môn CNTP Điện thoại: Tổ chức: .Nhà riêng: Mobile: 090 357 0019 Fax: E-mail: ntvlinh@ntt.edu.vn Tên tổ chức công tác: Trường Đại học Nguyễn Tất Thành Địa tổ chức: 331 Quốc lộ 1A, An Phú Đông, Quận 12, Tp.HCM Địa nhà riêng: 3.4 lô C KP1, An Phú, Thành phố Thủ Đức, Hồ Chí Minh Tổ chức chủ trì nhiệm vụ: Tên tổ chức chủ trì nhiệm vụ: Trung tâm Phát triển Khoa học Công nghệ Trẻ Điện thoại: 028.38.230.780 Fax: E-mail: Website: Địa chỉ: Số Phạm Ngọc Thạch, P Bến Nghé, Q1, Tp Hồ Chí Minh Họ tên thủ trưởng tổ chức: ĐOÀN KIM THÀNH Số tài khoản: 3713.0.1083277.00000 Kho bạc: Nhà nước Q.1 – Tp Hồ Chí Minh Tên quan chủ quản đề tài: THÀNH ĐOÀN TP HỒ CHÍ MINH II TÌNH HÌNH THỰC HIỆN Thời gian thực nhiệm vụ: - Theo Hợp đồng ký kết: từ tháng 12/năm 2020 đến tháng 12/năm 2021 - Thực tế thực hiện: từ tháng 05/năm 2021 đến tháng 12/năm 2021 - Được gia hạn (nếu có): khơng có Kinh phí sử dụng kinh phí: a) Tổng số kinh phí thực hiện: 90 tr.đ, đó: + Kính phí hỗ trợ từ ngân sách khoa học: 90 tr.đ + Kinh phí từ nguồn khác: 00 tr.đ b) Tình hình cấp sử dụng kinh phí từ nguồn ngân sách khoa học: Số TT Theo kế hoạch Thời gian Kinh phí (Tháng, năm) (Tr.đ) Sau ký hợp 45,000,000 đồng Tháng 07/2021 27,000,000 Sau 18,000,000 nghiệm thu Thực tế đạt Thời gian Kinh phí (Tháng, năm) (Tr.đ) Tháng 06/2021 45,000,000 - Ghi (Số đề nghị toán) - c) Kết sử dụng kinh phí theo khoản chi: Đối với đề tài: Đơn vị tính: Triệu đồng Số TT Nội dung khoản chi Trả công lao động (khoa học, phổ thông) Nguyên, vật liệu, lượng Thiết bị, máy móc Xây dựng, sửa chữa nhỏ Chi khác Tổng cộng Theo kế hoạch Tổng NSKH 84.4 84.4 5.6 90 5.6 90 Nguồn khác - Thực tế đạt Tổng NSKH 84.4 84.4 Nguồn khác - - - - - - 5.6 90 5.6 90 - - Lý thay đổi (nếu có): Các văn hành q trình thực đề tài/dự án: (Liệt kê định, văn quan quản lý từ công đoạn xét duyệt, phê duyệt kinh phí, hợp đồng, điều chỉnh (thời gian, nội dung, kinh phí thực có); văn tổ chức chủ trì nhiệm vụ (đơn, kiến nghị điều chỉnh có) Số TT Số, thời gian ban hành văn Tên văn Tổ chức phối hợp thực nhiệm vụ: Ghi Số TT Tên tổ chức Tên tổ chức Nội dung đăng ký theo tham gia tham gia chủ yếu Thuyết minh thực Đại học Đại học Xây dựng thuyết Nguyễn Tất Nguyễn Tất minh Thành Thành Thu thập tổng hợp tài liệu Xây dựng quy trình sản xuất bột bơ Đánh giá chất lượng sản phẩm Viết báo cáo tổng kết Đại học Bách Đại học Xây dựng quy trình Khoa Bách Khoa sản xuất bột bơ Tp.HCM Tp.HCM Viết báo cáo tổng kết Sản phẩm chủ yếu đạt Ghi chú* Thuyết minh duyệt Thuyết minh đầy đủ công đoạn thực Báo cáo tiêu chuẩn chất lượng bột bơ đầy đủ tiêu Sản phẩm bột bơ Bài báo khoa học Thuyết minh đầy đủ công đoạn thực - Lý thay đổi (nếu có): Cá nhân tham gia thực nhiệm vụ: (Người tham gia thực đề tài thuộc tổ chức chủ trì quan phối hợp, không 10 người kể chủ nhiệm) Tên cá nhân đăng ký theo Thuyết minh TS Nguyễn Thị Vân Linh Tên cá nhân tham gia thực TS Nguyễn Thị Vân Linh ThS Nguyễn Thị Thuỳ Dung ThS Nguyễn Thị Thuỳ Dung TS Trần Bích Lam TS Trần Bích Lam Số TT Nội dung tham gia Sản phẩm chủ yếu đạt Xây dựng thuyết minh Thu thập tổng hợp tài liệu Xây dựng quy trình sản xuất bột bơ Đánh giá chất lượng sản phẩm Viết báo cáo tổng kết Thu thập tổng hợp tài liệu Đánh giá chất lượng nguyên liệu, sản phẩm Xây dựng quy trình sản xuất bột bơ Xây dựng thuyết minh Báo cáo tổng kết Thuyết minh duyệt Thuyết minh đầy đủ công đoạn thực Báo cáo tiêu chuẩn chất lượng bột bơ đầy đủ tiêu Sản phẩm bột bơ Bài báo khoa học Thuyết minh đầy đủ công đoạn thực Báo cáo tiêu chuẩn chất lượng bột bơ đầy đủ tiêu Bài báo khoa học Thuyết minh đầy đủ công đoạn thực Ghi chú* ThS Nguyễn ThS Nguyễn Quốc Duy Quốc Duy Đánh giá chất lượng nguyên liệu, sản phẩm Xây dựng quy trình sản xuất bột bơ ThS Nguyễn Phước Bảo Duy Xây dựng quy trình sản xuất bột bơ ThS Nguyễn Phước Bảo Duy Thuyết minh đầy đủ công đoạn thực Báo cáo tiêu chuẩn chất lượng bột bơ đầy đủ tiêu Bài báo khoa học Thuyết minh đầy đủ công đoạn thực - Lý thay đổi (nếu có): Tình hình hợp tác quốc tế: Số TT Theo kế hoạch (Nội dung, thời gian, kinh phí, địa điểm, tên tổ chức hợp tác, số đoàn, số lượng người tham gia ) Thực tế đạt (Nội dung, thời gian, kinh phí, địa điểm, tên tổ chức hợp tác, số đoàn, số lượng người tham gia ) Ghi chú* - Lý thay đổi (nếu có): Tình hình tổ chức hội thảo, hội nghị: Theo kế hoạch Số (Nội dung, thời gian, kinh phí, địa TT điểm) Hội thảo lĩnh vực Cơng nghệ thực phẩm Tháng 10/2021 Kinh phí 4,900,000 Online Thực tế đạt (Nội dung, thời gian, kinh phí, địa điểm) Hội thảo lĩnh vực Cơng nghệ thực phẩm Tháng 10/2021 Kinh phí 4,900,000 Online Ghi chú* - Lý thay đổi (nếu có): Tóm tắt nội dung, công việc chủ yếu: (Nêu mục 15 thuyết minh, không bao gồm: Hội thảo khoa học, điều tra khảo sát nước nước ngoài) Số TT Các nội dung, công việc chủ yếu (Các mốc đánh giá chủ yếu) Xây dựng thuyết minh chi tiết Nội dung 1: Thu thập tổng hợp tài liệu Thời gian (Bắt đầu, kết thúc - tháng … năm) Theo kế Thực tế hoạch đạt 01/2021 01/2021 01/2021 01/2021 Người, quan thực NTVLinh, ĐH Nguyễn Tất Thành NTVLinh, ĐH Nguyễn Tất Thành Nội dung 2: Đánh giá chất lượng nguyên liệu bơ nghiên cứu Nội dung 3: Nghiên cứu phương pháp tiền xử lý công nghệ sản xuất bột bơ Nội dung 4: Nghiên cứu ảnh hưởng trình phối trộn maltodextrin Nội dung 5: Nghiên cứu ảnh hưởng phương pháp sấy đến đặc tính ẩm chất lượng bột bơ Nội dung 6: Xây dựng tiêu chuẩn chất lượng sở cho sản phẩm bột bơ (cảm quan, hoá lý, vi sinh, kim loại nặng) Báo cáo tổng kết đề tài 02/2021 02/2021 NTTDung, ĐH Nguyễn Tất Thành 0304/2021 0304/2021 0506/2021 0506/2021 0710/2021 0710/2021 11/2021 11/2021 NTVLinh, NTTDung, NQDuy, ĐH Nguyễn Tất Thành NTVLinh, NTTDung, NQDuy, ĐH Nguyễn Tất Thành NTVLinh, NTTDung, NQDuy, ĐH Nguyễn Tất Thành NPBDuy, ĐH Bách Khoa NTVLinh, NTTDung, NQDuy, ĐH Nguyễn Tất Thành 12/2021 11/2021 NTVLinh, ĐH Nguyễn Tất Thành TBLam, ĐH Bách Khoa - Lý thay đổi (nếu có): III SẢN PHẨM KH&CN CỦA NHIỆM VỤ Sản phẩm KH&CN tạo ra: a) Sản phẩm Dạng I: Số TT Tên sản phẩm tiêu chất lượng chủ yếu Bột bơ Đơn vị đo Số lượng Theo kế hoạch Thực tế đạt g 500 500 500 - Lý thay đổi (nếu có): b) Sản phẩm Dạng II: Số TT Yêu cầu khoa học cần đạt Tên sản phẩm Theo kế hoạch Thực tế đạt Quy trình cơng Thuyết minh đầy đủ Thuyết minh đầy đủ nghệ sản xuất bột công đoạn thực hiện, công đoạn thực hiện, bơ thông số kỹ thuật thông số kỹ thuật Báo cáo tiêu chuẩn Thông tin đầy đủ Thông tin đầy đủ chất lượng bột bơ tiêu đáp ứng yêu tiêu đáp ứng cầu TCVN yêu cầu TCVN - Lý thay đổi (nếu có): c) Sản phẩm Dạng III: Ghi Số TT Tên sản phẩm Bài báo khoa học Yêu cầu khoa học cần đạt Theo Thực tế kế hoạch đạt 01 Tạp 01 ISI, Q2 chí ISI 01 ISI, Q2 Số lượng, nơi cơng bố (Tạp chí, nhà xuất bản) Applied Sciences 11, no 24: 11803 https://doi.org/10.3390/app112411803 Molecules (Đã chấp nhận đăng vào ngày 15/12/2021) - Lý thay đổi (nếu có): d) Kết đào tạo: Số TT Cấp đào tạo, Chuyên ngành đào tạo Thạc sỹ Tiến sỹ Số lượng Theo kế hoạch Thực tế đạt Ghi (Thời gian kết thúc) - Lý thay đổi (nếu có): đ) Tình hình đăng ký bảo hộ quyền sở hữu công nghiệp: Số TT Tên sản phẩm đăng ký Kết Theo kế hoạch Thực tế đạt Ghi (Thời gian kết thúc) - Lý thay đổi (nếu có): e) Thống kê danh mục sản phẩm KHCN ứng dụng vào thực tế Số TT Tên kết ứng dụng Thời gian Địa điểm (Ghi rõ tên, địa nơi ứng dụng) Kết sơ Đánh giá hiệu nhiệm vụ mang lại: a) Hiệu khoa học công nghệ: (Nêu rõ danh mục công nghệ mức độ nắm vững, làm chủ, so sánh với trình độ cơng nghệ so với khu vực giới…) Đánh giá đặc tính ẩm ảnh hưởng kỹ thuật sấy đại đến chất lượng bột sấy cung cấp kiến thức thông số kỹ thuật để ứng dụng phát triển, sản xuất sản phẩm từ trái cây, đặc biệt loại trái giàu giá trị dinh dưỡng có độ đặc cao hạn chế khả thoát ẩm khả sử dụng Lần đầu Việt Nam, công nghệ sấy đại áp dụng để sấy trái tạo dạng bột hạn chế tối đa hàm lượng chất mang sản phẩm, giữ lại chất lượng cao sản phẩm Bên cạnh đó, thành công đề tài thúc đẩy phát triển số ngành khoa học kỹ thuật liên quan sinh học, nông nghiệp… b) Hiệu kinh tế xã hội: (Nêu rõ hiệu làm lợi tính tiền dự kiến nhiệm vụ tạo so với sản phẩm loại thị trường…) Việc thành cơng chế biến, đa dạng hóa sản phẩm tiềm thương mại từ trái bơ chắn mang đến tác động tích cực cho lĩnh vực nơng nghiệp chế biến thực phẩm Hạn chế tối đa ảnh hưởng yếu tố khách quan kiểm sốt biến đổi khí hậu, dịch bệnh, Dự án thực có tính hiệu cao góp phần quan trọng việc nâng cao lực, tạo thêm việc làm thu nhập cho doanh nghiệp người dân vùng triển khai dự án; chuyển đổi thành công cấu nông nghiệp nông thôn Các sản phẩm dự án nguồn nguyên liệu để công ty thực phẩm sử dụng phát triển mở rộng Thành công đề tài tạo sản phẩm mang yếu tố xã hội nâng cao giá trị sử dụng nguyên liệu địa phương, tăng thu nhập cho người dân Góp phần vào thành công tái cấu ngành nông nghiệp theo hướng xác định sản phẩm chủ lực, có lợi để tập trung đầu tư khoa học công nghệ, sở hạ tầng hạ tầng kỹ thuật để tạo đột phá sức cạnh tranh, nâng cao giá trị giá trị gia tăng, phát triển bền vững Tình hình thực chế độ báo cáo, kiểm tra nhiệm vụ: Số TT I II III Nội dung Báo cáo tiến độ Lần Báo cáo giám định Nghiệm thu sở Chủ nhiệm đề tài (Họ tên, chữ ký) Nguyễn Thị Vân Linh Thời gian thực Ghi (Tóm tắt kết quả, kết luận chính, người chủ trì…) 06/2021 Thực hồn chỉnh 06 nội dung nghiên cứu 01/12/2021 Hội đồng đồng ý nghiệm thu kết nghiên cứu sản phẩm đề tài Thủ trưởng tổ chức chủ trì (Họ tên, chữ ký đóng dấu) MỤC LỤC DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT xiii DANH MỤC CÁC BẢNG xiii DANH MỤC CÁC HÌNH ẢNH, ĐỒ THỊ xv MỞ ĐẦU xvii TỔNG QUAN TÀI LIỆU 1.1 TỔNG QUAN VỀ BƠ GIÁ TRỊ THƯƠNG MẠI VÀ DINH DƯỠNG CỦA TRÁI BƠ 1.2 TỔNG QUAN VỀ NHỮNG NGHIÊN CỨU LIÊN QUAN ĐẾN BƠ Ở TRONG VÀ NGOÀI NƯỚC 1.2.1 Những nghiên cứu sấy bơ 1.2.2 Những nghiên cứu kiểm soát tượng hoá nâu xảy bơ 1.2.3 Những nghiên cứu phát triển sản phẩm từ bơ 1.2.4 Những nghiên cứu lợi ích sức khoẻ từ bơ 1.3 TỔNG QUAN VỀ BỘT TRÁI CÂY 1.3.1 Giới thiệu bột trái 1.3.2 Các nghiên cứu nước liên quan đến bột trái 1.3.3 Các nghiên cứu nước liên quan đến bột trái 10 1.4 TỔNG QUAN VỀ KỸ THUẬT MỚI TRONG SẤY TẠO BỘT TRÁI CÂY 12 1.4.1 Phương pháp sấy thuộc hệ 12 1.4.2 Phương pháp sấy thuộc hệ 13 1.4.3 Phương pháp sấy thuộc hệ 14 1.4.4 Phương pháp sấy thuộc hệ 14 VẬT LIỆU – PHƯƠNG PHÁP 17 ix Molecules 2021, 26, x FOR PEER REVIEW of 16 Besides, the application of innovative technique such as biosynthesis of nanoparticles using extract with antioxidant and antibaterial activity could enhance the antibacterial propeties [21, 22] Avocado is a prospective fruit that has received minimal attention among the plant materials of interest for antioxidant and antibacterial activities, while this fruit has a high concentration of phenolics, ascorbic acid, carotenoids, vitamin E, and flavonoids, which are known for antioxidation actions [23] However, compared to avocado flesh, its waste has been commonly utilized in various research on the antioxidant capacity and antibacterial activity; for example, the avocado seeds have been proven to be a significant source of phenolic compounds with antioxidant characteristics Avocado seeds have a high concentration of antibacterial compounds, which has sparked interest in the investigation of extracting antibacterial components from avocado seed [24] Meanwhile, the avocado's lipid fraction is high in phytochemicals and antioxidants [25] Egbuonu et al (2018) also demonstrated antibacterial activity of avocado seed extract as illustrated by the diameter of inhibition zone against Proteus mirabilis (23 ± 0.14 mm), Staphylococcus aureus (16 ± 0.04 mm), and Pseudomonas aeruginosa (15 ± 0.11 mm) despite being lower than that of the ciprofloxacin antibiotics [26] Besides, this extract also showed higher antifungal activity against Aspergillus niger than the ketoconazole [24], with high total phenolic content and antioxidant capacity [27] Little research has been done on avocado flesh, especially on its antibacterial properties Rodríguez-Carpena et al (2011) analyzed the antioxidant activity and antibacterial potential of ethyl acetate (70%), acetone (70%), and methanol (70%) extracts of avocado pulp, peel, and seed They concluded that the peel and seed of two avocado varieties, namely, ‘Hass’ and ‘Fuerte’ contained higher amounts of phenolics and antioxidant activity than the avocado pulp, and they had moderate activity against Grampositive bacteria [28] In a recent study, the powdered ‘Maluma’ avocado pulp with the highest retention of bioactive compounds and antioxidant activities was successfully produced using the infrared technique [29] Infrared drying was considered an innovative technique that brings more benefits in implementation and high retention of dried product quality [30, 31] After eliminating the moisture, the materials could enhance the stability of quality during storage, be more uniform as well as improve the efficiency of extraction To the best of our knowledge, still not have yet published on the biological activity of ‘Maluma’ avocado Therefore, the purpose of this study was to investigate the effect of different avocado extracts obtained from avocado powder using acetone, methanol, and diethyl ether as solvents on polyphenols, chlorophylls, carotenoids, antioxidant activity, and antibacterial activity 45 Results 81 The physicochemical and microbiological properties of the avocado powder are shown in Figure 82 5.62 % protein 21.2 % fat 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 83 3.33x103 CFU/ g Total aerobi count Total yeast and mold Coliforms 64.6 % carbohydrate Escherichia coli Not detected 3.8 % moisture content Bacillus cereus Undetectable peroxide value Clostridium perfringens Figure Physicochemical and microbiological properties of avocado powder prepared from avocado flesh (Persea Americana Mill cv 'Maluma') 84 85 86 Molecules 2021, 26, x FOR PEER REVIEW of 16 Avocado powder prepared by infrared drying obtained good quality with undetectable peroxide value and the group of pathogenic microorganisms And, the total aerobic count (3.3103 CFU/g) was smaller than the microbiological standard of the dried foods (106 CFU/g) (31) Besides, the moisture content of avocado powder was lowered to below 4% that could be assured of the stability of the product during storage [32] Then, this powder was extracted with a different type of solvent, including acetone, methanol and diethyl ether The effect of other solvents on the content of phytopigments and total phenolics content (TPC) are shown in Figure Plus, the antioxidant activity of avocado extracts corresponding to different solvents was presented in Figure 87 88 89 90 91 92 93 94 95 96 Figure Effects of solvents on the content of TPC and phytopigments of avocado extracts Note: Capital letters represent the same group of responding