1. Trang chủ
  2. » Khoa Học Tự Nhiên

con lắc đơn - giải chi tiết

13 1K 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 407,24 KB

Nội dung

BÀI TẬP VỀ CON LẮC ĐƠN Câu 1: Một con lắc đơn dao động điều hoà theo phương trình li độ góc α = 0,1cos(2πt + π/4) ( rad ). Trong khoảng thời gian 5,25s tính từ thời điểm con lắc bắt đầu dao động, có bao nhiêu lần con lắc có độ lớn vận tốc bằng 1/2 vận tốc cực đại của nó? A. 11 lần. B. 21 lần. C. 20 lần. D. 22 lần. Giải: Trong một chu kì dao động có 4 lần v = 2 max v tại vị trí W đ = 4 1 W > W t = 4 3 W tmax tức là lúc li độ α = ± 2 3 max α Chu kì của con lắc đơn đã cho T = ω π 2 = 1 (s) t = 5,25 (s) = 5T + 4 1 T Khi t = 0 : α 0 = 0,1cos(π/4) = 2 2 max α ; vật chuyển động theo chiều âm về VTCB Sau 5 chu kì vật trở lại vị trí ban đầu, sau T/4 tiếp vật chưa qua được vị trí α = - 2 3 max α Do đó: Trong khoảng thời gian 5,25s tính từ thời điểm con lắc bắt đầu dao động, con lắc có độ lớn vận tốc bằng 1/2 vận tốc cực đại của nó 20 lần. Chọn đáp án C Câu 2: Một con lắc đơn có chiều dài l = 64cm và khối lượng m = 100g. Kéo con lắc lệch khỏi vị trí cân bằng một góc 6 0 rồi thả nhẹ cho dao động. Sau 20 chu kì thì biên độ góc chỉ còn là 3 0 . Lấy g = 2 π = 10m/s 2 . Để con lắc dao động duy trì với biên độ góc 6 0 thì phải dùng bộ máy đồng hồ để bổ sung năng lượng có công suất trung bình là A. 0,77mW. B. 0,082mW. C. 17mW. D. 0,077mW. Giải: α 0 = 6 0 = 0,1047rad. Cơ năng ban đầu W 0 = mgl(1-cosα 0 ) = 2mglsin 2 2 0 α ≈ mgl 2 2 0 α Cơ năng sau t = 20T: W = mgl(1-cosα) = 2mglsin 2 2 α ≈ mgl 2 2 α =mgl 8 2 0 α Độ giảm cơ năng sau 20 chu kì: ∆W = mgl( 2 2 0 α - 8 2 0 α ) = mgl 8 3 2 0 α = 2,63.10 -3 J α 0 O M 0 A T = 2 g l = 2 2 64,0 = 1,6 (s) Cụng sut trung bỡnh cn cung cp con lc dao ng duy trỡ vi biờn gúc l 6 0 W TB = 3 3 10.082,0 32 10.63,2 20 == T W W = 0,082mW. Chn ỏp ỏn B Cõu 3. Một con lắc đồng hồ đợc coi nh một con lắc đơn có chu kì dao động ( ) sT 2= ; vật nặng có khối lợng ( ) kgm 1 = . Biên độ góc dao động lúc đầu là 0 0 5 = . Do chịu tác dụng của một lực cản không đổi ( ) NF C 011,0= nên nó chỉ dao động đợc một thời gian ( ) s rồi dừng lại. Ngời ta dùng một pin có suất điện động ( ) V3 điện trở trong không đáng kể để bổ sung năng lợng cho con lắc với hiệu suất 25%. Pin có điện lợng ban đầu ( ) CQ 4 0 10 = . Hỏi đồng hồ chạy đợc thời gian bao lâu thì lại phải thay pin? Gii: Gi l gim biờn gúc mi l qua v trớ cõn bng = 0 - C nng ban u ca con lc n W 0 = mgl(1-cos 0 ) = mgl,2sin 2 22 2 0 2 0 mgl Vi l = 993,0 4 2 