CHUYỂN ĐỘNG THẲNG ĐỀU 1 Định nghĩa: - Là chuyển động thẳng trên một đường thẳng trong đó vật đi được những quãng đường bằng nhau trong những khoảng thời gian bằng nhau bất kì.. - Là ch
Trang 1PHÂN LOẠI BÀI TẬP CHƯƠNG “ ĐỘNG HỌC CHẤT ĐIỂM”
Trang 2PHÂN LOẠI BÀI TẬP CHƯƠNG
“ ĐỘNG HỌC CHẤT ĐIÊM” SGK-VL10 NC
A Lí thuyết
I CHUYỂN ĐỘNG THẲNG ĐỀU
1) Định nghĩa:
- Là chuyển động thẳng trên một đường thẳng trong đó vật đi được những
quãng đường bằng nhau trong những khoảng thời gian bằng nhau bất kì
- Là chuyển động thẳng trong đó
2) Vận tốc:
- Vận tốc của chuyển động thẳng đều là đại lượng Vật Lý đặc trưng cho sự
nhanh hay chậm của chuyển động và đo bằng thương số giữa quãng
đường đi được và khoảng thời gian để đi hết quãng đường đó
- Biểu thức:
trong đó s: quãng đường t: thời gian
Trong đời sống gọi độ lớn của vận tốc là tốc độ
II CHUYỂN ĐỘNG THẲNG BIẾN ĐỔI ĐỀU
1) Chuyển động thẳng biến đổi đều:
a) Định nghĩa:
- Là chuyển động thẳng trong đó vận tốc biến thiên (tăng hoặc giảm) được
những lượng bằng nhau trong những khoảng thời gian bất kì
b) Vận tốc:
Vận tốc trung bình:
- Vận tốc trung bình của một chuyển động thẳng biến đổi đều trên một
quãng đường nhất định là một đại lượng đo bằng thương số giữa quãng
đường đi được và khoảng thời gian để đi hết quãng đường đó
Biểu thức : hay
- Đơn vị : m/s , km/h
Vận tốc tức thời:
- Vận tốc tức thời hay vận tốc tại một điểm đã cho trên quỹ đạo đo bằng
thương số giữa quãng đường đi rất nhỏ tính từ điểm đã cho và khoảng thời
gian rất nhỏ để đi hết quãng đường đó
Trang 3- Biểu thức : hay
c) Gia tốc:
- Gia tốc là một đại lượng Vật Lý đặc trưng cho sự biến thiên nhanh hay chậm của vận tốc và đo bằng thương số giữa độ biến thiên của vận tốc và khoảng thời gian xảy ra sự biến thiên đó
- Biểu thức:
+) Gia tốc là một đại lượng vectơ:
trong đó: là vận tốc ở thời điểm t
Khi không có sức cản của không khí:
+) Các vật có hình dạng và khối lượng khác nhau đều rơi như nhau
+) Mọi vật chuyển động ở gần mặt đất đều có gia tốc rơi tự do
Vật rơi tự do chuyển động theo phương thẳng đứng
Chuyển động rơi tự do là chuyển động nhanh dần đều
Trang 4( m/s ), trong đó Δs là độ dài cung tròn mà chất điểm đi được trong
khoảng thời gian Δt
Vận tốc góc: là đại lượng đo bằng thương số giữa góc quay của bán kính
vật chuyển động ở tâm vòng tròn quỹ đạo và thời gian để quay góc đó , =>
trong đó f là số vòng quay trong 1s và T là khoảng thời gian đi hết một vòng trên vòng tròn
3) Gia tốc:
- Đinh nghĩa: Gia tốc của chất điểm chuyển động tròn đều gọi là gia tốc
hướng tâm, có phương vuông góc với tiếp tuyến quỹ đạo tại vị trí của chất
điểm, có chiều hướng vào tâm đường tròn và có giá trị bằng
- Biểu thức: ;
với R là bán kính quỹ đạo
IV GHI CHÚ:
- Chất điểm: Trong trường hợp kích thước của vật nhỏ so với phạm vi
chuyển động của nó ta có thể coi vật như một chất điểm, tức là vật có kích thước như một điểm hình học
- Chuyển động tịnh tiến: Chuyển động của một vật là tịnh tiến khi đoạn
thẳng nối hai điểm bất kì của vật luôn song song với một phương nhất định
- Hệ quy chiếu: Khi ta chọn một vật làm mốc và gắn vào đó một trục tọa độ
