1. Trang chủ
  2. » Khoa Học Tự Nhiên

dao động cơ - khó, giải chi tiết

105 401 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 105
Dung lượng 6,35 MB

Nội dung

  !"#$%&'( )*+,-./0 1 23-)45)( 1 -.6"7% " *+,-./0 " ! " 1 m 89:;<=>5)? 8@ 1 )-/)ABC52D(.= " /5E E 7%23+FG(9HI5> 1 J89,,) KE'LEML NO'LE P"'EQ MA,=@  !ω " K R ω! T π " !17%SSSSSSTK R !" D(.=(8%5) 1 ) "   1  1 U "  " ! "  R $1& R !SE E 7%  " " 11 vm U " " "" vm ! " " R" vm $"& " 1 U " ! R $1V&W" " 1 v U " " v ! " R v $"V& H$1V&)$"V& 1 !" E R v !S" E 7% " !S E R v ! E 7%2 M= 1 %5K " !K R " U2 " " 1 ω v !R'R" " U$R'R" E & " !R'RR1L$ " & SSSSSTK!R'RX!X2 YHI5> 1 J89,, Z 1 [B\A@W$(H " A >SK&! 1" T U X T ! E T 2! E " π !"'1% ]F/Y( 1 /0   ^5 " *8[5)/0*_/Y     E   !"#$ #%& &'()*+,& -./"(   .0 1 2)".3"#+4".45"+6   7  89$:$" (`-./0!R'O$&'aZ-Z "b$c7&,/=.B2(`-./0!R'1$&89; /dZ.R'" " 7%>52^5(\) )e;/dZe<=2fg8.: /Y!1R7% " 2M) KX'bMXNX " PX E  h+D(.=(%5$U&D! SSSSSTD!R'R" " $7%& :A,=i( R ! k gMmM &$ −+ ! k mg !R'RX!X K " ! R " U " " ω V ! R " U k mMV &$ " + !R'RR1LSSSSSSTK!R'RX!X 9$:$"  jV j N?(!ERR'-Z!"RRc7'?)< Z/k23[B\@A(!"RRH!E'Qb% d4'5'%F)lF9'g8!1R7% " ^5( e':.:5B\@A=i'/d/k'- Y!R)I52m/d=i() K2!1'Rn%$"RUR'EnQ&2M2!"'1E%$"RU1'ROE&2 N2!1'bQ%$"RUR'1bb&2P2!1'On%$"RUR'""X& D(.=(5) ! gh" D(. R =i(%5 $U& R !SSST R ! mM ghm + "  3-B\=i(FB\@A=i  R !oSo R ! g k MmM −+ &$ ! g k m !R'R1!1 M=iK " ! R " U " " R ω v Dω! mM k + ! b'R "RR !"R$7%& K! " " R " R  ω v + ! " " "R 1"'R R'R1 + !R'R"!" m/d=i(!K%$"RUϕ& !R! R !K7"SSSSST%ϕ!R'bSSSSSTϕ! E π ;;;<=!>?@7 E π A9$:$"( $ BNd(--/0);@8ZZ82 (`-./0!7X-pqA8;/d>5)( %5"(\)%-i2cp/0=i) K2q7bM2qN2Xq7bP2qR7X D(. R =(/5) q R ! " " R mv SSSSSST R v ! m W R " !" M W R " D(.=i(%5 $U&! R SSSSST X b ! X 1  R    U j SSSST! b R v !R'X M W R " cp/0=i) C " &$ " vmM +  X b " M    X b " M @ M W R " @C @ C @ D9$:$" '-./0lF9'Z1RRc7'(! ERR-9/0l%F2ri[5F@A'e (!"RRA);/d."7%2D5)))) ?2h.:)9@A'.Y)8%I5'/d)I A,2 \+Yg(-Sn'n K2R'"b%M2R'"L%N2R'X%P2R'RO% h:(.