2 gT (m) gim c nng sau na chu k: W = 2 22 0 mgl W = F c ( 0 + )l 2 22 0 mgl = F c ( 0 + )l > = 00245,0 2 = mg F c 0 = 08722,0 180 14,3.5 = W = 2F c ( 0 + )l = 2F c (2 0 - )l = 0,00376 (J). õy l phn nng lng tiờu hao sau mt chu kỡ tc l sau 2s Nng lng ca ngun: W = EQ 0 = 3.10 4 (J) Nng lng cú ớch cung cp cho ng h: W co ich = H.W = 0,75.10 4 (J) Thi gian pin cung cp nng lng cho ng h t = W co ich /W = 5,19946808 00376,0 7500 = s = 19946808,5/86400 = 23,086 ngy = 23 ngy Cõu 4 Mt con lc lũ xo thng ng v mt con lc n c tớch in q, cựng khi lng m. Khi khụng cú in trng chỳng dao ng iu hũa vi chu k T 1 = T 2 . Khi t c hai cong lc trong cựng in trng u cú vộc t cng in trng E nm ngang thỡ gión ca con lc lũ xo tng 1,44 ln, con lc n dao ng vi chu k 5/6 s. Chu kỡ dao ng ca con lc lũ xo trong in trng u l: A. 5/6 s. B. 1 s. C. 1,44s. D. 1,2s Gii: Khi cha cú in trng: g g’ O’ a A’ A O M 0 A’ A O M Ft 0 T 1 = 2π g l∆ ; T 2 = 2π g l ; Với ∆l : độ giãn của lò xo; l chiều dài của con lắc đơn T 1 = T 2 > ∆l = l Khi đặt các con lắc trong điện trường gia tốc trọng trường hiệu dụng tác lên các vật: g’ = g + a Khi đó vị trí cân bằng là O’ T’ 1 = 2π ' 2.2,1 ' 44,1 2 ' ' g l g l g l ∆ = ∆ = ∆ ππ ; T’ 2 = 2π 'g l = 2π 'g l∆ 2,1 ' ' 2 1 = T T > T’ 1 = 1,2 T’ 2 = 1,2 .5/6 = 1s. Chọn đáp án B Câu 5: Treo một vật trong lượng 10N vào một đầu sợi dây nhẹ, không co dãn rồi kéo vật khỏi phương thẳng đứng một góc α 0 và thả nhẹ cho vật dao động. Biết dây treo chỉ chịu được lực căng lớn nhất là 20N. Để dây không bị đứt, góc α 0 không thể vượt quá: A: 15 0 . B:30 0 . C: 45 0 . D: 60 0 . Giải Xét thời điểm khi vật ở M, góc lệch của dây treo là α Vận tốc của vật tại M: v 2 = 2gl( cosα - cosα 0 ). Lực căng của dây treo khi vật ở M T = mgcosα + l mv 2 = mg(3cosα - 2cosα 0 ). T = T max khi α = 0 T max = P(3 – 2cosα 0 ) = 10(3 – 2cosα 0 ) ≤ 20 > 2cosα 0 ≥ 1 > cosα 0 ≥ 0,5 > α 0 ≤ 60 0 . Chọn đáp án D Câu 6: Một con lắc đơn gồm 1 vật nhỏ được treo vào đầu dưới của 1 sợi dây không dãn, đầu trên của sợi dây được buộc cố định. Bỏ qua ma sát của lực cản của không khí. Kéo con lắc lệch khỏi phương thẳng đứng một góc 0,1rad rồi thả nhẹ. Tỉ số độ lớn gia tốc của vật tại VTCB và độ lớn gia tốc tại vị trí biên bằng: A: 0,1. B: 0. C: 10. D: 1. Giải Xét thời điểm khi vật ở M, góc lệch của dây treo là α Vận tốc của vật tại M: v 2 = 2gl( cosα - cosα 0 ) > v = 0 )cos2gl(cos αα − a = 22 ttht aa + >a ht = l v 2 = 2g(cosα - cosα 0 ) A O M0 max0 a tt = m F t t = m P α sin = gα Tại VTCB:α = 0 > a tt = 0 nên a 0 = a ht = 2g(1-cosα 0 ) = 2g.2sin 2 2 0 α = g 2 0 α Tại biên : α = α 0 nên a ht =0 > a B = a tt = gα 0 Do đó : B a a 0 = 0 2 0 α α g g = α 0 = 0,1 . chọn đáp án A Câu 7 : một con lắc đơn dao động điều hòa,nếu giảm chiều dài con lắc đi 44cm thì chu kì giảm đi 0,4s.lấy g=10m/s 2 .