tức là ta đã chọn một hệ quy chiếu để xác định vị trí của một chất điểm
- Quỹ đạo: Khi chất điểm chuyển động vạch nên một đường trong không
gian gọi là quỹ đạo
- Tính tương đối của chuyển động: Mọi chuyển động và mọi trạng thái đứng yên
đều có tính chất tương đối
+) Tính tương đối của tọa độ : Đối với hệ quy chiếu ( hệ tọa độ ) khác nhau
thì tọa độ của vật sẽ khác nhau
+) Tính tương đối của vận tốc: Vận tốc của cùng một vật đối với hệ quy
chiếu khác nhau thì khác nhau
+) Công thức cộng vận tốc:
Trang 5B Phân loại bài tập
Động học chất điểm
đổi đều
Chuyển động tròn đều
Trang 61 Chuyển động thẳng đều
Các dạng bài tập gồm:
Loại1: Bài toán về quãng đường đi
Loại2: Định vị trí và thời điểm gặp nhau của các chuyển động
Loại3: Vẽ đồ thị Dùng đồ thị để giải bài toán về các
chuyển động
Loại4: Đổi hệ quy chiếu để nghiên cứu chuyển động thẳng
đều (công thức cộng vận tốc)
1 LOẠI 1: BÀI TOÁN VỀ QUÃNG ĐƯỜNG ĐI.
Đây là loại toán đơn giản về vận tốc và quãng đường đi Loại toán này giúp
học sinh làm quen, hình thành logic giải những bài toán về chuyển động
A CÁC BÀI TOÁN VÍ DỤ
Bài 1: Một ôtô và một môtô chuyển động thẳng đều trên cùng một đường thẳng
với các vận tốc không đổi
-Nếu đi ngược chiều thì sau 10′ khoảng cách giữa hai xe giảm 25km
-Nếu đi cùng chiều thì sau 10′ khoảng cách giữa hai xe chỉ giảm 5km
b) Xác lập các mối quan hệ
- Quãng đường mỗi xe đi được là s = vt
- Gọi s1, s2 là lần lượt quãng đường ô tô và mô tô đi được sau 10’
Nếu hai xe đi ngược chiều thì khoảng cách giữa hai xe là:
s1 + s2 = v1t + v2t = ( v1 + v2)t = 25 Nếu hai xe đi cùng chiều thì khoảng cách giữa hai xe là :
s2 – s1 = v2t – v1t = ( v2 – v1)t = 5
(1)
(2)
Trang 7c) Sơ đồ luận giải:
3- Khó khăn của học sinh
- Khó khăn khi xác định độ giảm khoảng cách của 2 xe trong các trường hợp
(ngược chiều và cùng chiều)
4- Định hướng tư duy học sinh
- Vẽ hình biểu diễn các vecto vận tốc
- Xác định quãng đường mỗi xe đi được trong cùng một khoảng thời gian
- Xác định độ giảm khoảng cách khi 2 xe ngược chiều và cùng chiều Từ đó
xác lập mối quan hệ
Bài 2: Một canô rời bến chuyển động thẳng đều Canô đi theo hướng Nam - Bắc
trong thời gian 2 phút 42 giây rồi tức thì rẽ sang hướng Đông – Tây và chạy thêm
2phút với vận tốc như trước và dừng lại Khoảng cách từ nơi xuất phát tới nơi dừng
Trang 82 Khó khăn của học sinh khi giải toán
- HS gặp khó khăn khi định hướng các hướng Bắc – Nam- Đông – Tây
- Khó khăn khi phân biệt độ dời và quãng đường
3 Định hướng tư duy
- Yêu cầu HS vẽ hình minh họa quĩ đạo của Cano
- Xác định trên hình vẽ quãng đường Ca nô đi được và độ dời
- Tìm mối liên hệ
Angorit giải
1 Tóm tắt đề bài, xác định đại lượng đã cho và đại lượng cần tìm, vẽ hình(nếu cần); xác định định tính quá trình mà vật chuyển động cùng các điều kiện ban đầu và điều kiện cuối
2 Chọn trục tọa độ, gốc thời gian
3 Xác lập mối quan hệ giữa các đại lượng đã cho và các đại lượng cần tìm
- Xem đề bài cho gì và phải tìm gì → nghĩ đến việc áp dụng công thức nào? Để
áp dụng công thức đó thì cần phải tìm thêm các đại lượng nào khác nữa?