variables, and values within a group with the same lowercase letters are not significantly different (p > 0.05) 97 98 99 100 Figure Effects of solvents on the antioxidant activity of avocado extracts Note: Capital letters represent the same group of responding variables, and values within a group with the same lowercase letters are not significantly different (p > 0.05) 101 102 103 The results showed that the TPC and total chlorophylls content of the avocado extracts with acetone had the most significant value However, the diethyl ether extracts obtained the highest value of total carotenoids The methanolic extract also showed a high 104 105 106 Molecules 2021, 26, x FOR PEER REVIEW of 16 content of TPC and phytopigments (total chlorophylls and carotenoids) Specifically, the extract with methanol was higher TPC than diethyl ether extract And, the methanolic extract obtained similar content of carotenoids as the acetone extract Although the methanol extract had a TPC value, FRAP, and DPPH activity comparable to that of the acetone extract, it showed a significantly low radical scavenging capacity in terms of ABTS The diethyl ether extract exhibited the highest FRAP iron reduction capacity (17.35 mg TE/g DW) despite being the lowest TPC Plus, the extract with diethyl ether also possessed the lowest DPPH radical scavenging capacity Overall, acetone was shown to be the best solvent to obtain phenolic compounds with high phytopigments and antioxidant activity The correlation between the chemical composition (TPC, phytopigments) and the antioxidant activity of avocado extracts is shown in Table The results showed that the carotenoids had a high positive correlation with ferric reducing antioxidant power Meanwhile, the TPC had a robust positive correlation with DPPH radical scavenging activity and a moderate positive correlation with ABTS activity Table also showed the total chlorophylls had a very high positive correlation with ABTS cation scavenging activity It could be concluded that TPC and phytopigments made a significant contribution with different antioxidant mechanisms to the antioxidant capacity of avocados 107 Table Pearson correlation coefficients between phytopigments, TPC, and antioxidant activity of avocado extracts 126 127 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 TPC Total carotenoids Total chlorophylls (mgGAE/g DW) (g/g DW) (g/g DW) DPPH (mgTE/g DW) 0.99308 -0.98586 0.44616 p-value (2-tailed) 0.00000 0.00000 0.22868 ABTS (mgTE/g DW) 0.66928 -0.62861 0.96595 p-value (2-tailed) 0.04865 0.06979 0.00002 FRAP (mgTE/g DW) -0.77974 0.78034 0.14305 p-value (2-tailed) 0.01321 0.01309 0.71350 Note: Correlations in bold are significant at the 5% level (2-tailed) The effect of different solvents on the antibacterial activities of avocado extracts is shown in Figures and And then, the diameter of inhibition zones of avocado extracts using agar well diffusion assay was presented in Table 128 129 130 Molecules 2021, 26, x FOR PEER REVIEW of 16 (a) (b) (c) (d) (e) 131 Figure Visual observations of the inhibitory effect of avocado extracts against Gram-negative pathogens including (a) Shigella sonnei ATCC 9290, (b) Escherichia coli ATCC 8739, (c) Vibrio parahaemolyticus ATCC 17802, (d) Proteus mirabilis ATCC 25933, and (e) Salmonella typhi ATCC 6539 Note: A, Di, M, CIP, (–) symbols on petri discs denote the acetone, diethyl ether, methanol extracts, Ciprofloxacin (reference antibiotics), and negative control, respectively (a) (b) 136 Figure Visual observations of inhibitory effect of avocado extracts against Gram-positive pathogens including (a) Staphylococcus aureus ATCC 6538, and (b) Bacillus cereus ATCC 11778 Note: A, Di, M, CIP, (–) symbols on petri discs denote the acetone, diethyl ether, methanol extracts, Ciprofloxacin (reference antibiotics), and negative control, respectively Table Antibacterial activity of avocado extracts using different solvents against seven pathogens as presented in diameter of inhibition zones using agar well diffusion assay Inhibitory diameter (mm)* No Pathogen Shigella sonnei ATCC 9290 132 133 134 135 Sample Acetone Diethyl ether Methanol Ciprofloxacin 26 26 26 Extracts 7 20 Negative control 11 11 Ciprofloxacin 32 31 33 137 138 139 140 141 Molecules 2021, 26, x FOR PEER REVIEW of 16 Escherichia coli ATCC 8739 Salmonella typhi ATCC 6539 Vibrio parahaemolyticus ATCC 17802 Proteus mirabilis ATCC 25933 Staphylococcus aureus ATCC 6538 Bacillus cereus ATCC 11778 Extracts 12 16 Negative control 11 Ciprofloxacin 25 25 23 Extracts 15 Negative control 12 Ciprofloxacin 21 20 21 Extracts 11 13 18 Negative control 0 Ciprofloxacin 26 27 26 Extracts 14 10 Negative control 0 Ciprofloxacin 10 10 10 Extracts 11 20 Negative control 10 Ciprofloxacin 11 10 11 Extracts 17 15 28 Negative control 11 0 *The inhibitory diameter of extracts was calculated as the difference between the diameter of inhibition zones of extracts and negative control Ciprofloxacin was dissolved in sterile water The results showed that methanol and acetone extracts show the ability to inhibit seven bacterial strains Specifically, the methanol extract had the best antibacterial activity with an average inhibition zone diainmeter from 10 mm against Proteus mirabilis to 28 mm against Bacillus cereus, followed by acetone extract with those values from mm against Salmonella typhi to 17 mm against Bacillus cereus Diethyl ether extract was able to inhibit five out of seven tested bacterial strains (except Proteus mirabilis and Staphylococcus aureus), with the diameter of inhibition zones being in the range of 3–15 mm It can be concluded that the type of solvent had a significant impact on the antibacterial activity of avocado extracts Besides, the antibacterial compounds in avocado powder have a broad spectrum against both Gram-positive and Gram-negative bacteria 142 Discussion 152 3.1 Physico-chemical and microbiological properties of avocado powder 153 Avocado flesh was well-known as a material that faced difficulty removing moisture until it reached the state of easy to grind to obtain powder structure In this study, powder from avocado flesh was prepared by infrared drying, in which the combination of the innovative drying technology as infrared drying and the avocado pulp with a thin layer (2 mm) showed effectiveness in removing moisture from materials, as illustrated by the low moisture content of resulting avocado powder (3.8% on the wet basis) During the drying, the evaporation process happened rapidly, leading to the exceptional appearance of avocado powder (see Figure 1) Additionally, the drying process consumed a short time (50 min) to complete, causing hydrolysis of lipids hardly to occur to release fatty acids, the reactants in the initiation phase of lipid peroxidation As a consequence, the peroxide value was undetected in avocado powder 154 3.2 Effect of solvents on phytochemical contents of avocado extracts 165 143 144 145 146 147 148 149 150 151 155 156 157 158 159 160 161 162 163 164 Molecules 2021, 26, x FOR PEER REVIEW of 16 Acetone, methanol, and diethyl ether are among the common solvents used to extract active ingredients from plants with moderate to high polarity [33, 34] Methanol is more effective in extracting polyphenols with higher extraction yields of phenolics, flavonoids, and tannins