π 2 =10,coi rằng chiều dài con lắc đơn đủ lớn thì chu kì dao động khi chưa giảm chiều dài là A:1s B:2,4s C:2s D:1,8s Giải: T = 2π g l ; T’ = 2π g ll ∆− > T T ' = l ll ∆− >( T T ' ) 2 = l ll ∆− >( T TT '∆− ) 2 = l ll ∆− < > 1 - T T∆2 + ( T T∆ ) 2 = 1 - l l∆ < > T T ∆ 2 - ( T T ∆ ) 2 = l l∆ (*) T = 2π g l > l = 2 2 4 π gT = 4 2 T T T ∆ 2 - ( T T ∆ ) 2 = l l∆ = 2 4 T l∆ < > T 8,0 - 2 2 4,0 T = 2 44,0.4 T > T 8,0 = 2 92,1 T > T 92,1 = 0,8 > T = 2,4 (s). Chọn đáp án B Câu 8: Một con lắc đơn có chiều dài l= 40cm , được treo tại nơi có g = 10m/s 2 . Bỏ qua sức cản không khí. Đưa con lắc lệch khỏi VTCB một góc 0,1rad rồi truyền cho vật nặng vận tốc 20cm/s theo phương vuông góc với dây hướng về VTCB. Chọn gốc tọa độ tại vị trí cân bằng của vật nặng, gốc thời gian lúc gia tốc của vật nặng tiếp tuyến với quỹ đạo lần thứ nhất. Viết phương trình dao động của con lắc theo li độ cong A. 8cos(25t +π) cm B. 4 2 cos(25t +π) cm C. 4 2 cos(25t +π/2) cm D. 8cos(25t) cm Giải: Phương trình dao động của con lắc theo li độ cong có dạng s = S max cos( ωt + ϕ) Gọi α m là biên độ góc của dao độngn của con lắc đơn Khi đo biên độ của tọa độ cong S max = α m l α 0 = 0,1 rad. Theo ĐL bảo toàn năng lượng ta có mgl(1-cosα m ) = mgl(1-cosα 0 ) + 2 2 0 mv < > mgl 2 2 max α = mgl 2 2 0 α + 2 2 0 mv < > 2 max α = 2 0 α + gl v 2 0 = 0,1 2 + 0,01 < > α max = 0,141 = 0,1 2 (rad) < > S max = α m l = 0,04 2 (m) = 4 2 (cm) (*) Tần số góc của dao động ω = l g = 25 rad/s Gốc thời gian t = 0 khi gia tốc của vật nặng tiếp tuyến với quỹ đạo lần thứ nhất tức là gia tốc hướng tâm a ht = 0 > v = 0: tức là lúc vật ở biên âm (ở điểm A). Khi t = 0 s = -S max > ϕ = π. Vậy: Phương trình dao động của con lắc theo li độ cong s = S max cos( ωt + ϕ) s = 4 2 cos( ωt +π ) (cm). Chọn đáp án B Câu 9. Một con lắc đơn gồm vật có khối lượng m, dây treo có chiều dài l = 2m, lấy g = π2. Con lắc dao động điều hòa dưới tác dụng của ngoại lực có biểu thức F = F0cos(ωt + π/2) N. Nếu chu kỳ T của ngoại lực tăng từ 2s lên 4s thì biên độ dao động của vật sẽ: A tăng rồi giảm B chỉ tăng C chỉ giảm D giảm rồi tăng Giải; Chu kỳ doa động riêng của con lắc đơn T 0 = 2π g l = 2π 2 2 π = 2 2 (s) Khi tăng chu kì từ T 1 = 2s qua T 0 = 2 2 (s) đến T 2 = 4(s), tấn số sẽ giảm từ f 1 qua f 0 đến f 2 .Biên độ của dao động cưỡng bức tăng khi f tiến đến f 0 . Do đó trong trường hợp nay ta chọn đáp án A. Biên độ tăng rồi giảm Câu 10:con lắc đơn dao động trong môi trường không khí.Kéo con lắc lệch phương thẳng đứng một góc 0,1 rad rồi thả nhẹ.biết lực căn của không khí tác dụng lên con lắc là không đổi và bằng 0,001 lần trọng lượng của vật.coi biên độ giảm đều trong từng chu kỳ.số lần con lắc qua vị trí cân băng đến lúc dừng lại là: A: 25 B: 50 c: 100 D: 200 Giải: Gọi ∆α là độ giảm biên độ góc sau mỗi lần qua VTCB. (∆α< 0,1) Cơ năng ban đầu W 0 = mgl(1-cosα) = 2mglsin 2 2 α ≈ mgl 2 2 α Độ giảm cơ năng sau mỗi lần qua VTCB: ∆W = ])(.2[ 2 ])([ 2 222 αααααα ∆−∆=∆−− mglmgl (1) Công của lực cản trong thời gian trên: A cản = F c s = 0,001mg(2α - ∆α)l (2) Từ (1) và (2), theo ĐL bảo toàn năng lượng: ∆W = A c ])(.2[ 2 2 ααα ∆−∆ mgl = 0,001mg(2α - ∆α)l > (∆α) 2 – 0,202∆α + 0,0004 = 0 > ∆α = 0,101 ± 0,099. Loại nghiệm 0,2 ta có ∆α= 0,002 Số lần vật qua VTCB N = 50 002,0 1,0 == ∆ α α . Chọn đáp án B. Câu 11 : Một con lắc đơn: có khối lượng m1 = 400g, có chiều dài 160cm. ban đầu người ta kéo vật lệch khỏi VTCB một góc 60 0 rồi thả nhẹ cho vật dao động, khi vật đi qua VTCB vật va chạm mềm với vật m2 = 100g đang đứng yên, lấy g = 10m/s 2 . Khi đó biên độ góc của con lắc sau khi va chạm là A. 53,13 0 . B. 47,16 0 . C. 77,36 0 . D.53 0 . Giải: Gọi v 0 vận tốc của m 1 trước khi va chạm với m 2 ; v vận tốc của hai vật ngay au va chạm Theo ĐL bảo toàn động lượng ta có: m 1 v 0 = (m 1 + m 2 )v > v = 21 1 mm m + v 0 = 5 4 v 0 (*) Theo ĐL bảo toàn cơ năng cho hai trường hợp: 2 2 01 vm = m 1 gl(1- cosα 0 ) (**) 2 )2( 2 1 vmm + = (m 1 + m 2 )gl(1- cosα) (***) Từ (**) và (***) 0 cos -1 cos -1 α α = 2 0 2 v v = 25 16 > 1- cosα) = 25 16 (1- cosα 0 ) = 25 16 2 1 = 25 8 = 0,32 cosα = 0,68 > α = 47,156 0 = 47,16 0 . Chọn đáp án B Câu 12 : Một con lắc đơn đếm giây có chu kì bằng 2s, ở nhiệt độ 20 o C và tại nơi có gia tốc trọng trường 9,813 m/s 2 , thanh treo có hệ số nở dài là 17.10 –6 K –1 . Đưa con lắc đến nơi có gia tốc trọng trường là 9,809 m/s 2 và nhiệt độ 30 0 C thì chu kì dao động là : A. ≈ 2,0007 (s) B. ≈ 2,0232 (s) C. ≈ 2,0132 (s) D. ≈ 2,0006 (s) Giải: Chu kì dao động của con lắc đơn: T = 2π g l T’ = 2π ' ' g l với l’ = l(1+ α∆t 0 ) = l(1 + 10α) T T ' = l l' 'g g = 101+ 'g g Do << 1 nờn 101+ 1 + 2 '1 10 = 1+5 > T = (1+5)T 'g g = ( 1 + 5.17.10 -6 ).2. 