Nếu vật chuyển động gồm nhiều giai đoạn thì chia giai đoạn chuyển động của vật thành nhiều bài toán nhỏ, chú ý phân biệt khái niệm quãng đường và
b) Khi vật thứ nhất đến B thì vật thứ hai đã đi được quãng đường bao nhiêu?
Bài 3: Hai vật chuyển động thẳng đều xuất phát từ cùng 1điểm với vận tốc lần lượt
là v1 = 15m/s, v2 = 36km/h Tìm khoảng cách của 2 xe sau 4s nếu:
a.2 xe chuyển động cùng chiều
b.2 xe chuyển động ngược chiều
c.2 xe chuyển động theo 2 hướng hợp với nhau 1 góc 60 độ
Trang 9C BÀI TẬP NÂNG CAO
Bài 1: Trên một tuyến xe buýt, các xe coi như chuyển động thẳng đều với vận tốc v
= 36km/h Hai chuyến xe liên tiếp khởi hành cách nhau 15p Một người đi xe máy theo chiều ngược lại gặp 2 chuyến xe buýt liên tiếp cách nhau một khoảng thời gian 10p Tính vận tốc người đi xe máy
Trang 10LOẠI 2: ĐỊNH VỊ TRÍ VÀ THỜI ĐIỂM GẶP NHAU CỦA CÁC CHUYỂN
b)Hai xe gặp nhau lúc mấy giờ và ở đâu ?
1 Mục đích của bài tập
- Vận dụng được các công thức của chuyển động thẳng đều
- Vận dụng phương pháp tọa độ để tìm vị trí và thời điểm gặp nhau
-Chiều dương là chiều từ A đến B
-Gốc thời gian là lúc ô tô qua A (t
0 = 0) Phương trình chuyển động của các xe:
XA = 40t (1)
XB = - 50(t - 0,5) + 110 (2)
Khoảng cách giữa hai xe lúc 9h sáng ( t = 1): XA - XB
Khi 2 xe gặp nhau : XA = XB
Thời điểm gặp nhau : T = 8 + t
Sơ đồ luận giải
Trang 11c)Khó khăn học sinh gặp khi giải toán
- Vì các vật chuyển động không cùng thời điểm nên học sinh dễ nhầm lẫn và khó khăn khi chọn mốc thời gian
d) Định hướng tư duy
- Chọn mốc thời gian và gốc tọa độ sao cho bài toán đơn giản nhất.( thường chọn
mốc thời gian và gốc tọa độ lúc xe tại A bắt đầu chuyển động)
- Viết phương trình chuyển động của mỗi xe
b) Xác định quãng đường mồi ô tô đi được trong thời gian đi để gặp nhau
c) Vẽ đồ thị tọa độ - thời gian hai ô tô trên cùng một hệ trục tọa độ
Bài 3 Một ôtô chuyển động đều từ A đến B cách A 120km với vận tốc 45km/h Sau
đó 20p, 1 ôtô chuyển động đều với vận tốc 50km/h từ một điểm C trên đường cách
Trang 12LOẠI 3: : VẼ ĐỒ THỊ VÀ DÙNG ĐỒ THỊ ĐỂ GIẢI TOÁN VỀ CHUYỂN ĐỘNG