than acetone and diethyl ether [35, 36] Moreover, acetone is suitable for the extraction of flavanols [37, 38] In this, the TPC was significantly changed under variation of solvent types because the polarity of the solvent would have a significant impact on the solubility of soluble [39, 40] through the differences in the different dielectric constants of solvent (20.7, 32.7, and 4.3 for acetone, methanol, and diethyl ether) The solubility of polyphenols in the solvent is mainly dependent on the molecular size and structure of TPC, as well as the presence and distribution of hydroxyl groups [41] Plus, the hydrogen bonds between polyphenols and proteins that existed in the plant structure would also impact TPC extraction Thus, the solvent with higher polarity would extract more TPC It is the main reason for the aqueous solvents such as methanol and acetone extracted TPC efficiently Some previous studies confirmed that acetone is the best solvent for extracting polyphenols in other plants [40, 42, 43] However, still existed the opposite results such as in the work of Iloki‐Assanga et al (2015) or Dailey and Vuong (2015) Iloki‐Assanga et al (2015) observed that acetone showed the best solvent for extraction of leaves B buceras, trunk B.buceras, but methanolic extraction obtained the highest total phenols content in extracting from Stem B.buceras, Oak P californicum, Mesquite P.californicum, [44] Dailey and Vuong (2015) showed that methanol extracted more TPC and antioxidant activity from skin waste than acetone [45] It was reported that organic solvents as acetone, chloroform, hexane, isopropanol, methanol, methylene chloride, and diethyl ether could extract carotenoids The carotenoids and chlorophylls were identified to belong to the lipophilic pigments In which, the total carotenoids existed both polar and nonpolar carotenoids [46, 47] Meanwhile, chlorophyll was considered amphipathic molecules [46] Therefore, diethyl ether extracted the highest of both total carotenoids and chlorophylls Despite the lower content of total carotenoids and chlorophylls in acetone and methanol extracts, these extracts were comparable to diethyl ether extract 166 3.3 Effect of solvents on antioxidant activities of avocado extracts 195 In the plants, TPC and phytopigments (such as carotenoids, chlorophylls, etc.) are proved the major contribution antioxidant activity Polyphenols and phytopigments (such as chlorophylls, carotenoids, etc.) could act as antioxidants Wang et al (2010) also concluded that the phenolic compounds in the pulp accounted for 13% of the total phenolic content, contributing only 5% of the antioxidant capacity of the whole avocado, and pigments such as chlorophylls and carotenoids made a minor contribution to the antioxidant capacity of avocados [27] TPC was the critical component in the evaluation of the antioxidant activity of plant extracts The redox properties of TPC were characterized, such as the ability to reduce agents, hydrogen donors, singlet oxygen quenchers, and metal chelators [48–50] This study also found the TPC had strong and moderate correlations with DPPH and ABTS activity, respectively Thus, the TPC showed the high ability to scavenge DPPH radicals and the formation of an oxidized radical cation The numerous studies on plant extracts also similarly observed the positive correlation between TPC and antioxidant activity with DPPH and ABTS activity [51–53] However, some opposite findings reported no correlation between TPC and antioxidant activity in extracts of some food and medicinal plants [54, 55] The reason could be that the content, structure, and interaction between bioactive compounds significantly impact antioxidant activity [56] Carotenoids were well-known as antioxidants due to the redox properties and structure of carotenoids Some mechanisms were determined to characterize the antioxidant activity of carotenoids, such as electron transfer, hydrogen abstraction/reduction, and formation of carotenoid–radical adducts [47] In the FRAP assay, the antioxidant would reduce the Fe+3/TPTZ complex to the ferrous form based on 196 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 Molecules 2021, 26, x FOR PEER REVIEW of 16 the electron donors of antioxidant compounds [44] That clearly explains why the total carotenoids high positive correlation with FRAP activity (r = 0.77974; p < 0.05) The chlorophylls could perform the antioxidant activity with two mechanisms such as anti-radical capacity, donations of the electron [57–59] based on the ideal structure and configuration In this study, the findings showed extremely high correlation with ABTS activity (r = 0.9595; p < 0.05) but no correlation with FRAP activity (r = 0.14305; p > 0.05) Finally, the results indicated that none of the tested bioactive compounds could represent all antioxidant activity in extracts However, it could conclude that TPC and phytopigments (such as carotenoids, chlorophylls) made a significant contribution to the antioxidant activity of extracts with different antioxidant mechanisms 219 3.4 Effect of solvents on antibacterial activities of avocado extracts 229 In plants, the secondary metabolites known as phytochemical compounds showed biological activities [60] Among these activities, the antibacterial activity of phytochemical compounds received great interest in evaluating the biological activities of plant extracts The antibacterial compounds in the avocado powder were found to have a broad spectrum against both Gram-positive and Gram-negative bacteria (see Figures and 5) In this study, the results showed the exist of carotenoids and TPC in avocado powder Carotenoids in plant extracts were found to be effective against Staphylococcus aureus ATCC 6538, Bacillus cereus 13061, Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 13311 [61] However, the exact antibacterial mechanisms of carotenoids were still limited The TPC could be extracted from different parts of plants such as leaves [62], peels [63], seed [64], kernel [65] And TPC showed the ability of inhibition against bacteria such as Staphylococcus aureus, Enterobacter aerogenes, Salmonella typhi, and Klebsiella pneumoniae, Bacillus subtilis, Pseudomonas aeruginosa, Providencia stuartii, Propionibacterium acnes, Staphylococcus epidermidis TPC possessed antibacterial activity based on direct effects on the life process of microorganisms TPC could inactivate hydrolytic enzymes [66] or interact with enzymes [67] Plus, TPC also attacks the structure of the cell or gives resistance in the metabolic activity of microorganisms through binding protein molecules as cell envelope transport proteins [66], adsorption [62], or disruption to cell membranes [68], etc Therefore, it clearly explained why extracts with higher TPC, such as acetone and methanol extracts, had better inhibition of bacterial than diethyl ether extracts with the lowest TPC In this study, the extract with methanol showed the best inhibition of tested bacteria compared to acetone and diethyl ether extracts, except Proteus mirabilis The main reason is the methanol has been shown to be effective in extracting polyphenols, phytopigments, and antioxidant activity Plus, it may be due to methanol extracts also containing significant other compounds with antibacterial activity In addition, it