Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 17 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
17
Dung lượng
2,14 MB
Nội dung
1 Nhóm Tốn Học Sơ Đồ Tài Liệu Word Tốn THCS Chất-Đẹp-Tiện FaceBook: Toán Học Sơ Đồ Tài liệu Word Tốn THCS Chất-Đẹp TÀI LIỆU WORD TỐN THCS CHỦ ĐỀ DẠY NHÀ-DẠY TRUNG TÂM-DẠY ONLINE TOÁN 6-7-8-9 Liên Hệ Tài Liệu Word Chất-Đẹp-Tiện ĐT/Zalo 0945943199 FB: Toán Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Khơng Đi Sẽ Khơng Đến-Việc Tuy Nhỏ Khơng Làm Sẽ Khơng Nên Nhóm Tốn Học Sơ Đồ Tài Liệu Word Toán THCS Chất-Đẹp-Tiện HH7-C3-CD1 QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN TRONG MỘT TAM GIÁC I TÓM TẮT LÝ THUYẾT Định lý Trong tam giác, góc đối diện với cạnh lớn góc lớn Trong tam giác ABC, AC > AB C B Định lý Trong tam giác, cạnh đối diện với góc lớn cạnh lớn C AC > AB Trong tam giác ABC, B II BÀI TẬP VÀ CÁC DẠNG TOÁN VÀ PHIẾU LUYỆN A.CÁC DẠNG BÀI CƠ BẢN Dạng So sánh hai góc tam giác Phương pháp giải: - Xét hai góc cần so sánh hai góc tam giác - Tìm cạnh lớn hai cạnh đối diện hai góc - Kết luận Bài 1.So sánh góc tam giác ABC, biết AB = cm, BC = cm, AC = cm Bài 2.Cho tam giác ABC có AC > AB So sanh hai góc ngồi đỉnh B C Bài 3.Cho tam giác ABC có ba góc nhọn, AB < AC Kẻ BD vng góc với AC D, CE vng góc với AB E So sánh hai DBC ECB Dạng So sánh hai cạnh tam giác Phương pháp giải: - Xét hai cạnh cần so sánh hai cạnh tam giác - Tìm góc lớn hai góc đối diện với hai cạnh FB: Tốn Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Khơng Đi Sẽ Không Đến-Việc Tuy Nhỏ Không Làm Sẽ Không Nên Nhóm Tốn Học Sơ Đồ Tài Liệu Word Toán THCS Chất-Đẹp-Tiện - Kết luận = 40° Bài 4.So sánh cạnh tam giác ABC, biết A = 80°, B Bài 5.Cho tam giác ABC vuông A, điểm K nằm A C So sánh độ dài BK BC Bài 6.Cho tam giác ABC có ba góc nhọn, AB < AC Kẻ BD vng góc với AC D, CE vng góc với AB E Gọi H giao điểm cửa BD CE So sánh độ dài HB HC Dạng 3.Bài tổng hợp Bài 7.Cho tam giác QMN có OM = cm, ON = cm, MN = cm.So sánh góc tam giác OMN Bài 8.Chứng minh tam giác vuông, cạnh huyền lớn cạnh góc vng Bài Cho tam giác ABC cân A có A = 50° So sánh độ dài AB BC Bài 10 Cho tam giác ABC có ba góc nhọn, AB < AC Kẻ AH vng góc với BC H So sánh HAB HAC Bài 11 Cho tam giác ABC có AB < AC Tia phân giác góc A cắt BC D So sánh ADB ADC = 30° Điểm D thuộc cạnh AC cho ABD = 20° Bài 12 Cho tam giác ABC có A = 90°, C So sánh độ dài cạnh BDC Bài 13 Cho tam giác ABC, điểm M thuộc cạnh AB So sánh độ dài cạnh tam giác BMC Bài 14 Cho tam giác ABC vuông A Tia phân giác góc B cắt AC