Bài tập đồ thị là những bài tập mà trong dữ kiện đã cho của đề bài và trong tiến trình giải có sử dụng đồ thị Bài tập này sẽ giúp học sinh nắm được phương pháp quan trọng biểu diễn mối quan hệ hàm số giữa các đại lượng vật lý, tạo điều kiện làm sáng tỏ một cách sâu sắc bản chất vật lý của các quá trình và các hiện tượng Đây là một biện pháp tích cực hoá quá trình học tập của học sinh
Tuỳ theo mục đích có thể có những loại bài tập đồ thị sau:
1 , ngược chiều dương
2 từ thời điểm t
3 đến thời điểm t
4 -Sau đó vật chuyển động thẳng đều với vận tốc và trở lại vị trí xuất phát ở thời điểm t
Trang 133 Khó khăn của học sinh khi giải toán
- Chuyển động của vật khá phức tạp do thay đổi tốc độ và chiều nên làm học sinh thấy bối rối khi phân tích chuyển động
4 Định hướng tu duy
B.BÀI TẬP ÁP DỤNG
Bài 1: Lúc 9h sáng một ô tô khởi hành từ TP Hồ Chí Minh chạy theo hướng về
Long An với vận tốc đều 60km/h Sau khi đi được 45ph , xe dừng lại 15ph rồi tiếp tục chạy với vận tốc đều như lúc đầu
Lúc 9h30ph một ô tô thứ hai khởi hành từ TP Hồ Chí Minh đuổi theo xe thứ nhất
Xe thứ hai có vận tốc đều 70km/h
a)Vẽ đồ thị toạ độ theo thời gian của mỗi xe
b)Định nơi và lúc xe sau đuổi kịp xe đầu
C BÀI TẬP NÂNG CAO
Bài 1: Giữa hai bến sông A và B có hai tàu chuyển thư chạy thẳng đều Tàu đi từ A
chạy xuôi dòng, Tàu đi từ B chạy ngược dòng Khi gặp nhau và chuyển thư, Mỗi tàu tức thì quay về bến xuất phát Nếu khởi hành cùng một lúc thì tầu A đi và về mất 3h, tầu B đi và về mất 1h 30ph Hỏi nếu muốn thời gian đi và về của hai tầu bằng nhau thì tầu A khởi hành trễ hơn tàu B bao lâu
a Giải toán bằng đồ thị
b Giải toán bằng phương trình
Bài 2: Giữa hai bến sông A và B cách nhau 20km theo đường thẳng có một đoàn
ghe máy phục vụ khách, khi xuôi dòng từ A đến B vận tốc ghe là 20km/h, khi ngược dòng từ B về A vận tốc ghe là 10km/h Ở mỗi bến cứ 20phut lại có một ghe xuất phát Khi tới bến mỗi ghe dừng 20 phút rồi quay về
a Cần bao nhiêu ghe cho đoạn sông
b Một ghe khi đi từ A đến B sẽ gặp bao nhiêu ghe? Khi ddi từ B về sẽ gặp bao nhiêu ghe?