809,9 813,9 2,00057778 (s) 2,0006 (s). ỏp ỏn D Cõu 13: Mt con lc n cú chiu di 1m, u trờn c nh u di gn vi vt nng cú khi lng m. im c nh cỏch mt t 2,5m. thi im ban u a con lc lch khi v trớ cõn bng mt gúc ( = 0,09 rad (goc nh) ri th nh khi con lc va qua v trớ cõn bng thỡ si dõy b t. B qua mi sc cn, ly g = 2 = 10 m/s 2 . Tc ca vt nng thi im t = 0,55s cú giỏ tr gn bng: A. 5,5 m/s B. 0,5753m/s C. 0,2826 m/s D. 1 m/s Gii: Chu kỡ dao ng ca con lc n T = 2 g l = 2 (s). Thi gian n VTCB l T/4 = 0,5 (s) Khi qua VTCB si dõy t, chuyn ng ca vt l C nộm ngang t cao h 0 = 1,5m vi vn tc ban u xỏc nh theo cụng thc: 2 2 0 mv = mgl(1-cos) = mgl2sin 2 2 = mgl 2 2 > v 0 = Thi gian vt C sau khi dõy t l t = 0,05s. Khi ú vt cao h = h 0 - 2 2 gt > h 0 h = 2 2 gt mgh 0 + 2 2 0 mv = mgh + 2 2 mv > v 2 = v 0 2 + 2g(h 0 h) = v 0 2 + 2g 2 2 gt v 2 = v 0 2 + (gt) 2 v 2 = () 2 + (gt) 2 > v = 0,5753 m/s. ỏp ỏn B Cõu 3. Một con lắc đồng hồ đợc coi nh một con lắc đơn có chu kì dao động ( ) sT 2= ; vật nặng có khối lợng ( ) kgm 1= . Biên độ góc dao động lúc đầu là 0 0 5 = . Do chịu tác dụng của một lực cản không đổi ( ) NF C 011,0= nên nó chỉ dao động đợc một thời gian ( ) s rồi dừng lại. Ngời ta dùng một pin có suất điện động ( ) V3 điện trở trong không đáng kể để bổ sung năng lợng cho con lắc với hiệu suất 25%. Pin có điện lợng ban đầu ( ) CQ 4 0 10= . Hỏi đồng hồ chạy đợc thời gian bao lâu thì lại phải thay pin? Cỏch 1: C nng ban u ca con lc n W 0 = mgl(1-cos 0 ) = mgl,2sin 2 22 2 0 2 0 mgl Vi l = 993,0 4 2 2 gT (m) gim c nng sau na chu k: W = 2 22 0 mgl ∆W = F c (α 0 + α)l 2 22 0 αα − mgl = F c (α 0 + α)l > ∆α = 00245,0 2 = mg F c α 0 = 08722,0 180 14,3.5 = ∆W = 2F c (α 0 + α)l = 2F c (2α 0 - ∆α)l = 0,00376 (J). Đây là phần năng lượng tiêu hao sau một chu kì tức là sau 2s Năng lượng của nguồn: W = EQ 0 = 3.10 4 (J) Năng lượng có ích cung cấp cho đồng hồ: W co ich = H.W = 0,75.10 4 (J) Thời gian pin cung cấp năng lượng cho đồng hồ t = W co ich /∆W = 5,19946808 00376,0 7500 = s = 19946808,5/86400 = 23,086 ngày = 23 ngày cách 2: cũng như trên nhưng sửa lại chỗ chú ý: 1T W∆ t W t = W co ich /∆W = 462.5,19946808 00376,0 2.7500 == ngày Cách 3:Ta tìm đc Cơ năng của con lắc đơn là Độ giảm biên độ sau mỗi chu kỳ là Số dao động toàn tần thực hiện được với cơ năng trên là Năng lượng pin cung cấp cho con lắc là: ngày Bạn xem thử 2 2 2 2 0 0 1 gT 1 10.2 5. W m 1 0,03858(J) 2 2 2 2 180 π       = α = =  ÷  ÷  ÷ π π       Độ giảm biên độ sau mỗi chu kì : 3 c 4F 4,4.10 mg − ∆α = = Số dao động toàn phần thực hiện được : 0 N α = ∆α Độ giảm năng lượng con lắc đồng hồ sau 1 chu kì : 0 0 0 W W W= . N ∆ = ∆α α Năng lượng của pin phải cung cấp sau 1 chu kì : 0 0 W W W= 4 . H ∆ = ∆α α Điện lượng pin giải phóng sau mỗi chu kì : 0 0 W W q 4 . U U. = = ∆α α Thời gian hoạt động của pin : 4 0 0 0 3 0 Q Q .U. 10 .3.5. T .T .2 7711231,32(s) 89,25(ngày). q 4W . 