PHÒNG GD&ĐT SƠN DƯƠNG ĐỀ KIỂM ĐỊNH CHẤT LƯỢNG HỌC SINH NĂNG KHIẾU NĂM HỌC 2012 - 2013 MƠN: TỐN LỚP (Thời gian làm 120 phút, không kể thời gian giao đề) Đề có 05 câu, in 01 trang Câu Tìm x biết: a) x 5.3 x 162 b) 3x +x2 = Câu a) Tìm ba số x, y, z thỏa mãn: b) Cho Tính A = a b c d 2b 2c 2d 2a x y z c) (x-1)(x-3) < x y z 100 (a, b, c, d > 0) 2011a 2010b 2011b 2010c 2011c 2010d 2011d 2010a cd ad a b bc Câu a) Tìm cặp số nguyên (x,y) thoả mãn x + y + xy =2 b) Tìm giá trị lớn biểu thức Q = 27 x 12 x (với x nguyên) Câu a) Cho đa thức f(x) = ax + bx + c Chứng minh f(x) nhận -1 nghiệm a c số đối b) Tìm giá trị nhỏ biểu thức P = x y 2007 Câu Cho ABC vuông A M trung điểm BC, tia đối tia MA lấy điểm D cho AM = MD Gọi I K chân đường vng góc hạ từ B C xuống AD, N chân đường vng góc hạ từ M xuống AC a) Chứng minh BK = CI BK//CI b) Chứng minh KN < MC c) ABC thỏa mãn thêm điều kiện để AI = IM = MK = KD d) Gọi H chân đường vng góc hạ từ D xuống BC Chứng minh đường thẳng BI, DH, MN đồng quy ………….Hết………… PHÒNG GD&ĐT SƠN DƯƠNG HƯỚNG DẪN CHẤM KĐCL HỌC SINH NĂNG KHIẾU Năm học 2012-2013 MƠN: TỐN (HD gồm câu, trang) ĐÁP ÁN - BIỂU CHẤM CÂU NỘI DUNG Câu a) (1,5đ) (4,5 đ) x (1+5) = 162 x = 27 => x-1= => x = b) (1,5đ) 3x +x2 = x(3 + x) = x=0 x= -3 c) (1,5đ) (x-1)(x-3) < x-1 > x-3 nên (x-1)(x-3) < Câu a) (1,5đ) x y z (3,0 đ) ta có: Từ ĐIỂM 0,75 0,75 0,75 0,75 0,5 1,0 x 1 x 3 x 0,75 x y z 2 x 2 y 3z 2 x y 3z 100 4 16 25 18 32 75 25 25 x y z 36 64 100 x y x 6 8 10 x y z 10 0,75 ( Vì x, y, z dấu) b) (1,5 đ) Ta có a b c d a b c d (do a,b,c,d > => 2b 2c 2d 2a 2b 2c 2d 2a a+b+c+d >0) suy a = b = c= d Thay vào tính P = Câu a) (1,5đ) (3,0 đ) Ta có x + y + xy =2 x + + y(x + 1) = (x+1)(y+1)=3 Do x, y nguyên nên x + y + phải ước Lập bảng ta có: x+1 -1 -3 y+1 -3 -1 x -2 -4 y -4 Vậy cặp (x,y) là: (0,2); (2,0); (-2,-4); (-4,-2) b) (1,5 đ) -2 27 x = 2+ 12 x 12 x A lớn lớn 12 x * Xét x > 12 Vì phân số có tử mẫu số dương, 12 x Q= tử không đổi nên phân số có giá trị lớn mẫu nhỏ 0,5 0,5 0,5 0,75 0,5 0,25 0,25 0,25 0,25 0,25 CÂU NỘI DUNG ĐIỂM 12-x Vậy để lớn x Z 12 x 12-x nhỏ x = 11 0,25 A có giá trị lớn x =11 0,25 Câu a) (2,0 đ) (4,0 đ) Ta có: nghiệm f(x) => f(1) = hay a + b + c = (1) -1 nghiệm f(x) => f(-1) = hay a - b + c = (2) Từ (1) (2) suy 2a + 2c = => a + c = => a = -c Vậy a c hai số đối b) (2,0 đ) Ta có x 2 , x => x 4 Dấu "=" xảy x = 0,75 0,5 0,5 0,5 y 0 , y Dấu "=" xảy y = -3 0,5 Vậy P = x y 2007 4 + 2007 = 2011 Dấu "=" xảy x = y = -3 Vậy giá trị nhỏ P = 2011 x = y = -3 Câu (5,5 đ) 0,75 B 0,5 K D M H I A N O' C O a) (2,0 đ) - Chứng minh IBM = KCM => IM= MK - Chứng minh IMC = KMB => CI = BK góc MKB = góc MIC => BK//CI b) (1,5 đ) Chỉ AM = MC => AMC cân M => đường cao MN đồng thời đường trung tuyến AMC => N trung điểm AC AKC vng K có KN trung tuyến => KN = AC Mặt khác MC = BC 1 Lại có ABC vng A => BC > AC => BC > AC hay MC > 2 KN Vậy MC > KN (ĐPCM) c) (1,0 đ) Theo CM ý a IM = MK mà AM = MD (gt) 0,5 1,0 0,5 0,5 0,25 0,25 0,5 CÂU NỘI DUNG => AI = KD Vậy để AI = IM = MK = KD cần AI = IM Mặt khác BI AM => BI vừa trung tuyến, vừa đường cao ABM => ABM cân B (1) Mà ABC vng A, trung tuyến AM nên ta có ABM cân M (2) Từ (1) (2) ruy ABM => góc ABM = 600 Vậy vng ABC cần thêm điều kiện góc ABM = 600 d) (1,0 đ) Xảy trường hợp: Trường hợp 1: Nếu I thuộc đoạn AM => H thuộc đoạn MC => BI DH cắt tia MN Gọi O giao điểm BI tia MN, O’ giao điểm DH tia MN Dễ dàng chứng minh AIO = MHO’ => MO = MO’ => O O’ Suy BI, DH, MN đồng quy Trường hợp 2: Nếu I thuộc đoạn MD => H thuộc đoạn MB => BI BH cắt tia đối tia MN Chứng minh tương tự trường hợp Vậy BI, DH, MN đồng quy (Học sinh sử dụng cách khác để CM: VD sử dụng tính chất đồng quy đường cao ) ĐIỂM 0,5 0,5 0,5 0,5 Lưu ý: - Lời giải trình bày tóm tắt, học sinh trình bày hoàn chỉnh, lý luận chặt chẽ cho điểm tối đa - Học sinh trình bày nhiều cách giải khác cho điểm tương ứng