1. Trang chủ
  2. » Giáo án - Bài giảng

Đề+Đáp án thi hsg toán 9 vĩnh long 2022 2023

7 373 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 174,05 KB

Nội dung

SỞ GD VÀ ĐT VĨNH LONG KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH (ĐỀ CHÍNH THỨC) NĂM HỌC 2022 2023 Khóa ngày 19/03/2023 Môn thi TOÁN Thời gian 150 phút (Không kể thời gian phát đề) Bài 1 (4 0 điểm) a) Cho Tín[.]

SỞ GD VÀ ĐT VĨNH LONG (ĐỀ CHÍNH THỨC) KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2022-2023 Khóa ngày: 19/03/2023 Mơn thi: TỐN Thời gian: 150 phút (Không kể thời gian phát đề) Bài (4.0 điểm) a) Cho A  x3  12 x  31 2023 3 Tính giá trị biểu thức A x  16   16   x 2 x 3 B    x  x 6 2 x  b) Cho biểu thức x 2   : 2 x    x   x   Rút gọn biểu thức B tìm  giá trị x để B Bài (4.0 điểm) a) Giải phương trình x  x   x  0  x   y  2  1 x  y b) Giải hệ phương trình:  Bài (2.0 điểm) Cho phương trình x  2mx  2m  0 (m tham số) Tìm m để phương trình có hai nghiệm thỏa T x1 x2  x  x2    x1 x2  mãn Bài (2.0 điểm) đạt giá trị nhỏ Cho x, y > thỏa điều kiện x + y = Chứng minh Bài (2.5 điểm) x y  x  y  2 2 a) Tìm tất nghiệm nguyên phương trình 3x  y  xy  x  y  0 b) Chứng minh : n  11n  6n  66 (Với số nguyên n) Bài (4.5 điểm) Cho đường trịn (O; R) có đường kính AB Điểm C điểm (O) ( C  A, C B ) Tiếp tuyến C cắt tiếp tuyến A B P, Q  a) Chứng minh rằng: POQ 90 AP.BQ R b) OP cắt AC M, OQ cắt BC N Gọi H, I trung điểm MN PQ Đường trung trực MN đường trung trực PQ cắt K Chứng minh AB 4.IK   c) Chứng minh NMQ NPQ Bài (1.0 điểm) Cho hình vng ABCD có độ dài đường chéo Tứ giác MNPQ có đỉnh nằm cạnh hình vng Chứng minh chu vi tứ giác MNPQ không nhỏ ……HẾT… ĐÁP ÁN-HƯỚNG DẪN GIẢI Bài 1: a) Cho A  x3  12 x  31 2023 3 Tính giá trị biểu thức A x  16   16   x3 32  3 (16  5)(16  5)  16   16    x 32  12 x  x  12 x  31 1 A  x  12 x  31 2023 12023 1  x 2 x 3 B    x  x 6 2 x  b) Cho biểu thức x 2   : 2 x    x   x   Rút gọn biểu thức B tìm giá  trị x để B Điều kiện: x 0, x 4, x 9  x 2 x 3 B     x  x 6 2 x  x 2    x x x       x  x  x  x 2   : 2 x    x  x    x   x   x x       x 1  x    x     x 1 x 1  x 2 x x     x   x   x  x  0  B 2 x 1 1   x   x     x  x  0 Bài 2: a) Giải phương trình x  3x   x  0 2 TH1: x 1 , ta có phương trình x  3x   x  0  x  x   x 1 (nhận) 2 TH2: x  , ta có phương trình x  x   x  0  x  x   x 1(l ); x 3(l ) Vậy tập nghiệm phương trình S  1  x   y  2  1 (2) x  y  b) Giải hệ phương trình: (1) Điều kiện: x 1, y 1 (2)  x  y  xy (3) Hai vế (1) dương, ta bình phương hai vế được: x y  22  x  1  y  1 4  x  y   xy   x  y   4 thay vào (3), ta  x  y xy  x  y 4 kết hợp với (3) có hệ  xy 4 Theo Vi – et, ta có x, y nghiệm phương trình X  X  0 => x = 2; y = Vậy tập nghiệm hệ S   2;   Bài 3: Cho phương trình x  2mx  2m  0 (m tham số) Tìm m để phương trình có hai nghiệm thỏa mãn T x1 x2  x  x22    x1 x2  đạt giá trị nhỏ  ' m  2m   m  1 0 (m) Ta có , nên phương trình ln có hai nghiệm x1; x2  x1  x2 2m  x x 2m  Áp dụng Vi – et, ta có  Ta có T x1 x2  x1 x2  4m    2 x1  x2    x1 x2   x1  x2   4m  2 4m  1 4m   2m 1  m  1 T     0, m  T  2 4m  2 2  2m  1  2m  1 1 Vậy T đạt giá trị nhỏ m = -1 Bài 4: Cho x, y > thỏa điều kiện x + y = Chứng minh x y  x  y  2 Vì x, y > nên x  y 2 xy (bất đẳng thức Cô-si)  2 xy (x + y = 2) hay  xy 1   xy 1  x y  xy x y  x  y  xy   x  y   xy   xy   xy   x y  xy   x y  xy   1   Xét vế trái   xy  1  2 x y  x  y 1  Dấu “=” xảy  xy 1 Bài 5: 2 a) Tìm tất nghiệm nguyên phương trình 3x  y  xy  x  y  0 ' ' Ta có  4 x  , phương trình có nghiệm ngun =>  số phương Đặt x  m  m  N  x  m  m  N   m  x 9   m  x   m  x  9 x    2;0; 2 +) với x = 2, ta có phương trình y  y  16 0  y    8; 2 +) với x = 0, ta có phương trình y  y  0  y    4; 2 +) với x = - 2, ta có phương trình Vậy phương trình có nghiệm y  y  24 0  y   6;  4  x; y     2;  8 ;  2;  ;  0;   ;  0;  :   2;6  ;   2;    b) Chứng minh n3  11n  6n  n3  n  5n  6n  n  n  1  5n  n  1   n  1  n  1  n  5n    n  1  n    n  3 6 Vì n – 1; n – 2; n – (n số nguyên)là số nguyên liên tiếp nên có số chia hết cho 2, số chia hết cho 3, (2; 3) = Bài 6: Q K I C P H N M B A O  a) Chứng minh rằng: POQ 90 AP.BQ R 1  POC  COA  Ta có (OP tia phân giác COA ) 1  QOC  COB  (OQ tia phân giác COB )      POQ POC  QOC  COA  COB  1800 900 2   POQ vng O có OC đường cao  PC.CQ OC  AP.BQ OC R b) Chứng minh AB 4.IK  Ta có PO đường trung trực AC => MA = MC, CMO 90  OQ đường trung trực CB => NB = NC, CNO 90  Mà POQ 90 nên MONC hình chữ nhật => OC = MN AP // PQ nên APQB hình thang nhận IO đường trung bình suy OI // BQ Mà BQ  AB  OI  AB Ta có MN đường trung bình của ABC  MN / / AB; AB 2.MN Mà KH  MN  KH  AB  KH / /OI nên OHKI hình bình hành 1  IK OH  MN  MN  AB 4 Ik   c) Chứng minh NMQ NPQ 0   Ta có CMO 90 , CNO 90 => tứ giác OMCN nội tiếp    OMN OCN (hai góc nội tiếp chắn cung ON)      Mặt khác, OCN PQO (cùng phụ với CON )  OMN PQO 0     Ta có OMN  PMN 180  PQO  PMN 180 Suy tứ giác PMNQ nội tiếp đường tròn    NMQ  NPQ Câu 7: A B M E N I Q F D P C Gọi E, F, I trung điểm đoạn thẳng QM, PN, QN Ta có AE  QM MN QP PN ; EI  ; ; FC  2 2 Chu vi tứ giác MNPQ MN  PN  QP  QM 2  IE  FC  IF  AE  2 AC 2 Vậy chu vi tứ giác MNPQ không nhỏ

Ngày đăng: 19/05/2023, 21:06

TỪ KHÓA LIÊN QUAN

w