=)`%5)D) R !"7% DU! R SSSSSSSSTD! R 6$1& " " MV U " " mv ! " " R mv SSSSSSSSTD " ! R " 6 "  $"& SSSSSSTD! R USSSST!D6 R $E& 8$E&)$1&D! R 6! R 6DU R SSSSSTD! mM mv + R " ! b'R n'R !1'L7% !D6 R !1'LS"!SR'X7%2%5(*8[52 M=( " " kA ! " " MV SSSSTK!D k M !1'L 1RR E'R !R'RnQL≈n'n N=( !"# k M !R'EXX%  !"# E#&""#F"" G'H+.3;II+6 X ET @J8JJ>≈@>9$:$" r(K'MF M !" K !"RR';)-Z!bRc7'- )4ER2c@(;/dZ>B\-)4? Ala2D(>B\4)?=-g'(MABF 2 \)g= K2"LM2"XN2ERP2"" Ks_="([D NMj  R j!o R !K! k mm BA + ! bR 1R2E'R !R'RL!L s_=( K [D NMjV •  R •jV •j •  K   M  R jV!oV R ! k m A ! bR 1R21'R !R'R"!" P-jVj!o R SoV R !X 3"([B\$t  !t  &( K -: R   R !KV!o R UjVj!1R N)g=:= K !SKV!S1R + " + @ 7L+M @ NM9$:$"O Ja-Z1RRc7',.B',/;*+,`-. /0!1%(-9l%F;/dZe< =2fI,eA)8u9lA>52^-A)889 Z./,."7% " 2M`*:%F2fg8.: /Y!1R7% " 23Y`8-2M) K21'b M2" N2L P21'" h+NF4F<((/Y8 t!t  UmUc !SoUScc)+4=8F<( D(A,YJ8c!R c!SoU6!RSSSSSSTo! k agm &$ − !R'Rn!n s_=([D NM o R ! k mg !R'1!1R D(Y`8-!S" ,%.-=ω! m k !1R7% D(.=(Y8! aS" ! la∆" ! Rn'R2"2" ! E"'R 7% MM;;=( K " ! " U " " ω v !R'R" " U 1RR E"'R !R'RRELSSSSST@@9$:$" IZ?(-./01RR)a-Z !1RRc723C(./;/dZ>B\_X?8- (.XR#7%;/dZ/.2N:/d/.2N (;/dZ2 .A(89HB\gg>B \ABC1'b,Z") K2OE'Qb7%M2SOE'Qb7%N2bL'"b7%P2SbL'"b7% K ,%.-==ω! m k !1R 1R !1R#7% s_=([D NM • •j  o R ! k mg !R'R1!1 :=(_X R !XS1!E M=@K " ! R " U " " R ω v !R'RE " U " "" 1RR X'R π π !R'Rb " SSSSSTK!R'Rb!b 3([ABC1'b2:=(!S$1U1'b&!S"'b ]_/Y(HB%gg$!K&>9,/ ^!"KUK7"!"'bK!1"'b Y(HK>,Z! " T U L T ! E "T ! ω π 2E "2" ! 1b 2" $%&  .A(89HB\gg>B\ ABC1'b,Z")  P  t S  1b " b'1" 8JD>9$:$" 8NZ'-Z!1RRc7'(-./0!12 c@(-)4?+a92M`*:4+2 3(B\gg-4/0( R !bRRFa)2 N:.>p)B\@A2fg8!1R7% " 2r`p/0=i8J /0AAv K2h+R'"bwM2 pR'"bwN2 pR'1"bwP2h+R'EQbw Kh:j)D NMI,2M=@ K!o! k mg !R'1!1R 3([9gg(-!K cp/0=Adp=([D NMj q R !q  Uq  ! " " kA UR! " " kA !R'bw $D:.>p)B\@A& ^( R D NM5jV DVjV!oV! k gmm &$ R + !R'1b!1b!1'bK 5(.=$U R &ARAi=i KV!jV!R'bK cp/0=Adp=([D NMjV q!q  Uq  ! " x " kA UR! n " kA $D:.>p)B\@A&2 LCC @ NC " " kA ; n " kA  n E " kA  X b'1 @JQ RS"#+TU"#V&!.3"#W& X#3+TU"#YZ"#@JQ [".$:$"O •SK • •j •K •V •j •jV • $U R &  @*+,-./0!R'"aZ-Z "Rc7',/=>-./0  2(`-./0!R'1d H!R'Xb.5)?2fg8.:/Y!1R7% " 2^ 5(;/dZe<=2.9lAB g  l`d K2ERR M2"RR N2LRR P21"R Kh:j)D NM2 D(.=/5 R ! gh" ! 1n !E " 7% h:D))(.