can be noted that acetone and diethyl ether also exhibited antibacterial activity against most of the investigated bacteria Some studies have determined that the composition of antibacterial substances found in plants such as phenolics, fatty acids, terpenes, etc., interacts with enzymes and proteins of bacterial cell membranes, leading to cell death or inhibition of bacterial enzymes for amino acid synthesis [69–71] Therefore, the difference in the structure of the cell walls between Gram-positive bacteria and Gram-negative bacteria, in which Gram-negative bacteria have the presence of an outer membrane, which acts as a barrier, limiting the diffusion of compounds through the bacterial lipopolysaccharide layer [72] That well explained why Gram-positive bacteria (Bacillus cereus, Staphylococcus aureus) were more sensitive to the extracts than Gram-negative bacteria 230 Materials and Methods 266 4.1 Material,, chemicals and microorganisms 267 4.1.1 Material 268 Fresh avocado (Persea Americana Mill cv 'Maluma') was received from a local farm in DakLak, Viet Nam; only fully-ripe avocado with a green surface was chosen 269 220 221 222 223 224 225 226 227 228 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 270 Molecules 2021, 26, x FOR PEER REVIEW of 16 4.1.2 Chemicals 271 Gallic acid, 2,4,6-tripyridyl-s-triazine (TPTZ), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and 6-hydroxy2,5,7,8 tetramethylchroman-2-carboxylic acid (Trolox) were purchased from SigmaAldrich (Singapore) Folin-Ciocalteu reagent (2 N) was prepared basically from solid sodium tungstate, sodium molybdate, and lithium sulfate Maltodextrin (DE in the range of 16.5–19.5, Sigma-Aldrich) and Ciprofloxacin antibiotics (Sigma-Aldrich) were purchased from a local supplier Tryptic Soy Agar (TSA), Plate Count Agar (PCA), Violet Red Bile with Lactose (VRBL) agar, Tryptone Bile Glucuronic (TBX) agar, Mannitol Egg Yolk (MYP) agar, Tryptose Sulfite Cycloserine (TSC) agar, Dichloran-Glycerol (DG18) agar was purchased from Hi-Media Laboratory (Mumbai, India) Acetic acid, sodium acetate, chloroform, potassium iodide, sodium thiosulfate pentahydrate, starch, sodium carbonate, methanol, acetone, diethyl ether, potassium persulfate, phosphoric acid, hydrochloric acid, ferric chloride hexahydrate, and other chemicals were of analytical grade 272 4.1.2 Microorganisms 287 The microorganisms used in this study were provided by NTT Hi-Tech Institute (NHTI, Nguyen Tat Thanh University), including five gram-negative pathogens (Shigella sonnei ATCC 9290, Escherichia coli ATCC 8739, Salmonella typhi ATCC 6539, Vibrio parahaemolyticus ATCC 17802, Proteus mirabilis ATCC 25933) and two gram-positive pathogens (Staphylococcus aureus ATCC 6538, Bacillus cereus ATCC 11778) Microorganisms were kept frozen at –20 C in TSA broth containing glycerol (10%, v/v) at the Microbiology Laboratory of the Department of Food Technology, Faculty of Environmental and Food Engineering (Nguyen Tat Thanh University) 288 4.2 Preparation of avocado powder and Experimental Design 296 Waste The avocado powder was processed following the steps in Figure Avocado fruit Washed, peeled, removed seed Ground 274 275 276 277 278 279 280 281 282 283 284 285 286 289 290 291 292 293 294 295 297 0.05% Sodium bicarbonate Sliced mm Avocado powder 273 Drying via infrared radiation 70 oC Soaked 30 Spread Steam blanching Cooled Mixed Ground mm 9% Maltodextrin 298 Figure Flowchart showing avocado powder process 299 The obtained powder was stored at –4 ºC until further analysis The powder was determined the physicochemical properties according to Association of Official Analytical Chemists (AOAC, 2000) Total protein content was determined according to the Kjeldahl method (AOAC 991.20) Total fat determination was performed by modified Mojonnier method (AOAC 989.05) Total carbohydrate content was analyzed by difference (AOAC 986.25) Moisture content was determined by gravimetric method, using a dry air oven until constant weight (AOAC 952.08) The microbiological properties were described by ISO 4833-1:2013 for total aerobic counts (72 hr, 30 °C), ISO 4832:2006 for coliform counts (24 hr, 37 °C), ISO 16649-2:2001 for E coli counts (24 hr, 44 °C), ISO 7932:2004 for B cereus (24 hr, 30 °C), ISO 7937:2004 for C perfringens (20 hr, 37 °C, anaerobic), and ISO 21527- 300 301 302 303 304 305 306 307 308 309 Molecules 2021, 26, x FOR PEER REVIEW 10 of 16 2:2008 for total yeast and mold counts (5–7 days, 25 °C) Microbiological counts were expressed as the number of colony-forming units per gram of sample (CFU/g) In this study, three types of the absolute solvent, including acetone, methanol, and diethyl ether, were used to investigate chemical properties, antioxidant and antibacterial activities of corresponding extracts obtained according to the procedure described in the literature [27] The sample (0.2 g) was mixed with mL solvent and then vortexed for 30 s at 2000 rpm using the VELP ZX4 advanced IR vortex mixer (VELP Scientifica, Milan, Italy) to start the extraction step After sonication (40 KHz, 240 W, min) in the Pro 100 ultrasonic cleaner (Asonic, Ljubljana, Slovenia), the sample was again vortexed for 10 s and cooled for 20 at 10 °C The cooled sample was then sonicated for a second time at the previous condition and centrifuged in the PLC-05 centrifuge (Gemmy Industrial Corp., Taipei, Taiwan) at 1220 g/10 The supernatant was collected and diluted to 25 mL to analyze total phenolic content (TPC), total carotenoids, total chlorophylls, and antioxidant activities (ABTS cation radical scavenging assay, DPPH radical scavenging assay and ferric reducing antioxidant power – FRAP), and antibacterial activity against seven pathogens 310 4.3 Analysis of avocado extracts 326 4.3.1 Total phenolic content (TPC) 327 The Folin-Ciocalteu technique, as specified in ISO 14502-1:2005, was used to measure the phenolic content Briefly, 0.6 mL of the diluted sample was added to 1.5 mL of FolinCiocalteu reagent (10-fold dilution) and incubated in the dark for 10 to evaluate the phenolic content The reaction mixture was incubated in the dark for 60 after 1.2 mL of 7.5% (w/v) Na2CO3 was added Using a UV-Vis spectrophotometer, the absorbance was measured at 765 nm, with distilled water as a blank The gallic acid calibration curve was used to determine total phenolic content, which was reported as mg gallic acid equivalent/g of dry weight (mg GAE/g DW) 328 4.3.2 Phytopigments content 336 The solvent in the supernatant was evaporated in the pertri disk using the LO-FS100 forced convection oven (LK Lab, Namyangju, Korea) at 50°C for 30 min, and finally redissolved to 10 mL by pure diethyl ether for analysis of total carotenoids and chlorophyll content (g/g DW) as presented in the literature [73] 337 4.3.3 ABTS cation radical scavenging activity 341 With few changes, the ABTS free radical reduction activity was carried out according to the technique reported in the literature [20] 2.85 mL of the stock ABTS reagent was applied to 0.15 mL of the diluted sample to measure the ABTS free radical scavenging activity The reaction mixture was incubated in the dark for 30 min, and the absorbance was measured at 734 nm using a UV-Vis spectrophotometer against a blank of methanol The percent inhibition of ABTS free radical inhibition was