Trang 14LOẠI 4: ĐỔI HỆ QUI CHIẾU ĐỂ NGHIÊN CỨU CHUYỂN ĐỘNG THẲNG
Bài 1: Một chiếc thuyền đi xuôi dòng từ A đến B trên 1 dòng sông rồi quay lại
A Biết vận tốc của thuyền trong nước yên lặng là 12 km/h; vận tốc của dòng nước
so với dòng sông là 2 km/h Tính thời gian tổng cộng của thuyền, biết AB = 70 km
Nên: t1 =
13 12 23
70 5( ) 14
h
v v v (3) Lúc thuyền ngược dòng: v13 = v12 - v23 (2’)
(3’) Nên: t2 =
13 12 23
70 7( ) 10
h
v v v Thời gian thuyền qua sông: t = t1 + t2 = 12 (h)
c) Sơ đồ luận giải
Trang 153 Khó khăn của học sinh khi giải bài tập
- Khó xác định được hướng của các vecto , , , khi xuôi dòng và khi
ngược dòng
4 Giúp học sinh vượt qua khó khăn
- Xác định các giá trị cho trong bài là các giá trị vận tốc nào
- Kí hiệu các vecto vận tốc tương đối hợp lí, từ đó áp dụng công thức cộng vận tốc
và chiếu lên chiều dương đã chọn
Bài 2 : Một chiếc tàu thuỷ chuyển động thẳng đều trên sông với vận tốc v
1 = 35km/h , gặp một đoàn xà lan dài 250m đi song song ngược chiều với vận tốc v
2 = 20km/h Trên boong tàu có một thuỷ thủ đi từ mũi tới lái với vận tốc v
Trang 163 Khó khăn của HS khi giải toán
- Khó khăn trong việc xác định vận tốc tương đối giữa các vật
- Áp dụng công thức cộng vận tốc
- Xác lập mối quan hệ
4 Định hướng tư duy
- Vẽ hình , phân tích đề bài (xác định các vận tốc v1, v2 được tính so với nước còn v3 so với tàu)
-Lập các phương trình theo đề bài để tìm ẩn của bài toán
B BÀI TẬP ÁP DỤNG
Bài 1: Hai bến sông AB cách nhau 180 km Một canô xuôi dòng từ A đến B mất 4
h, còn đi ngược dòng từ B về A mất 6 h Sau bao lâu để canô đi từ A đến B nếu canô trôi tự do theo dòng nước
Giải Gọi vật 1 (canô); vật 2 (nước yên lặng); vật 3 (bờ sông) Khi đó: v12
là vận tốc của canô trong lúc nước yên lặng
Trang 17Khi canô trôi tự do theo dòng nước: v13 = v23 = 7,5 km/h
Suy ra: t =
23 24( )
AB
h
v
Bài 2: Lúc trời không có gió 1 máy bay bay từ A đến B với vận tốc không đổi v
= 110 m/s trong thời gian là 1 h Khi quay trở lại gặp gió nên từ B về A bay hết 1h50’ Xác định vận tốc của gió Coi vận tốc của máy bay là không đổi cả đi lẫn về
Giải Gọi vật 1 (máy bay); vật 2 (không khí lúc yên tĩnh); vật 3 (mặt đất)
Bài 3: Một bè nứa trôi tự do theo dòng nước và một canô đồng thời dời bến A để
xuôi dòng sông Canô xuôi dòng được 96 km thì quay lại A Cả đi lẫn về hết 14 h trên đường quay về A khi còn cách A 24 km thì canô gặp bè nứa nói trên Tìm vận tốc của canô và vận tốc của dòng nước
Giải Gọi vật 1 (canô); vật 2 (nước yên lặng); vật 3 (bờ sông)
Biến đổi được: v12(v12 – 7v23) = 0 v12 = 7v23 (3)
Thay (3) vào (2) được: v23 = 2 km/h v12 = 14 km/h
Bài 4: Hai bến sông A và B cách nhau 40 km Cng 1 lúc một chiếc canô xuôi
dòng từ A đến B và 1 chiếc bè cũng trôi từ A đến B với vận tốc 3 km/h, Sau khi đến
B, canô quay về A ngay và gặp chiếc bè ở một địa điểm cách A là 8 km Tìm vận tốc của canô
Giải
Trang 18Gọi vật 1 (canô); vật 2 (nước yên lặng); vật 3 (bờ sông)
Thay v23 = 3 km/h vào và giải phương trình đó tìm được v12 = 27 km/h