=)%5 DU! R $1& R !SE " 7% " " MV U " " mv ! " " R mv $"& H$1&)$"&D! E "  R !S" " 7%SSSSTD  !" " 7% ,%.-= ω! M k ! "'R "R !1R " 7% sC=([D NM o! k mg ! "R 1R2"'R !R'1!1R M=K ω  V  "1R "" !R'"!"R .9lABgt  ≤  t  !$KSo&!"R2R'1!"c O!.H . ≥ g F đh  @(#@@# [".$:$" *+,-./0!R'"aZ-Z "Rc7',/=.B2(`-./0!R'1dH! R'Xb.5)?2fg8.:/Y!1R7% " 2^5( ;/dZe<=2M) K21b M2"R N21R P21" Kh:j)jV)D NMI,)I%2 D(.=/5 R ! gh" ! 1n !E " 7% h:D))(.=)%5 DU! R $1& R !SE " 7% " " MV U " " mv ! " " R mv $"&     j      j  H$1&)$"&D! E "  R !S" " 7%SSSSTD  !" " 7% ,%.-= ω! M k ! "'R "R !1R " 7% 5".3V&!.3"#K ω  V  "1R "" @@9$:$" ;/dZe<= AX2M>a-Z1RRc7)g8.:/Y!1R7% " 23(> B\g'a)-: m ∆ !1bR+e2 M%) K2"'b M2" N2b'b P2Q h:j)jV)D NMI,)I%2)B\: s_=([D NM I,o! k mg  fI%oV! k gmm &$ ∆+  jjV!oVSo! k gmm &$ ∆+ S k mg ! k mg∆ ! 1RR 1R21b'R R'R1b!1'b 5".3V&!.3"#>&( .\+6 M7]]M [".$:$" 3!"+F+^=!.\"Z"#&"##_'H( `+TU"#B@@#6+^=!H X>` a"#B@RD.&"#V&!.3"#.1 ^&="#b&" cde"YZ"#fY5".3 b& cde"YZ"#"#TE& " g'H( `+TU"#@@#+5"?Ve"  \"#&26!A >&.H X6V&!.3"#fY5".3  " bcm Bcm  E "cm O " "cm h+ P4">`#HW&!"+FKω M k  X'R XR @d&VD> P`.3W&( b&Pω@D> P`.3W&?7A( b&PM mM Mv + B@D> P4">`#HW& X!"+FKωM mM k +  b'R XR  b "R d&VD> • •j •jV  M=iKV! x x ω v !" b 2sFFK BK(-./0 1 !1'"b)a-Z!"RRc7', =)/Y2D()-%FlF92 s(Z-./0 " !E'Qb%F(Zg?y8(+( C5n23+aI'y8(89\2fg8 " π !1R23 _45,,(F5)  $X X&2π −  $" X&2π − 1L2 O $X n&2π − h+ 3>D NM"(F D(-"(D NM A mm k v 2 "1 + = s>D NM( 1 AKV\KV = + =→= "1 1 xx mm m AAA m k v X  k m T 1 " π = ( " 89(.23 1 _45,,Y ) 7X *_/Y " 89) ^!2 7X! ππ " X 1 2"2 1 "1 = + k m A mm k 3+F"(!^SKV! X" − π K-(`./0')AK (>B\-pAE,>p(Fx$e./0(& dZ)\)(-"(><)A)  b K X  Q K "  b K " " O " K " K Uq  !Eq  !Tq!Xq  !T " !K " 7X !Tq! E X q  !T " ! m kA " X E !T! m kA E " ± U3Vd.';/dVl-(.'(.=i"(-)V !$UV&V!TV!7"!TV " ! " 7X! m kA " 1L E UKV)A=i"( KV " ! " UV " 7ω " ω " !7" !TKV " !K " 7XU m kA " 1L E k m" !K " 2b7n!TKV! b K " " z !" π $%&'*+ ,`-./0 1 23-)45)( 1 -.)S"$7% " &( -./0 " $ 1 !" " &89:;<=>5)?8@ ( 1 '-/)C52M>.89=( " 8/I5 )E E $7%&2]_/Y)( 1  /0HI5>( 1 J89 ) L$&2 L'b$&2 "$&2 OX$& K U ,%.- ω !1$7%&2 U 5B\5AA{!K!