D Kẻ DH vng góc vói BC H So sánh: a) BA BH; b) DA DC Bài 15 Cho tam giác ABC có A > 90° Lấy điểm D thuộc cạnh AB, điểm E thuộc cạnh AC Chứng minh DE < DC C C , góc ngồi đỉnh B nhỏ góc Bài Ta có AC > AB => B ngồi đỉnh C Bài Vì AB < AC nên ACB ABC Lại có DBC 90 ABC ECB 90 ABC , từ ta có DBC ECB = 60°, B C A => AC < AB < BC Bài Tính C Bài Chú ý BKC góc ngồi AKB nên BKC > A = 90° > C BK < BC Bài Áp dụng Bài 3, ta có HBC => HB < HC HCB M O Bài Ta có OM < ON < MN => N Bài Trong tam giác vng, góc vng góc lớn nên cạnh huyền (đối diện với góc vuông) cạnh lớn C = 65°, C A => AB > BC Bài Tính B Bài 10 Ta có AB < AC => ABC ACB Chú ý HAB 90 ABC HAC 90 ACB , từ ta có HAB < HAC Bài 11 BAC Chú ý: ADB ACB ADC ABC BAC Mà AB < AC => ABC ACB nên ADB ADC Bài 12 Tính DBC 40 , BDC = 110 DCB 30 , từ ta có FB: Tốn Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Không Đi Sẽ Không Đến-Việc Tuy Nhỏ Khơng Làm Sẽ Khơng Nên Nhóm Tốn Học Sơ Đồ Tài Liệu Word Toán THCS Chất-Đẹp-Tiện DB < DC < BC Bài 13 Ta có DCM BCA 60 Chú ý BMC góc ngồi tam giác AMC nên BMC BAC 60 Do BMC MBC MCB MB < MC < BC Bài 14 a) Ta có ABD = HBD (cạnh huyền - góc nhọn), từ BA = BH b) Chứng minh DA = DH, lại có tam giác DHC vuông H nên DH < DC => DA < DC Bài 15 Chú ý DEC góc tam giác DAC nên DEC DAC > 90 => DE < DC Tương tự ta có BDC DAC > 90 => DC < BC, DE < DC < BC Bài 16 Do Bx nằm BA BC nên DBC ABC , ý D nằm tam giác ABC nên CA nằm CD CB, DCB ACB Từ DCB > DB DCB =>DC < DB DBC Bài 17* Trên cạnh AC lấy điểm E cho AB = AE, chứng minh ABD = AED (c.g.c) FB: Tốn Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Không Đi Sẽ Không Đến-Việc Tuy Nhỏ Không Làm Sẽ Khơng Nên Nhóm Tốn Học Sơ Đồ Tài Liệu Word Toán THCS Chất-Đẹp-Tiện => DEC xBD > ACB DB = DE Từ DB = DE < DC Bài 18* Trên tia đối tia MA lấy điểm D cho MA = MD, chứng minh MAB = MDC (c.g.c) => , ý MAB MDC CD = AB < AC => MAC MDC Do MAB MAC B.PHIẾU BÀI TỰ LUYỆN CƠ BẢN Định lý 1: Trong tam giác, góc đối diện với cạnh lớn góc lớn Bài 1: So sánh góc ABC biết: a) AB 4cm; BC 6cm; CA 5cm b) AB 9cm; AC 72cm; BC 8cm c) Độ dài cạnh AB, BC , CA tỉ lệ nghịch với 2,3, d) ABC vuông B có AC 6cm; AB 19cm Bài 2: Tam giác ABC có AC AB So sánh hai góc ngồi đỉnh B C Bài 3: Tam giác ABC có AB cạnh nhỏ Chứng minh C 60o Bài 4: Cho tam giác ABC tam giác A1B1C1 có AB = A1B1, AC = A1C1 BC > B1C1 So sánh số đo hai góc A A1 ˆ Bài 5: Cho tam giác ABC có AB < AC, M trung điểm cạnh BC So sánh BAM ˆ MAC Định lý 2: Trong tam giác, cạnh đối diện với góc lớn cạnh lớn Bài 6: Trong tam giác vng cạnh cạnh lớn nhất? Vì sao? Cũng câu hỏi tam giác có góc tù? Bài 7: Một tam giác cân có góc đáy nhỏ 60o So sánh cạnh đáy cạnh bên = 450 Bài 8: Cho tam giác ABC cân A, biết B a)So sánh cạnh tam giác ABC b)Tam giác ABC gọi tam giác gì? Vì sao? FB: Tốn Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Không Đi Sẽ Không Đến-Việc Tuy Nhỏ Khơng Làm Sẽ Khơng Nên Nhóm Tốn Học Sơ Đồ Tài Liệu Word Toán THCS Chất-Đẹp-Tiện Bài : Cho tam giác ABC vuông A, tia phân giác góc B cắt AC D DH BC ( H BC ) a) So sánh độ dài BA BH b) So sánh độ dài DA DC Bài 10: Cho tam giác ABC, A = 900 Trên tia đối tia AC lấy D cho AD < AC Nối B với D Chứng minh rằng: BC > BD Bài 11: Cho tam giác ABC Chứng minh AB + AC > BC Bài 12: Cho tam giác ABC trung tuyến AM Lấy điểm D tia đối tia MA So sánh độ dài CD BD LỜI GIẢI PHIẾU BÀI TỰ LUYỆN Bài 1: a) ABC có: AB 4cm; BC 6cm; CA 5cm BC CA AB C (Định lý 1) BAC CBA ACB hay A B b) ABC có: AB 9cm; AC 72cm 8,5cm; BC 8cm AB AC BC B A (Định lý 1) ACB ABC BAC hay C c) ABC có: Độ dài cạnh AB, BC , CA tỉ lệ nghịch với 2,3, AB.2 BC.3 CA.4 AB BC AC A B (Định lý 1) ACB BAC ABC hay C d) Áp dụng định lý Pi-ta-go cho tam giác ABC vng B Ta có: BA2 BC AC 19 BC 62 19 BC 36 BC 36 19 BC 17 BC 17 (cm) 4,13 (cm) △ ABC có: AB 19cm 4,35cm; BC 17cm 4,13cm; AC 6cm FB: Toán Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Khơng Đi Sẽ Không Đến-Việc Tuy Nhỏ Không Làm Sẽ Không Nên Nhóm Tốn Học Sơ Đồ Tài Liệu Word Tốn THCS Chất-Đẹp-Tiện AC AB BC C A (Định lý 1) ABC ACB BAC hay B Bài 2: C Góc ngồi đỉnh B < Góc ngồi đỉnh C So sánh góc tam giác: B Bài 3: C , A C 3Cˆ Aˆ Bˆ Cˆ 180o B AB cạnh nhỏ nên 3Cˆ Cˆ B Cˆ 60o Bài 4: Theo giả thiết ta có: AB = A1B1; AC = A1C1 BC > B1C1 Thì A > A1 (quan hệ cạnh đối diện tam giác) Bài 5: A B C M D Vẽ tia đối tia MA lấy điểm D cho MD = MA Xét tam giác MAB tam giác MDC có MA = MD; AMB (đối đỉnh) DMC MB = MC (M trung điểm cạnh BC) Do đó: MAB MDC (c.g.c) Suy ra: AB = CD; BAM MDC Ta có: AB = CD; AB < AC CD < CA Xét tam giác ADC có: CD < AC MAC (quan hệ góc cạnh đối diện MDC tam giác) Mà MAC BAM MDC MDC Suy ra: MAC BAM FB: Toán Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Khơng Đi Sẽ Không Đến-Việc Tuy Nhỏ Không Làm Sẽ Không Nên Nhóm Tốn Học Sơ Đồ Tài Liệu Word Tốn THCS Chất-Đẹp-Tiện Bài 6: Trong tam giác vuông cạnh huyền cạnh lớn cạnh huyền đối diện với góc vuông Trong tam giác tù cạnh đối diện với góc tù cạnh lớn góc tù góc lớn tam giác Bài Xét tam giác ABC Có Bˆ Cˆ 60o Aˆ 60o Aˆ Cˆ Bˆ Vậy cạnh đáy lớn ˆA Bˆ Cˆ 180o Aˆ 120o cạnh bên Bài a) Tam giác ABC cân A