1. Trang chủ
  2. » Luận Văn - Báo Cáo

Chuong i bai 11 hinh thoi (1) pps

47 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 47
Dung lượng 747,5 KB

Nội dung

Slide 1 NhiÖt liÖt chµo mõng c¸c thÇy c« gi¸o VÒ dù giê líp 8A Tr­êng THCS Ph¸t DiÖm A KiÓm tra bµi cò 1, H y nªu ®Þnh nghÜa vµ tÝnh chÊt cña h×nh b×nh hµnh 2, Nªu dÊu hiÖu nhËn biÕt h×nh b×nh hµnh? H[.]

Nhiệt liệt chào mừng thầy cô giáo Về dự giê líp 8A Tr­êng THCS Ph¸t DiƯm A KiĨm tra cũ: 1, HÃy nêu định nghĩa tính chất hình bình hành 2, Nêu dấu hiệu nhận biết hình bình hành? HÃy chứng minh tứ giác ABCD (hình vẽ) hình bình hành B A C D Hình thoi Em 1, Định có nhận Hình xét thoi tứ tứ giác có bốn cạnh giác nghĩa: ABCD? b»ng B A C D H 100 Tø giác ABCD AB = BC = CD = DA hình thoi Chứngnghĩa minh giáctaABCD hình 100 Từ hìnhtứthoi suy ra: Hình thoi ?1 định hình bình hành hình bình hành Hình thoi 1, Định nghĩa: 2, Tính chất: * Hình thoi có tất tính chất hình bình hành ? Cho hình thoi ABCD, hai đường chéo cắt O (H 101) a)Theo tính chất hình bình hành, hai đường chéo hình thoi có tính chất ? b) HÃy phát thêm tính chất khác hai đường chéo AC BD B A C O D (H 101) * Định Trong hình thoi: lí a) Hai đường chéo vuông góc với b) Hai đường chéo đường phân giác góc hình thoi B GT ABCD hình thoi AC BD KL AC đường p/g góc A, BD đuờng p/g góc B, CA đường p/g góc C, DB đuờng p/g cña gãc D Chøng minh A O D (H 101) ABC có AB = BC (Đ/n hình thoi) nên ABC cân B Mà BO đường trung tuyến ABC (vì OA = OB theo t/c đường chéo) Nên BO đường cao đường phân giác ABC Vậy BD AC BD đường phân giác góc B Chứng minh tương tự, CA phân giác góc C, DB phân giác C Cách vẽ hình thoi: - Xác định đỉnh hình thoi cách vẽ hai đường chéo vuông góc với trung điểm A B O C D Hình bình hành Tứ giác Hình thoi Hình bình hành Hình bình hành 3, Dấu hiệu nhận biết: Tứ giác có bốn cạnh hình thoi Hình bình hành có hai cạnh kề hình thoi Hình bình hành có hai đường chéo vuông góc với hình thoi ? H·y chøng minh dÊu hiÖu nhËn biÕt Cho hbh ABCD GT cã: BD  AC t¹i O KL ABCD hình thoi A Chứng minh B O C D Tứ giác ABCD hình bình hành nên: OA = OC (t/c ®­êng chÐo) Trong  ABC cã BO vừa đường trung tuyến, vừa đường cao nên: ABC cân B AB = BC Mµ AB = CD ; BC = DA(t/c hbh)  AB = BC = CD = Hình thoi 1, Định nghÜa: (Sgk/104) 2, TÝnh chÊt: (Sgk/104) 3, DÊu hiÖu nhËn biÕt: B A C D Tø gi¸c cã cạnh hình thoi Hình bình hành có hai cạnh kề hình hoi Hình bình hành có hai đường chéo vuông góc với hình thoi Hình bình hành có đường chéo phân giác góc hình thoi

Ngày đăng: 12/04/2023, 10:37

w