|  |7 ω " !"2 U /5( 1 -(.Al2M+)/0 " ! 1  1 S "  " $1& UM+)p/0;/d- " " " " 1 1 " " 1 1 1       " " " = +  $"& H$1&'$"&) 1 !" " - 1 !" E $7%&2 UM " " " " 1  Kx  " $" E&   = + = +  ÷ ω   !X JK(-./0 1 !1'"b)a-Z!"RRc7', =)/Y2D()-%FlF92 s(Z-./0 " !E'Qb%F(Zg?y8(+(% C5n23+aI'y8(89\2fg8 " π !1R' _45,,(F5) "'"n$& X'bL$& 1L$& On'bL$& K hM,i"(ω 1 ! "1 mm k + !"π Uri(89HD $Sn&>D NM'(.5D NM) R   R !ω 1 K 1 !1Lπ7%$K 1 !n& } HD NM"(YU 1 89(,D AK " $_45& U " 89(. R $l-%F& } 1 ω "  1 m k !XπW " !R'b%WK " ! R 7ω " !X U Y 1 HD NMA) " 7XW UY- " 89/05^! R 2 " 7X!"π U3+FG"()^6K " !"πSX!"'"n  SK 1 R ^ K " IK?-Z 1RRk N m= )(./0 b Om kg= ;/dA "A cm= ~2 5Y9 m *B\pA>p'(`./0 R R'bm m= d Z)\) m 23*B\@Ai ( ) R m m+ -.A  "R cm s  ER E cm s  "b cm s O b 1" cm s K }D p!>p!K7 " ! " )!•K7 " !Lπ7% }3 R d)\)';sfM /0$U R &V!!TV!Xπ7% }ri ( ) R m m+ -•V!"π E }]D NM(.=i) R  1 " ( ) R m m+  R " ! 1 " ( ) R m m+ V " U 1 "  " !T R " !V " U R k m m+  " !T R !"R7% 8K(K- 1 !1.(M- " !X'1Aa-!L"bc72ri A)'%MA))<lZ23CK`B\ @A51'L?Alag8K;/dZ2 fg8!O'n7% " 2f/F<A)-FBg)`g) K21O'ncWR'"c M2bRcWXR'"c N2LRcWXRc P21"RcWnRc h€•€ U∆l! 1 7!R'R1bLn‚K Uf4F<A))]!c Uc  _45!T([g t  Uc6m!R!Tc  !m6t  !Tc! " 6$KS∆l&!EO'Onc Uc  ABCg!T([D gg c  6t  6m " !R!Tc  !m " Ut  ! " U$KU∆l& !Tc  !bO'Onc @K'?-Z!bRc7)(!bRR )A R A :;<j2ri( bRR E m g = A)M;/d(. R 1 7v m s= 2h+>5)) ))?)y8)Y9-)`g2^5( ))-)45)49,/0)1RR)nR2N " 1R 7g m s= 2M/5)  R b 2A cm= 2 R 1R 2A cm= 2 R b " 2A cm = O R b EA cm = 2 K m " t  c ] m " t  c ] ∆l j  K SK M K C [...]... nng m1 trc khi va chm a = - 2A, vi A l biờn dao ng ban u Tn s gúc = 2 = 1 (rad/s), Suy ra - 2cm/s2 = -A (cm/s2) -> A = 2cm T Gi A l biờn dao ng ca con lc sau va chm vi m2 Quóng ng vt nng i c sau va chm n khi i chiu s = A + A 2 2 Theo h thc c lõp: x0 =A, v0 = v -> A = A + v2 2 = 22 + (2 3 ) 2 =16 1 -> A = 4 (cm) > S = A + A = 6cm Chn ỏp ỏn C Cõu 24 : Mt con lc lũ xo dao ng iu ho trờn mt phng... biờn trong T/2 : A = 2àmg/k = 0,4à * Theo y/c ca : 0,04 + (0,04 - A) < S < 0,04 + 2(0,04 - A) => 0,08 0,4à < S < 0,12 0,8à 0 * Ti khi dng : kA2/2 = àmgS => S = 4.1 0-3 /à A -4 + 0,08 0,4à < 4.1 0-3 /à => ( - 0,1)2 > 0 + 4.1 0-3 /à < 0,12 0,8à => à2 0,15à + 0,005 < 0 => 0,05 < à < 0,1 Cõu 26: Mt con lc lũ xo cú cng k=100N/m, vt nng m=100g dao ng tt dn trờn mt phng nm ngang do ma sỏt, vi h s ma sỏt 0,1... àMgA0 -> = - àMgA0 = - 2àMgA0 2 2 2 2 2 2 2 Do ú v max = v0 - 4àgA0 > vmax = 0,4195 m/s = 0,42 m/s Cõu 30: Mt con lc lũ xo treo thng ng gm vt nng m=1kg, lũ xo nh cú cng k=100N/m t giỏ B nm ngang vt m lũ xo cú chiu di t nhiờn Cho giỏ B chuyn ng i xung vi gia tc a=2m/s2 khụng vn tc u Chn trc ta thng ng, chiu dng trờn xung, gc ta VTCB ca vt, gc thi gian lỳc vt ri giỏ B Phng trỡnh dao ng ca... xo gin: l0=mg/k=0,1m k Tn s dao ng: = =10rad/s m Vt m: P + N + Fdh = m a Chiu lờn trc Ox ó chn ta cú: mg-N-k l=ma Khi vt ri giỏ N=0, m( g a ) gia tc ca vt a=2m/s2( theo bi ra) Suy ra l = k at 2 Trong khong thi gian ú vt i c qung ng l c tớnh l= 2 Kt hp 2 biu thc ta cú: t=0,283(s) at 2 Qung ng vt i c n khi ri giỏ l: S= =0,08m 2 Ta ban u ca vt l x0=0,0 8-0 ,1 =-0 ,02m =-2 cm Vn tc ca vt khi ri giỏ... thớch cho vt iu hũa theo phng thng ng vi biờn 3cm Ly g = 10m/s2 Cụng ca lc n hi khi vt di chuyn theo chiu dng t v trớ cú ta x1 = 1cm n v trớ x2 = 3cm B A - 4 J B - 0,04 J C - 0,06 J D 6 J Gii: p dng nh lý ng nng: AFh = W = 2 mv 2 mv12 2 2 2 mv 2 mv12 k ( A 2 x12 ) AFh = W = == - 50 (32 1).1 0-4 = - 0,04 J 2 2 2 O mv12 kA 2 kx12 Vi v2 = 0 (vt v trớ biờn), v = 2 2 2 N M Chn ỏp ỏn B Cõu 16 Gn mt... sau va chm: v = 2cm/s; v = -1 cm/s Theo nh lut bo ton ng lng v ng nng ta cú: mv = m0v0 + mv (1) > m0v0 = m(v v) (1) 2 mv 2 m0 v 0 mv '2 (2) > m0v02 = m(v2 v2) (2) = + 2 2 2 T (1) v (2) ta cú v0 = v + v = 2 1 = 1cm/s Gia tc vt nng trc khi va chm a = - 2A, vi A l biờn dao ng ban u Tn s gúc = 2 = 1 (rad/s), Suy ra - 2cm/s2 = -Acm/s2 -> A = 2cm T Gi A l biờn dao ng ca con lc sau va chm... x0=0,0 8-0 ,1 =-0 ,02m =-2 cm Vn tc ca vt khi ri giỏ cú giỏ tr: v0=at=40 2 cm/s v2 =6cm Ti t=0 thỡ 6 cos =-2 = 1,91rad 2 Phng trỡnh dao ng :x=6cos(10t-1,91)(cm) P N D Biờn dao ng l:A= x 2 + Cõu 31: con lc lũ xo cú cng k=100N/m qu cu khi lng m dao ng iu ho vi biờn A=5cm Khi