4.0,03858.4,4.10 .180 − α π τ = = = = ≈ ∆α Một con lắc gồm quả cầu có khối lượng 400g và sợi dây treo không dãn có trọng lượng không đáng kể, chiều dài 0,1 (m) được treo thẳng đứng ở điểm A. Biết con lắc đơn dao động điều hòa, tại vị trí có li độ góc 0,075 (rad) thì có vận tốc 0,075 3 (m/s) Cho gia tốc trọng trường 10(m/s 2 ) Cơ năng dao động A. 4,7 mJ B. 4,4 mJ C 4,5 mJ D 4,8 mJ Giải: ta có 2 10 100 0,1 g l ω = = = và = 3 0,075.0,1 7,5.10l m α − = = Vì vật dao động điều hòa nên: S 0 2 =S 2 + 2 2 3 2 2 2 (0,075 3) (7,5.10 ) 0,015 100 v ω − = + = Vậy W = 2 2 2 3 0 1 1 .0,4.100.0,015 4,5.10 4,5 2 2 m S J mJ ω − = = = Câu 23: Hai con lắc đơn có cùng khối lượng vật nặng, dao động trong hai mặt phẳng song song cạnh nhau và cùng vị trí cân bằng. Chu kì dao động của con lắc thứ nhất bằng hai lần chu kì dao động của con lắc thứ hai và biên độ dao động của con lắc thứ hai bằng ba lần con lắc thứ nhất. Khi hai con lắc gặp nhau thì con lắc thứ nhất có động năng bằng ba lần thế năng. Tỉ số độ lớn vân tốc của con lắc thứ hai và con lắc thứ nhất khi chúng gặp nhau bằng A. 4. B. 14 . 3 . C. 140 . 3 . D. 8. Giải: Coi dao động của các con lắc có biên độ nhỏ: A 1 = l 1 .α 1 ; A 2 = l 2 .α 2 Do chu kì dao động của con lắc thứ nhất bằng hai lần chu kì dao động của con lắc thứ hai: l 1 = 4.l 2 Do biên độ dao động của con lắc thứ hai bằng ba lần con lắc thứ nhất. A 2 = 3A 1 Hay ta có: l 2 .α 2 = 3 l 1 .α 1 Suy ra α 2 = 12 .α 1 . Cơ năng dao động của vật 1: E 1 = mgl 1 . 2 2 1 α Khi động năng bằng 3 lần thế năng ta có: E đ1 = 4 3 E 1 = 4 3 mgl 1 . 2 2 1 α = 8 3 mgl 1 . 2 1 α và li độ góc α = 2 1 α Hai vật gặp nhau ở li độ: S = l 1 .α = l 1 . 2 1 α Cơ năng dao động của vật 2: E 2 = mgl 2 . = 2 2 2 α mg = 2 )12( . 4 2 11 α l 18. mgl 1 . 2 1 α Khi hai vật gặp nhau thế năng vật 2: E t2 = 2 m 22 2 S ω = ( ) 2 1 2 . .2 . α l l gm = 2 1 1 1 2 4 .2 .       α l l gm = 2 2 11 α mgl Động năng của vật 2: E đ2 = E 2 - E t2 = 18. mgl 1 . 2 1 α - 2 2 11 α mgl = 2 .35 2 11 α mgl Suy ra: 3 140 .3 8 . 