determined using the following formula: percent inhibition = (1–Absorbance of sample/Absorbance of control) 100 The antioxidant activity of ABTS was determined using the Trolox concentration–%inhibition curve and reported as mg equivalent Trolox/g dry weight (mg TE/g DW) 342 4.3.4 DPPH radical scavenging activity 351 The DPPH radical scavenging activity of the extract was determined according to Brand-Williams et al (1995) with minor changes [74] The 150 L of the sample was reacted with 2850 l of DPPH working solution for 30 under dark conditions Finally, the sample was measured for absorbance at 515 nm over methanol blank DPPH radical scavenging activity was determined using the %DPPH radical inhibition-standard concentration curve (%DPPH radical inhibition = (1–Absorbance of sample/Absorbance of blank)100) and expressed as mg Trolox equivalent/g sample on the dry weight (mg TE/g DW) 352 4.3.5 Ferric reducing antioxidant power (FRAP) 360 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 329 330 331 332 333 334 335 338 339 340 343 344 345 346 347 348 349 350 353 354 355 356 357 358 359 Molecules 2021, 26, x FOR PEER REVIEW 11 of 16 The ferric reducing antioxidant power (FRAP) assay was performed according to the method described in the literature with some modifications [75] 2.85 mL of FRAP reagent was added to 0.15 mL of diluted sample The reaction mixture was incubated for 30 in the dark and the absorbance was measured at 593 nm with the UV-Vis spectrophotometer over distilled water as blank The ferric reducing antioxidant power (FRAP) was calculated based on the Trolox calibration curve and expressed as mg Trolox equivalent/g of sample on the dry weight (mg TE/g DW) 361 4.3.6 Antimicrobial activity by agar well diffusion assay 368 Before the test, stock cultures were inoculated into the broth and incubated at 37 C for 18 hr The antimicrobial activities of the plant extracts were determined by agar well diffusion assay [76] The bacterial pathogens were grown in liquid medium for 20 hr to yield a final concentration of 108 CFU/mL Next, aliquots of 0.1 mL of the test microorganisms were spread over the surface of agar plates Sterile filter paper discs were saturated with 50 L of plant extracts and Ciprofloxacin (0.1 mg/mL) as reference antibiotics The soaked discs were then placed in the middle of the plates and incubated at 37 °C for 18 hr, after which the diameter in mm of each inhibitory zone was measured as the difference between diameters of extracts and negative control Negative controls were prepared using the same solvents employed to dissolve the plant extracts 362 363 364 365 366 367 369 370 371 372 373 374 375 376 377 378 4.4 Statistical analysis 379 Using basic statistical techniques, experimental data were analyzed using SPSS 15 software (SPSS Inc., Chicago, U.S.A) One-way ANOVA was used to determine the differences between samples, and Tukey's Multiple Range test was applied to determine significant differences between mean values at the significance level of 5% All experiments were conducted in triplicate 380 Conclusions 385 This study characterized the antioxidant and antibacterial activities of different extracts (acetone, methanol, and diethyl ether) from avocado pulp powder The results showed these activities were solvent-dependent, in which methanol and acetone were effective in extracting phenolic components and chlorophylls Still, extracts with diethyl ether obtained the highest content of carotenoids The results found that TPC and phytopigments in investigated extracts showed different antioxidant mechanisms Thus, these compounds played an important role in the antioxidant activity of extracts Except for the diethyl ether extract, the methanol and acetone extracts inhibited all seven pathogens tested The methanol extract had the most excellent antibacterial activity with exceptional inhibition zones (diameter ranging from 10 to 28 mm) In addition, Grampositive pathogens (Bacillus cereus, Staphylococcus aureus) were more sensitive to extracts from avocado powder than gram-negative pathogens Finally, it was indicated that methanol extract was the best solvent since it possessed the highest antibacterial and significant antioxidant activities For further study, after the optimal extraction conditions were determined, the extracts with considerable antioxidant and antibacterial activities may have a wide range of applications in various fields, such as food processing and preservation, pharmaceuticals, and cosmetics 386 Author Contributions: Conceptualization, T-V-L N.; methodology, T-V-L N and T-T-D N.; investigation, N-N N and Q-D N.; data curation, Q-D N.; writing—original draft preparation, T-VL N and T-T-D N.; writing—review and editing, T-V-L N and Q-D N 403 404 405 Funding: The study was supported by The Youth Incubator for Science and Technology Programe, managed by Youth Development Science and Technology Center - Ho Chi Minh Communist Youth Union and Department of Science and Technology of Ho Chi Minh City, the contract number is "07/2020/HĐ-KHCNT-VƯ" 406 407 408 409 Data Availability Statement: Data is contained within the article 410 381 382 383 384 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 Molecules 2021, 26, x FOR PEER REVIEW 12 of 16 Acknowledgments: The authors would like to thank Nguyen Tat Thanh University for permission and for providing facilities, and thank DAKADO GROUP for supplying avocado fruits during the research period 411 412 413 Conflicts of Interest: The authors declare no conflict of interest 414 References 415 Talib, W H.; Mahasneh, A M Antimicrobial, Cytotoxicity and Phytochemical Screening of Jordanian Plants Used 416 in Traditional Medicine Molecules, 2010, 15 (3), 1811–1824 417 Ferreira, I C.; Barros, L.; Abreu, R Antioxidants in Wild Mushrooms Curr Med Chem., 2009, 16 (12), 1543–1560 418 López, V.; Akerreta, S.; Casanova, E.; García-Mina, J M.; Cavero, R Y.; Calvo, M I In Vitro Antioxidant and Anti- 419 Rhizopus Activities of Lamiaceae Herbal Extracts Plant Foods Hum Nutr., 2007, 62 (4), 151–155 420 Barros, L.; Cabrita, L.; Boas, M V.; Carvalho, A M.; Ferreira, I C Chemical, Biochemical and Electrochemical 421 Assays to Evaluate Phytochemicals and Antioxidant Activity of Wild Plants Food Chem., 2011, 127 (4), 1600–1608 422 Mau, J.-L.; Chen, C.-P.; Hsieh, P.-C Antimicrobial Effect of Extracts from Chinese Chive, Cinnamon, and Corni 423 Fructus J Agric Food Chem., 2001, 49 (1), 183–188 424 Hatab, S.; Athanasio, R.; Holley, R.; Rodas‐Gonzalez, A.; Narvaez‐Bravo, C Survival and Reduction of Shiga 425 Toxin‐producing Escherichia Coli in a Fresh Cold‐pressed Juice Treated with Antimicrobial Plant Extracts J Food 426 Sci., 2016, 81 (8), M1987–M1995 427 Gonelimali, F D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S R Antimicrobial Properties and 428 Mechanism of Action of Some Plant Extracts against Food Pathogens and Spoilage Microorganisms Front 429 Microbiol., 2018, 9, 1639 430 Castro, S.; Leal, C.; Freire, F.; Carvalho, D.; Oliveira, D.; Figueiredo, H Antibacterial Activity of Plant Extracts 431 from Brazil against Fish Pathogenic Bacteria Braz J Microbiol., 2008, 39, 756–760 432 Yeh, R.-Y.; Shiu, Y.-L.; Shei, S.-C.; Cheng, S.-C.; Huang, S.-Y.; Lin, J.-C.; Liu, C.