nên 0 Cˆ Bˆ = 45 => Aˆ 90 Vậy Aˆ 900 > Cˆ Bˆ = 450 => BC > AB = AC b) Tam giác ABC vng cân A Aˆ 900 Bài a) Kẻ DH BC B H A D C ABD HBD (cạnh huyền - góc nhọn) BA BH AD = DH b) DHC vuông H DH < DC DHC (cạnh góc vng nhỏ cạnh huyền) suy ra: AD < DC Bài 10: Lấy E thuộc AC cho AD = AE FB: Toán Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Khơng Đi Sẽ Khơng Đến-Việc Tuy Nhỏ Khơng Làm Sẽ Khơng Nên 10 Nhóm Toán Học Sơ Đồ Tài Liệu Word Toán THCS Chất-Đẹp-Tiện B D Ta có: AE < AC (Vì AD < AC) A C E Nên E nằm A C Mà BA DE DA = AE BDE cân đỉnh B ˆ BEA ˆ BDE ˆ ˆ BCE Ta có: BEA (BEA góc tam giác BEC) ˆ ˆ BCD Do đó: BDC ˆ ˆ BCD Xét tam giác BDC có: BDC Suy ra: BC > BD (quan hệ góc cạnh đối diện tam giác) Bài 11: Trên tia đối tia AB lấy điểm D cho AD = AC D ADC Ta có: AD = AC A cân đỉnh D B C ˆ (1) ˆ ACD ADC Tia CA nằm hai tia CB CD ˆ ACD ˆ (2) Do đó: BCD ˆ ADC ˆ Từ (1) (2) ta có: BCD ˆ BDC ˆ Xét tam giác DBC có BCD suy DB > BC (quan hệ góc cạnh đối diện tam giác) (3) mà DB = AB + AD = AB + AC (4) Từ (3) (4) ta có: AB + AC > BC FB: Tốn Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Không Đi Sẽ Không Đến-Việc Tuy Nhỏ Khơng Làm Sẽ Khơng Nên 11 Nhóm Tốn Học Sơ Đồ Tài Liệu Word Toán THCS Chất-Đẹp-Tiện Bài 12: Ta nhận thấy Với hai tam giác ABM ACM có: MB = MC (Vì M trung điểm BC) A B M2 C D AM chung; AB < AC Do đó: Mˆ Mˆ Mˆ Mˆ Với hai tam giác BDM CDM có MB = MC (M trung điểm BC) DM chung; Mˆ Mˆ Do đó: CD < BD C.PHẦN TỔNG HỢP NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY · Quan hệ cạnh góc đối diện tam giác Bài Cho tam giác ABC, tia phân giác góc A cắt BC D Cho biết góc ADB góc nhọn, so sánh AB AC Bài Tam giác ABC có AB AC Trên cạnh AB lấy điểm M M B Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Mx//AC tia lấy điểm N cho MN MB Chứng minh BC NC 75o Trong tam giác lấy điểm O cho Bài Cho tam giác ABC, A 60o ; B OAC OCA 15o Chứng minh OA OB Bài Cho tam giác ABC Vẽ AH BC H BC BK AC K AC Biết AH BC; BK AC Tính số đo góc tam giác ABC Bài Trong tam giác ABC có AB AC Tia phân giác góc A cắt BC D Gọi M điểm đoạn thẳng AD Hãy so sánh MB với MC FB: Toán Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Khơng Đi Sẽ Khơng Đến-Việc Tuy Nhỏ Khơng Làm Sẽ Khơng Nên 12 Nhóm Toán Học Sơ Đồ Tài Liệu Word Toán THCS Chất-Đẹp-Tiện Bài Cho tam giác ABC cân A Trên BC lấy E F cho BAE Chứng EAF FAC minh đoạn thẳng EF có độ dài nhỏ ba đoạn thẳng BE, EF FC Bài Cho tam giác ABC cân A Trên BC lấy M N cho BM MN NC Chứng minh góc MAN góc lớn ba góc BAM NAC ,MAN Bài Cho tam giác ABC vuông cân