2 .35 2 11 2 11 2 1 2 2 1 2 === α α mgl mgl v v E E đ đ Suy ra: 3 140 1 2 = v v Câu 33: Một con lắc đơn có chiều dài 2m được treo vào trần nhà cách mặt bàn nằm ngang 12m. Con lắc đơn dao dộng điều hòa với biên độ góc α 0 =0,1rad, tại nơi có gia tốc trọng trường g=9,8m/s 2 . Khi vật đang đi qua vị trí thấp nhất thì dây bị đứt. Xác định khoảng cách từ hình chiếu của điểm treo con lắc lên mặt sàn đến điểm mà vật rơi lên trên sàn? DS: cm1020 Khi vật đang đi qua vị trí thấp nhất thì dây bị đứt, lúc này vật có vận tốc )/(1014)/( 50 107 )1,0.2( 2 8,9 )( 0max scmsml l g AV ===== αω Lúc này bài toán là bài toán vật ném ngang từ độ cao h=10m (do trù 2m chiều dài dây treo con lắc), với vận tốc đầu )/(1014 0 scmV = và xác định tầm xa cm g h VtVL 1020 8,9 10.2 .1014 2 00 ==== (xem bài toán ném ngang SGK vật lý 10) Câu 30: Một con lắc lò xo thẳng đứng và một con lắc đơn được tích điện có cùng khối lượng m, điện tích q. Khi dao động điều hòa không có điện trường thì chúng có cùng chu kì T 1 = T 2 . Khi đặt cả hai con lắc trong cùng điện trường đều có vectơ cảm ứng từ nằm ngang thì độ giãn của con lắc lò xo tăng 1,44 lần, con lắc đơn dao động điều hòa với chu kì là 5/6 s. Chu kì dao động của con lắc lò xo trong điện trường là A. 1,2s. B. 1,44s C. 5/6s . D. 1s Giải: Khi chưa có điện trường: T 1 = 2π g l∆ ; T 2 = 2π g l ; Với ∆l : độ giãn của lò xo; l chiều dài của con lắc đơn T 1 = T 2 > ∆l = l [...]... = = 0,125 rad Chọn đáp án C 2 Có ba con lắc đơn cùng chi u dài dây treo, cùng treo tại một nơi Ba vật treo có khối lượng m1 > m2 > m3, lực cản của môi trường đối với 3 vật là như nhau Đồng thời kéo 3 vật lệch một góc nhỏ rồi buông nhẹ thì A con lắc m1 dừng lại sau cùng B cả 3 con lắc dừng cùng một lúc C con lắc m3 dừng lại sau cùng D con lắc m2 dừng lại sau cùng Giải: Gọi ∆α là độ giảm biên độ góc... lại lâu hơn Do đó con lắc m1 dừng lại sau cùng Chọn đáp án A Tại nơi có gia tốc trọng trường g = 10 m/s2, một con lắc đơnchi u dài 1 m, dao động với biên độ góc 600 Trong quá trình dao động, cơ năng của con lắc được bảo toàn Tại vị trí dây treo hợp với phương thẳng đứng góc 300, gia tốc của vật nặng của con lắc có độ lớn là A 1232 cm/s2 B 500 cm/s2 C 732 cm/s2 D 887 cm/s2 Giải: Giải Xét thời điểm... 2 + mgl(1-cosα) = mgl(1-cosα0) 2gl(cosα − cos α ) 0 2 v = 2gl( cosα - cosα0). > v = v2 l aht = = 2g(cosα - cosα0) với α0 = 600; α = 300: 3 0 0 aht = 2.10.(cos30 – cos60 ) = 10.