Bài 5: Xe A chạy ngược chiều với xe B nhưng nhanh gấp đôi nếu cùng so với mặt
đất Biết vận tốc của xe B so với mặt đất là 20 km/h Tìm vận tốc của xe A so với
(2)
Xe A chạy ngược chiều xe B nên: v12 = v13 + v23 (3)
Lại có vận tốc xe A nhanh gấp đôi so với mặt đất : v13 = 2v23
Nên: v12 = v13 + v23 = 2v23 + v23 = 60 (km/h)
C BÀI TẬP NÂNG CAO
Bài 6: Một tàu ngầm đang lặn xuống theo phương thẳng dứng với vận tốc đều v
Để dò đáy biển, một máy phát tín hiệu phát đi một âm tín hiệu kéo dài trong thời gian t hướng xuống đáy biển, âm truyền trong nước với vận tốc đều là u, phản xạ 0
ở đáy biển (coi như nằm ngang) và truyền trở lại tàu Tàu thu được tín hiệu âm
phản xạ trong thời gian t Tính vận tốc lặn của tàu
Trang 19Dạng 2 : Các vecto vận tốc , , không cùng phương
A CÁC VÍ DỤ
Bài 1: Một người chèo thuyền qua sông với v = 5,4 km/h theo hướng vuông góc
với bờ sông Do nước chảy thuyền bị đẩy xuống hạ lưu 1 đoạn là 120m Độ rộng của sông là 450 m Tìm vận tốc của nước với bờ sông và thời gian thuyền qua sông?
3 Khó khăn học sinh gặp phải khi giải bài tập
- Vẽ được hình biểu diễn các vecto vận tốc
- Tìm được mối liên hệ giữa AB và , BC và
4 Giúp học sinh vượt qua khó khăn
- Hướng của vecto vận tốc trùng với hướng của chuyển động
- Nếu người chèo thuyền không chèo thì thuyền sẽ tự trôi theo dòng nước quãng đường là BC Đó là vận tốc dòng nước
- Nếu nước không chuyển động thì thuyền sẽ đi theo hướng như thế nào?
Trang 20Bài 1: Hai xe cùng chuyển động với vận tốc 50 km/h trên 2 con đường vuông góc
với nhau Xe A chạy theo hướng Tây, xe B chạy theo hướng Nam Biết 2 xe qua giao lộ cùng lúc
a) Tìm vận tốc của xe A so với xe B?
b) Người ngồi trên xe B thấy xe A chạy hướng nào?
c) Tìm khoảng cách giữa 2 xe sau khi chúng gặp nhau 30 phút?
Giải a) Gọi vật 1 (xe A); vật 2 (xe B); vật 3 (mặt đất)
Bài 2: Máy bay phải bay với vận tốc bao nhiêu, theo hướng nào để bay được
300km trong 2 h theo hướng Bắc Biết rằng gió thổi theo hướng Tây Bắc với v = 7 km/h và tạo với đường kinh tuyến 1 góc = 300
Giải Gọi vật 1 (máy bay); vật 2 (không khí lúc yên tĩnh); vật 3 (mặt đất)
Từ phương trình (1) và điều kiện đề bài ta có giản đồ
vectơ như hình vẽ bên
Trang 21Bài 3: Một ô tô chạy với vận tốc 43,2 km/h trong trời mưa Mưa rơi theo phương
thẳng đứng Trên cửa kính bên của xe, các vệt mưa rơi làm với phương thẳng đứng
1 góc 600
a) Xác định vận tốc của ô tô đối với mặt nước
b) Xác định vận tốc của giọt mưa đối với xe
Giải Gọi vật 1 (ô tô); vật 2 (giọt mưa); vật 3 (mặt đất)
Từ phương trình (1) và điều kiện đề bài ta có giản đồ
vectơ như hình vẽ bên
Vậy, vận tốc của giọt mưa so với ô tô là 24 m/s
vận tốc của giọt mưa so với mặt đất là 20,78 m/s
Bài 4: Một canô phải đi từ A đến B bên kia bờ sông theo đường thẳng AB Biết
chiều rộng của sông là AC = 1 km, BC = 2 km Cho vận tốc của canô trong lúc yên tĩnh là 5 km/h Cho vận tốc dòng nước 2 km/h Hỏi canô có thể qua AB trong vòng 30’ được không?