B Gọi M điểm nằm tam giác cho MB MC BMC 105o Chứng minh MA · Hai tam giác có hai cạnh Bài Tam giác ABC có AB AC Trên tia đối tia BA lấy điểm E E B , tia đối tia CA lấy điểm F F C cho BE CF Gọi D trung điểm BC Chứng minh DEF DFE Bài 10 Cho tam giác ABC cân A Gọi M điểm nằm tam giác cho ABM ACM Hãy so sánh góc AMB AMC Bài 11 Cho tam giác ABC cân A Lấy điểm M nằm A B Gọi O trung điểm CM Tia AO cắt BC D Chứng minh BD CD Bài 12 Cho tam giác ABC cân A Lấy điểm M nằm tam giác cho AMB AMC Tia AM cắt BC D Chứng minh BD CD Bài 13 Cho tam giác ABC, A 60o , tổng AB AC 10cm Tìm giá trị nhỏ chu vi tam giác ABC LỜI GIẢI PHIẾU BÀI NÂNG CAO Bài (h.15.8) Góc ADB góc nhọn nên góc ADC góc tù ;D D ABD ACD có A1 A 2 C nên B C AC AB (định lí 1) ABC có B Bài (h.15.9) FB: Tốn Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Khơng Đi Sẽ Khơng Đến-Việc Tuy Nhỏ Khơng Làm Sẽ Khơng Nên 13 Nhóm Toán Học Sơ Đồ Tài Liệu Word Toán THCS Chất-Đẹp-Tiện Ta có MN //AC MNC ACN (so le trong) Mặt khác, ACN ACB nên MNC ACB ABC có AB AC nên ACB ABC Từ (1) (2), suy MNC ABC (3) MBN 4 Tam giác MNB cân MNB Từ (3) (4), suy MNC MNB ABC MBN Do BNC NBC BC NC (định lí 1) Bài (h.15.10) o ABC 180o 60o 75o 45o Ta có ACB 180 BAC 15o (giả thiết) nên Mặt khác, A1 C A 60o 15o 45o , C 45o 15o 30o 2 Giả sử OA OB khơng vng góc với nhau, Tức AOB 90o · Xét trường hợp AOB 90o Ta có 180o AOB A 180o AOB 45o 45o B 2 A OA OB (định lí 1) Vậy B 2 C (định lí 1) Mặt khác, AOC cân nên OA OC suy OC OB B B A C 45o 30o hay ABC 75o (trái giả thiết) Từ ta B 2 · Xét trường hợp AOB 90o , chứng minh tương tự ta ABC 75o (trái giả thiết) Vậy AOB 90o OA OB Bài (h.15.11) FB: Tốn Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Khơng Đi Sẽ Không Đến-Việc Tuy Nhỏ Không Làm Sẽ Không Nên 14 Nhóm Tốn Học Sơ Đồ Tài Liệu Word Tốn THCS Chất-Đẹp-Tiện Xét AHC vng H, BKC vng K, Ta có: AH AC ; BK BC (1) Mặt khác BC AH ; AC BK (giả thiết) (2) Từ (1) (2), suy BC AH AC BK BC Do BC AH AC BK Vậy ABC phải tam giác vuông cân C 90o , A B 45o Suy C Bài (h.15.12) Trên cạnh AC lấy điểm E cho AE AB Vì AE AC nên điểm E nằm A C ABM AEM c.g.c M MB ME M M Xét AME có MEC góc ngồi nên MEC ;M D ;D ACD; ACD M ECM Do MEC 2 1 Xét MEC có MEC ECM MC ME (định lí 1) Do MC MB (vì MB ME ) Bài (h.15.13) ABE ACF c.g.c AE AF BE CF (1) AEF cân AEF 90o AEB 90o Xét AEB có AEB 90o nên AB AE Trên cạnh AB lấy điểm D cho AD AE ADE AFE c.g.c ED EF ADE cân ADE góc nhọn BDE góc tù Xét BDE có BDE góc tù BE cạnh lớn Do BE DE BE EF (2) Từ (1) (2) suy EF có độ dài nhỏ ba đoạn thẳng BE, EF FC Bài (h.15.14) FB: Toán Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Khơng Đi Sẽ Khơng Đến-Việc Tuy Nhỏ Khơng Làm Sẽ Khơng Nên 15 Nhóm Toán Học Sơ Đồ Tài Liệu Word Toán THCS Chất-Đẹp-Tiện Trên tia đối tia MA lấy điểm D cho MD MA D AMN DMB c.g.c A AN BD Ta có ANC ABC ANC C Do AC AN (định lí 1) Suy A A A AB BD D Dễ thấy A1 A3 A2 góc lớn , A ba góc A1 , A Bài (h.15.16) Trên nửa mặt phẳng bờ MB không chứa C, vẽ tam giác BDM vuông cân B ABD CBM c.g.c AD CM ADB BMC 105o BDM vuông cân B BDM 45o ADM 60o Xét ADM có ADM 60o nên MA AD DM (xem 15.9) Mặt khác, DM MB (vì BDM vng) suy MC MB MA Bài (h.15.17) ABC có AB AC ACB ABC Do FCB EBC FCD EBD có: CF BE , CD BD FCB EBC nên DF DE (định lí 2) Xét DEF có DF DE nên DEF (định DFE lí 1) Bài 10 (h.15.18) FB: Tốn Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Khơng Đi Sẽ Không Đến-Việc Tuy Nhỏ Không Làm Sẽ Không Nên 16 Nhóm Tốn Học Sơ Đồ Tài Liệu Word Tốn THCS Chất-Đẹp-Tiện Tam giác ABC cân A ABC ACB C (giả thiết) B C Ta có B 1 2 MC MB (định lí 1) Xét ABM ACM có: AB AC ; AM chung; MB MC (định lí 2) MAB MAC C nên MAB MAC B C Mặt khác B 1 1 M Do M Bài 11 (h.15.19) Trên tia đối tia OA lấy điểm N cho ON OA AMO NCO c.g.c AM NC A1 N Ta có AB AM AC NC A A A Xét ACN có AC NC N 2 ABD ACD có: AB AC ; AD chung A1 A2 nên BD CD (định lí 2) Bài 12 (h.15.20) Trên nửa mặt phẳng bờ AC không chứa B, vẽ tia x BAM Ax cho CA Trên tia Ax lấy điểm N cho AN AM AMB ANC c.g.c BM CN AMB ANC Mặt khác, AMB AMC nên ANC AMC (1) AMN cân A nên ANM AMN (2) Từ (1) (2), suy MNC NMC MC NC AMC ANC có: AM AN , AC chung MC NC FB: Toán Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Khơng Đi Sẽ Không Đến-Việc Tuy Nhỏ Không Làm Sẽ Không Nên 17 Nhóm Tốn Học Sơ Đồ Tài Liệu Word Tốn THCS Chất-Đẹp-Tiện nên MAC (định lí 2) MAC NAC MAB DAC DAB có AC AB, AD chung, DAC nên DC DB (định lí 2) DAB Bài 13 · Xét trường hợp AB AC ABC tam giác cân, có A 60o nên tam giác Suy AB BC CA 5cm Chu vi tam giác ABC 3 15 (cm) (1) · Xét trường hợp AB AC Khơng tính tổng qt, giả sử AB AC (h.15.22) Trên tia AB, AC lấy điểm M N cho AM AN 5cm Khi AMN tam giác MN 5cm Vì AM AN AB AC (= 10 cm) nên AB BM AN AB AN CN BM CN Ta có BMC (tính chất góc ngồi tam giác) suy BMN ; BMN ANM ; ANM NCM BMC NCM BMC NCM có: BM CN , MC chung BMC suy BC MN (định lí 2) NCM Chu vi ABC AB BC CA 10 BC 10 MN 15 (cm) (2) Từ (1) (2), suy chu vi ABC nhỏ 15cm, AB AC 5cm FB: Tốn Học Sơ Đồ-Link nhóm https://www.facebook.com/groups/880025629048757/?ref=share Đường Tuy Gắn Không Đi Sẽ Không Đến-Việc Tuy Nhỏ Không Làm Sẽ Không Nên