( -1 ) = 7,3205 m/s2 Ftt m 0 A A’ M Ft O P P sin α m att = = = gsinα = 5m/s2 Độ lớn gia tốc của vật nặng tại M khi α = 300 2 2 a ht + att a= 7,3205 2 + 5 2 = = 8,865 m/s2 = 887cm/s2 Chọn đáp án D Câu 4: Một con lắc đơn gồm hòn... - α Cơ năng ban đầu của con lắc đơn W0 = mgl(1-cosα0) = mgl.2sin2 2 α0 α 02 ≈ mgl 2 2 mgl 2 α0 −α 2 2 Độ giảm cơ năng sau mỗi lần qua VTCB(sau nửa chu kỳ): ∆W = 2 2 Fc α0 −α 2 mgl mg 2 = ∆W = Fc (α0 + α)l > Fc (α0 + α)l -> ∆α = Độ giảm biên độ góc sau mỗi lần qua VTCB tỉ lệ nghịch với khối lượng của vật Vật có khối lượng càng lớn thì độ giảm biên độ góc ∆α càng nhỏ, vật dừng lại lâu hơn Do đó con. .. tích điện q > 0 Khi đặt con lắc vào trong điện trường đều có véc tơ cường độ điện trường nằm ngang thì tại vị trí cân bằng dây treo hợp với phương thẳng đứng một góc α với tanα = 3/4, lúc này con lắc dao động nhỏ với chu kỳ T 1 Nếu đổi chi u điện trường này sao cho véctơ cường độ diện trường có phương thẳng đứng hướng lên và cường độ không đổi thì chu kỳ dao động nhỏ của con lắc lúc này là: T1 5 5 7... Giá trị α0 là A 0,25 rad B 0,375 rad C 0,125 rad D 0,062 rad Giải Xét thời điểm khi vật ở M, góc lệch của dây treo là α Vận tốc của vật tại M: 0 2gl(cosα − cos α ) 0 v2 = 2gl( cosα - cosα0). > v = A’ A v2 2 2 a ht + att l O M a= -> aht = = 2g(cosα - cosα0) Ft Ftt P sin α m m att = = = gα Tại VTCB:α = 0 -> α0 α 02 2 att = 0 nên a0 = aht = 2g(1-cosα0) = 2g.2sin2 =g Tại biên : α = α0 nên aht =0 > aB =...Khi đặt các con lắc trong điện trường gia tốc trọng trường hiệu dụng tác lên các vật: g’ = g + a Khi đó vị trí cân bằng là O’ ∆l ' 1,44∆l ∆l = 2π = 1,2.2π g' g' g' T’1 = 2π ; l ∆l g' g' T’2 = 2π = 2π T '1 = 1,2 T '2 -> T’1 = 1,2 T’2 = 1,2 5/6 = 1s Chọn đáp án D O’ a g g’ Bài 5: Một con lắc đơn dao động điều hòa với biên độ α0 tại nơi có gia tốc trọng... lắc lúc này là: T1 5 5 7 A T1 B 7 5 C T1 5 F m D T1 Eq m Giải: Ta có Gia tốc do lực điện trường gây ra cho vật a = = ( E là độ lớn cường độ điện trường) Khi điện trường nằm ngang: l F a 3 3 2 2 g1 g +a P g 4 4 T1 = 2π Với g1 = tanα = = = > a = g 5 4 g1 = g A Khi điện trường hướng thẳng đứng lên trên l g2 T2 = 2π Với g2 = g –a = g - g1 g2 T2 T1 = = 5 g 4 1 g 4 3 4 g= 1 4 O’ g F O P 5 = 5 > . động của con lắc thứ hai bằng ba lần con lắc thứ nhất. Khi hai con lắc gặp nhau thì con lắc thứ nhất có động năng bằng ba lần thế năng. Tỉ số độ lớn vân tốc của con lắc thứ hai và con lắc thứ. giảm chi u dài con lắc đi 44cm thì chu kì giảm đi 0,4s.lấy g=10m/s 2 .π 2 =10,coi rằng chi u dài con lắc đơn đủ lớn thì chu kì dao động khi chưa giảm chi u dài là A:1s B:2,4s C:2s D:1,8s Giải: T. góc nhỏ rồi buông nhẹ thì A. con lắc m 1 dừng lại sau cùng. B. cả 3 con lắc dừng cùng một lúc. C. con lắc m 3 dừng lại sau cùng. D. con lắc m 2 dừng lại sau cùng. Giải: Gọi ∆α là độ giảm biên

Ngày đăng: 26/05/2014, 18:28

TỪ KHÓA LIÊN QUAN

w