Giải Gọi vật 1 (canô); vật 2 (nước yên lặng); vật 3 (bờ sông)
Từ phương trình (1) và điều kiện đề bài ta có giản đồ
vectơ như hình vẽ bên
Tìm thời gian chuyển động từ A đến B
Chiếu phương trình (1) lên Ay:
vy = v12cos(900 - ) = v12sinChiếu phương trình (1) lên Ax:
Trang 221 ( )
1 0,32
0,84 0 1 1, 6 4, 2 0 35
Bài 5: Thuyền dài l, khối lượng M = 200 kg Trên thuyền có 1 người khối lượng m
= 50 kg Lúc đầu thuyền và người đứng yên Người đi từ đầu thuyền đến cuối
thuyền với vận tốc 0,5 m/s đối với thuyền Tìm vận tốc của thuyền đối với nước
Giải Gọi người là vật 1
+ mv12
= 0 Chọn chiều dương là chiều chuyển động của thuyền:
v23 = mv12
Mm0,1 (m/s)
Bài 6: Một tên lửa có M = 10 tấn đang bay với vận tốc 200 m/s thì phụt ra tức
thời m = 0,5 tấn khí với vận tốc v = 500 m/s đối với tên lửa Tính vận tốc của tên lửa sau khi phụt khí ra phía sau
Giải Gọi tên lửa là vật 1
là vận tốc của tên lửa so với Trái đất
Khi chưa phụt khí, động lượng của hệ: P
= Mv13
với v13 = 200 (m/s) Sau khi phụt khí:
lửa đối v Vận tốc của tên ới đất: v13'
Theo định lý cộng vận tốc ta có: v13' v12v23
23 13 12 '
Trang 23C.BÀI TẬP NÂNG CAO
Bài 1: Một người đứng trên bờ hồ tại điểm A, người đó phải tới điểm B trên hồ
trong khoảng thời gian ngắn nhất Cho biết khoảng cách từ B tới hồ là BC = d, khoảng cách AC = S, vận tốc người bơi trong nước là v và vận tốc người đi trên 1
hồ là v (2 v <1 v ) Hỏi người đó phải đi theo kiểu nào từ A tới B: Bơi thẳng từ A hay 2
đi một đoạn trên bờ rồi mới bơi ?
B
Trang 242 Chuyển động thẳng biến đổi đều
Các dạng bài tập gồm:
Loại 1: Bài toán về một chuyển động
Loại 2: Bài toán liên quan đến nhiều chuyển động
Loại 3: Vận tốc trung bình
Loại 4: Bài tập đồ thị
Loại 5: Rơi tự do
LOẠI 1: BÀI TOÁN VỀ MỘT CHUYỂN ĐỘNG
Loại bài toán này giúp học sinh củng cố lại các công thức đã học:
0
vv at;
2 0
Bài 1: Một vật bắt đầu chuyển động nhanh dần đều từ trạng thái đứng yên và đi
được đoạn đường s trong thời gian t giây Tính thời gian vật đi được trong ¾ đoạn đường cuối
- Vật bắt đầu chuyển động nhanh dần đều từ trạng thái đứng yên, sau thời gian t(s)
vật đi được quãng đường s nên ta có: s 1at2
- Thời gian vật đi ¾ đoạn đường cuối là t’: t = t +t’(3) 1
c) Sơ đồ luận giải