-H Evaluation of the Antibacterial 433 Activity of Leaf and Twig Extracts of Stout Camphor Tree, Cinnamomum Kanehirae, and the Effects on Immunity 434 and Disease Resistance of White Shrimp, Litopenaeus Vannamei Fish Shellfish Immunol., 2009, 27 (1), 26–32 435 Tlili, H.; Marino, A.; Ginestra, G.; Cacciola, F.; Mondello, L.; Miceli, N.; Taviano, M F.; Najjaa, H.; Nostro, A 436 Polyphenolic Profile, Antibacterial Activity and Brine Shrimp Toxicity of Leaf Extracts from Six Tunisian 437 Spontaneous Species Nat Prod Res., 2021, 35 (6), 1057–1063 438 Mostaqim, S.; Saha, S.; Hani, U.; Paul, S.; Sharmin, M.; Basak, S.; Begum, S.; Salma, U.; Shahabuddin, M 439 Antibacterial Activities of Clove (Syzygium Aromaticum) Extracts Against Three Food Borne Pathogens: 440 Staphylococcus Aureus, Escherichia Coli and Pseudomonas Aeruginosa Mymensingh Med J MMJ, 2019, 28 (4), 441 779–791 442 Sujana, P.; Sridhar, T M.; Josthna, P.; Naidu, C V Antibacterial Activity and Phytochemical Analysis of Mentha 443 Piperita L.(Peppermint)—An Important Multipurpose Medicinal Plant 2013 444 Ahmed, H M.; Al-Zubaidy, A M A Exploring Natural Essential Oil Components and Antibacterial Activity of 445 Solvent Extracts from Twelve Perilla Frutescens L Genotypes Arab J Chem., 2020, 13 (10), 7390–7402 446 Kim, G S.; Kim, D H.; Lim, J J.; Lee, J J.; Han, D Y.; Lee, W M.; Jung, W C.; Min, W G.; Won, C G.; Rhee, M H 447 Biological and Antibacterial Activities of the Natural Herb Houttuynia Cordata Water Extract against the 448 Intracellular Bacterial Pathogen Salmonella within the RAW 264.7 Macrophage Biol Pharm Bull., 2008, 31 (11), 449 2012–2017 450 10 11 12 13 14 Molecules 2021, 26, x FOR PEER REVIEW 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 13 of 16 Liliany, D.; Widyarman, A S.; Erfan, E.; Sudiono, J.; Djamil, M S Enzymatic Activity of Bromelain Isolated 451 Pineapple (Ananas Comosus) Hump and Its Antibacterial Effect on Enterococcus Faecalis Sci Dent J., 2018, (2), 452 39–50 453 Debnath, S.; Rahman, S H.; Deshmukh, G.; Duganath, N.; Pranitha, C.; Chiranjeevi, A Antimicrobial Screening 454 of Various Fruit Seed Extracts Pharmacogn J., 2011, (19), 83–86 455 Höfling, J.; Anibal, P.; Obando-Pereda, G.; Peixoto, I.; Furletti, V.; Foglio, M.; Gonỗalves, R Antimicrobial Potential 456 of Some Plant Extracts against Candida Species Braz J Biol., 2010, 70 (4), 1065–1068 457 Kumarasingha, R.; Preston, S.; Yeo, T.-C.; Lim, D S.; Tu, C.-L.; Palombo, E A.; Shaw, J M.; Gasser, R B.; Boag, P 458 R Anthelmintic Activity of Selected Ethno-Medicinal Plant Extracts on Parasitic Stages of Haemonchus Contortus 459 Parasit Vectors, 2016, (1), 1–7 460 Alzoreky, N.; Nakahara, K Antibacterial Activity of Extracts from Some Edible Plants Commonly Consumed in 461 Asia Int J Food Microbiol., 2003, 80 (3), 223–230 462 Hu, S.; Wang, J.; Kung, H.; Wang, J.; Lee, W.; Yang, Y Antimicrobial Effect of Extracts of Cruciferous Vegetables 463 Kaohsiung J Med Sci., 2004, 20 (12), 591–599 464 Ebrahimzadeh, M A.; Naghizadeh, A.; Mohammadi-Aghdam, S.; Khojasteh, H.; Ghoreishi, S M.; Mortazavi- 465 Derazkola, S Enhanced Catalytic and Antibacterial Efficiency of Biosynthesized Convolvulus Fruticosus Extract 466 Capped Gold Nanoparticles (CFE@ AuNPs) J Photochem Photobiol B, 2020, 209, 111949 467 Shirzadi-Ahodashti, M.; Mizwari, Z M.; Hashemi, Z.; Rajabalipour, S.; Ghoreishi, S M.; Mortazavi-Derazkola, S.; 468 Ebrahimzadeh, M A Discovery of High Antibacterial and Catalytic Activities of Biosynthesized Silver 469 Nanoparticles Using C Fruticosus (CF-AgNPs) against Multi-Drug Resistant Clinical Strains and Hazardous 470 Pollutants Environ Technol Innov., 2021, 23, 101607 471 Lye, H S.; Ong, M K.; Teh, L K.; Chang, C C.; Wei, L K Chapter - Avocado In Valorization of Fruit Processing 472 By-products; Galanakis, C M., Ed.; Academic Press, 2020; pp 67–93 https://doi.org/10.1016/B978-0-12-817106- 473 6.00004-6 474 Cardoso, P.; Scarpassa, J.; Pretto-Giordano, L.; Otaguiri, E.; Yamada-Ogatta, S.; Nakazato, G.; Perugini, M.; 475 Moreira, I.; Vilas-Boas, G Antibacterial Activity of Avocado Extracts (Persea Americana Mill.) against 476 Streptococcus Agalactiae Phyton Int J Exp Bot., 2016, 85, 218–224 477 Dreher, M L.; Davenport, A J Hass Avocado Composition and Potential Health Effects Crit Rev Food Sci Nutr., 478 2013, 53 (7), 738–750 479 Egbuonu, A.; Opara, I.; Onyeabo, C.; Uchenna, N Proximate, Functional, Antinutrient and Antimicrobial 480 Properties of Avocado Pear (Persea Americana) Seeds J Nutr Health Food Eng, 2018, (1), 00260 481 Wang, W.; Bostic, T R.; Gu, L Antioxidant Capacities, Procyanidins and Pigments in Avocados of Different Strains 482 and Cultivars Food Chem., 2010, 122 (4), 1193–1198 483 Rodríguez-Carpena, J.-G.; Morcuende, D.; Andrade, M.-J.; Kylli, P.; Estévez, M Avocado (Persea Americana Mill.) 484 Phenolics, in Vitro Antioxidant and Antimicrobial Activities, and Inhibition of Lipid and Protein Oxidation in 485 Porcine Patties J Agric Food Chem., 2011, 59 (10), 5625–5635 486 Nguyen, T.-V.-L.; Nguyen, Q.-D.; Nguyen, T.-T.-D.; Nguyen, P.-B.-D Effects of Infrared Drying Conditions and 487 Maltodextrin Addition on Some Physicochemical Characteristics of Avocado (Persea Americana) Pulp Powder 488 Appl Sci., 2021, 11 (24) https://doi.org/10.3390/app112411803 489 Sakare, P.; Prasad, N.; Thombare, N.; Singh, R.; Sharma, S C Infrared Drying of Food Materials: Recent Advances 490 Food Eng Rev., 2020, 12 (3), 381–398 491 Molecules 2021, 26, x FOR PEER REVIEW 31 14 of 16 Rastogi, N K Recent Trends and Developments in Infrared Heating in Food Processing Crit Rev Food Sci Nutr., 492 2012, 52 (9), 737–760 493 32 Prabhakar, K.; Mallika, E Dried Foods 2014 494 33 Hayouni, E A.; Abedrabba, M.; Bouix, M.; Hamdi, M The Effects of Solvents and Extraction Method on the 495 Phenolic Contents and Biological Activities in Vitro of Tunisian Quercus Coccifera L and Juniperus Phoenicea L 496 Fruit Extracts Food Chem., 2007, 105 (3), 1126–1134 497 34 Ababutain, I Impact of Solvent Type on Antibacterial Activities of Lawsonia Inermis Leaves J Food Agric Environ., 498 2015, 13 (1), 51–53 499 Felhi, S.; Daoud, A.; Hajlaoui, H.; Mnafgui, K.; Gharsallah, N.; Kadri, A Solvent Extraction Effects on 500 Phytochemical Constituents Profiles, Antioxidant and Antimicrobial Activities and Functional Group Analysis of 501 Ecballium Elaterium Seeds and Peels Fruits Food Sci Technol., 2017, 37, 483–492 502 Do, Q D.; Angkawijaya, A E.; Tran-Nguyen, P L.; Huynh, L H.; Soetaredjo, F E.; Ismadji, S.; Ju, Y.-H Effect of 503 Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila 504 Aromatica J Food Drug Anal., 2014, 22 (3), 296–302 505 Dai, J.; Mumper, R J Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties 506 Molecules, 2010, 15 (10), 7313–7352 507 Kuo, C.-T.; Liu, T.-H.; Hsu, T.-H.; Lin, F.-Y.; Chen, H.