Chương 4 BẤT ĐẲNG THỨC VÀ BẤT PHƯƠNG TRÌNH §1 BẤT ĐẲNG THỨC I Tóm tắt lí thuyết 1 Các khái niệm Khái niệm (Bất đẳng thức) Cho hai số thực a,b Các mệnh đề “a > b”, “a < b”,“a ≥ b”, “a ≤ b” được gọi là.
Chương BẤT ĐẲNG THỨC VÀ BẤT PHƯƠNG TRÌNH §1 I Tóm tắt lí thuyết Các khái niệm BẤT ĐẲNG THỨC Khái niệm (Bất đẳng thức) Cho hai số thực a, b Các mệnh đề “a > b”, “a < b”,“a ≥ b”, “a ≤ b” gọi bất đẳng thức Khái niệm (Bất đẳng thức chiều, trái chiều) Cho bốn số thực a, b, c, d Các bất đẳng thức “a > b”, “c > d” gọi bất đẳng thức chiều Các bất đẳng thức “a > b”, “c < d” gọi bất đẳng thức trái chiều Khái niệm (Bất đẳng thức hệ quả) Nếu mệnh đề “a > b ⇒ c > d”đúng ta nói bất đẳng thức “c > d” bất đẳng thức hệ bất đẳng thức “a > b” viết a > b ⇒ c > d Khái niệm (Bất đẳng thức tương đương) Nếu bất đẳng thức “a > b” hệ bất đẳng thức “c > d” ngược lại ta nói hai bất đẳng thức tương đương với viết a > b ⇔ c > d Tính chất Tính chất Điều kiện Nội dung a < b ⇔ a+c < b+c c>0 c bc a < b c < d ⇒ a + c < b + d a > 0, c > a < b c < d ⇒ ac < bd n ∈ N∗ n ∈ N∗ a > a>0 a < b ⇔ a2n+1 < b2n+1 a < b ⇔ a2n < b√2n √ a < b ⇔ a < √b √ a