qu cu n v trớ thp nht ta nh nhng gn thờm vt M=300g sau ú 2 vt cựng dao ng iu ho vi biờn l ỏp ỏn 3cm Gii: O V trớ cõn bng c l O Khi o gión ca lũ xo... con lc n gm dõy treo cú chiu di 1m, vt nng cú khi lng 100g, dao ng nh ti ni cú gia tc trng trng g = 10 m/s2 Cho con lc dao ng vi biờn gúc 0,2 rad trong mụi trng cú lc cn khụng i thỡ nú ch dao ng c 150s ri dng hn Ngi ta duy trỡ dao ng bng cỏch dựng h thng lờn dõy cút, bit rng 70% nng lng dựng thng lc ma sỏt do h thng cỏc bỏnh rng Ly 2 =10 Cụng cn thit lờn dõy cút duy trỡ con lc dao ng trong 2 tun vi... 0,01.Từ vị trí lò xo không biến dạng truyền cho vật vận tốc ban đầu 1m/s thì thấy con lắc dao động tắt dần trong giới hạn đàn hồi của lò xo.độ lớn của lực đàn hồi cực đại của lò xo trong quá trình dao động là: A 19,8N B.1,5N C.2,2N D.1,98N Gii: Gi A l biờn cc i ca dao ng Khi ú lc n hi cc i ca lũ xo trong quỏ trỡnh dao ụng: Fhmax = kA tỡm A t da vo L bo ton nng lng: mv 2 kA2 kA2 = + Fms A = + àmgA 2... thay pin: s 23 ngy 4 FC = 4,4.10 3 rad P 5 4,4.10 3 = 0.0828rad -Sau 1 chi kỡ biờn cũn li l: 1 = 0 = 180 1 1 2 2 -Sau 1 chu kỡ c nng gim: W = mgl 0 mgl 1 = 3,759.10 3 J 2 2 - gim biờn sau 1 chu kỡ: = -Nng lng do pin cung cp l:W=0,25.Q.E -sau thi gian T Cn cung cp nng lng W -sau thi gian t cung cp nng lng W t = T W = 46ngy W Cõu 8: Mt CLLX nm ngang gm lũ xo cú cng k=20N/m va vt nng m=100g T . [".$:$" 8l%F/k2 N( R 89;/d(. R v >58@ '%5I - e(.)C)5 "l cm ∆ = 2M> - ./0 lF9' - !1RRN/m'F( - ./0!"bRg' R !1RRg2^ - ( A)%@8 K!1'bcm2 1'XEcm. K!1'LOcm2   R R v uur OK!"cm2 %5(AK!"*D. + !R'R"!" m/d=i(!K%$"RUϕ& !R! R !K7"SSSSST%ϕ!R'bSSSSSTϕ! E π ;;;<=!>?@7 E π A9$:$"( $ BNd( -  - /0);@8ZZ82 (` - ./0!7X - pqA8;/d>5)( %5"()% - i2cp/0=i) K2q7bM2qN2Xq7bP2qR7X D(. R =(/5) q R ! " " R mv SSSSSST R v ! m W R " !" M W R " D(.=i(%5 $U&! R SSSSST X b ! X 1  R    U j SSSST! b R v !R'X M W R " cp/0=i) C " &$ " vmM. [".$:$"O •SK • •j •K •V •j •jV • $U R &  @*+, - ./0!R'"aZ - Z "Rc7',/=> - ./0  2(` - ./0!R'1d H!R'Xb.5)?2fg8.:/Y!1R7% " 2^ 5(;/dZe<=2.9lAB g  l`d K2ERR

Ngày đăng: 26/05/2014, 18:30

TỪ KHÓA LIÊN QUAN

w