-Y Antioxidant and Antiglycation Properties of Different 508 Solvent Extracts from Chinese Olive (Canarium Album L.) Fruit Asian Pac J Trop Med., 2015, (12), 1013–1021 509 Naczk, M.; Shahidi, F Phenolics in Cereals, Fruits and Vegetables: Occurrence, Extraction and Analysis J Pharm 510 Biomed Anal., 2006, 41 (5), 1523–1542 511 Bhebhe, M.; Füller, T N.; Chipurura, B.; Muchuweti, M Effect of Solvent Type on Total Phenolic Content and Free 512 Radical Scavenging Activity of Black Tea and Herbal Infusions Food Anal Methods, 2016, (4), 1060–1067 513 Metrouh-Amir, H.; Duarte, C M.; Maiza, F Solvent Effect on Total Phenolic Contents, Antioxidant, and 514 Antibacterial Activities of Matricaria Pubescens Ind Crops Prod., 2015, 67, 249–256 515 Luximon-Ramma, A.; Bahorun, T.; Crozier, A.; Zbarsky, V.; Datla, K P.; Dexter, D T.; Aruoma, O I 516 Characterization of the Antioxidant Functions of Flavonoids and Proanthocyanidins in Mauritian Black Teas Food 517 Res Int., 2005, 38 (4), 357–367 518 Abozed, S S.; El-Kalyoubi, M.; Abdelrashid, A.; Salama, M F Total Phenolic Contents and Antioxidant Activities 519 of Various Solvent Extracts from Whole Wheat and Bran Ann Agric Sci., 2014, 59 (1), 63–67 520 Iloki-Assanga, S B.; Lewis-Luján, L M.; Lara-Espinoza, C L.; Gil-Salido, A A.; Fernandez-Angulo, D.; Rubio-Pino, 521 J L.; Haines, D D Solvent Effects on Phytochemical Constituent Profiles and Antioxidant Activities, Using Four 522 Different Extraction Formulations for Analysis of Bucida Buceras L and Phoradendron Californicum BMC Res 523 Notes, 2015, (1), 1–14 524 Dailey, A.; Vuong, Q V Effect of Extraction Solvents on Recovery of Bioactive Compounds and Antioxidant 525 Properties from Macadamia (Macadamia Tetraphylla) Skin Waste Cogent Food Agric., 2015, (1), 1115646 526 Saini, R K.; Keum, Y.-S Carotenoid Extraction Methods: A Review of Recent Developments Food Chem., 2018, 527 240, 90–103 528 47 Pérez-Gálvez, A.; Viera, I.; Roca, M Carotenoids and Chlorophylls as Antioxidants Antioxidants, 2020, (6), 505 529 48 Sikwese, F.; Duodu, K G Antioxidant Effect of a Crude Phenolic Extract from Sorghum Bran in Sunflower Oil in 530 the Presence of Ferric Ions Food Chem., 2007, 104 (1), 324–331 531 Behera, B.; Verma, N.; Sonone, A.; Makhija, U Determination of Antioxidative Potential of Lichen Usnea 532 Ghattensis in Vitro LWT-Food Sci Technol., 2006, 39 (1), 80–85 533 35 36 37 38 39 40 41 42 43 44 45 46 49 Molecules 2021, 26, x FOR PEER REVIEW 50 15 of 16 Huang, S C.; Yen, G.-C.; Chang, L.-W.; Yen, W.-J.; Duh, P.-D Identification of an Antioxidant, Ethyl 534 Protocatechuate, in Peanut Seed Testa J Agric Food Chem., 2003, 51 (8), 2380–2383 535 Shan, B.; Cai, Y Z.; Sun, M.; Corke, H Antioxidant Capacity of 26 Spice Extracts and Characterization of Their 536 Phenolic Constituents J Agric Food Chem., 2005, 53 (20), 7749–7759 537 Čanadanović-Brunet, J.; Ćetković, G.; Djilas, S.; Tumbas, V.; Bogdanović, G.; Mandić, A.; Markov, S.; Cvetković, 538 D.; Čanadanović, V Radical Scavenging, Antibacterial, and Antiproliferative Activities of Melissa Officinalis L 539 Extracts J Med Food, 2008, 11 (1), 133–143 540 Skotti, E.; Anastasaki, E.; Kanellou, G.; Polissiou, M.; Tarantilis, P A Total Phenolic Content, Antioxidant Activity 541 and Toxicity of Aqueous Extracts from Selected Greek Medicinal and Aromatic Plants Ind Crops Prod., 2014, 53, 542 46–54 543 Ruanma, K.; Shank, L.; Chairote, G Phenolic Content and Antioxidant Properties of Green Chilli Paste and Its 544 Ingredients Maejo Int J Sci Technol., 2010, (2), 193–200 545 Bajpai, M.; Pande, A.; Tewari, S.; Prakash, D Phenolic Contents and Antioxidant Activity of Some Food and 546 Medicinal Plants Int J Food Sci Nutr., 2005, 56 (4), 287–291 547 Bourgou, S.; Ksouri, R.; Bellila, A.; Skandrani, I.; Falleh, H.; Marzouk, B Phenolic Composition and Biological 548 Activities of Tunisian Nigella Sativa L Shoots and Roots C R Biol., 2008, 331 (1), 48–55 549 Ferruzzi, M.; Böhm, V.; Courtney, P.; Schwartz, S Antioxidant and Antimutagenic Activity of Dietary Chlorophyll 550 Derivatives Determined by Radical Scavenging and Bacterial Reverse Mutagenesis Assays J Food Sci., 2002, 67 551 (7), 2589–2595 552 Chen, K.; Roca, M Cooking Effects on Bioaccessibility of Chlorophyll Pigments of the Main Edible Seaweeds Food 553 Chem., 2019, 295, 101–109 554 Endo, Y.; Usuki, R.; Kaneda, T Antioxidant Effects of Chlorophyll and Pheophytin on the Autoxidation of Oils in 555 the Dark II The Mechanism of Antioxidative Action of Chlorophyll J Am Oil Chem Soc., 1985, 62 (9), 1387–1390 556 Njeru, S N.; Matasyoh, J.; Mwaniki, C G.; Mwendia, C M.; Kobia, K A Review of Some Phytochemicals 557 Commonly Found in Medicinal Plants Int J Med Plant, 2013, 105, 135–140 558 Djifaby, S.; Yacouba, C A.; Adama, H.; Kiessoum, K.; Marie-Hyacinthe, C M.; Germaine, N O.; Eric, S P A 559 Carotenoids Content and Antibacterial Activity from Galls of Guiera Senegalensis Jf Gmel (Combretaceae) Int J 560 Phytomed, 2012, 4, 441–446 561 Pavić, V.; Flačer, D.; Jakovljević, M.; Molnar, M.; Jokić, S Assessment of Total Phenolic Content, in Vitro 562 Antioxidant and Antibacterial Activity of Ruta Graveolens L Extracts Obtained by Choline Chloride Based 563 Natural Deep Eutectic Solvents Plants, 2019, (3), 69 564 Malviya, S.; Jha, A.; Hettiarachchy, N Antioxidant and Antibacterial Potential of Pomegranate Peel Extracts J 565 Food Sci Technol., 2014, 51 (12), 4132–4137 566 Dzotam, J K.; Simo, I K.; Bitchagno, G.; Celik, I.; Sandjo, L P.; Tane, P.; Kuete, V In Vitro Antibacterial and 567 Antibiotic Modifying Activity of Crude Extract, Fractions and 3′, 4′, 7-Trihydroxyflavone from Myristica Fragrans 568 Houtt against MDR Gram-Negative Enteric Bacteria BMC Complement Altern Med., 2018, 18 (1), 1–9 569 Poomanee, W.; Chaiyana, W.; Mueller, M.; Viernstein, H.; Khunkitti, W.; Leelapornpisid, P In-Vitro Investigation 570 of Anti-Acne Properties of Mangifera Indica L Kernel Extract and Its Mechanism of Action against 571 Propionibacterium Acnes Anaerobe, 2018, 52, 64–74 572 66 Cowan, M M Plant Products as Antimicrobial Agents Clin Microbiol Rev., 1999, 12 (4), 564–582 573 67 Scalbert, A Antimicrobial Properties of Tannins Phytochemistry, 1991, 30 (12), 3875–3883 574 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Molecules 2021, 26, x FOR PEER REVIEW 68 16 of 16 Hayek, S A.; Ibrahim, S A Antimicrobial Activity of Xoconostle Pears (Opuntia Matudae) against Escherichia 575 Coli O157: H7 in Laboratory Medium Int J Microbiol., 2012, 2012 576 Burt, S Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—a Review Int J Food 577 Microbiol., 2004, 94 (3), 223–253 578 Oonmetta-aree, J.; Suzuki, T.; Gasaluck, P.; Eumkeb, G Antimicrobial Properties and Action of Galangal (Alpinia 579 Galanga Linn.) on Staphylococcus Aureus LWT-Food Sci Technol., 2006, 39 (10), 1214–1220 580 Gill, A.; Holley, R Inhibition of Membrane Bound ATPases of Escherichia Coli and Listeria Monocytogenes by 581 Plant Oil Aromatics Int J Food Microbiol., 2006, 111 (2), 170–174 582 72 Vaara, M Agents That Increase the Permeability of the Outer Membrane Microbiol Rev., 1992, 56 (3), 395–411 583 73 Lichtenthaler, H K.; Buschmann, C Chlorophylls and Carotenoids: Measurement and Characterization by UV‐ 584 VIS Spectroscopy Curr Protoc Food Anal Chem., 2001, (1), F4-3 585 Brand-Williams, W.; Cuvelier, M.-E.; Berset, C Use of a Free Radical Method to Evaluate Antioxidant Activity 586 LWT-Food Sci Technol., 1995, 28 (1), 25–30 587 Benzie, I F.; Strain, J J The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The 588 FRAP Assay Anal Biochem., 1996, 239 (1), 70–76 589 Kil, H Y.; Seong, E S.; Ghimire, B K.; Chung, I.-M.; Kwon, S S.; Goh, E J.; Heo, K.; Kim, M J.; Lim, J D.; Lee, D 590 Antioxidant and Antimicrobial Activities of Crude Sorghum Extract Food Chem., 2009, 115 (4), 1234–1239 591 69 70 71 74 75 76 592 593

Ngày đăng: 05/10/2023, 19:41