Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
1,09 MB
Nội dung
ĐỀ MẪU CĨ ĐÁP ƠN TẬP KIẾN THỨC TỐN 12 Thời gian làm bài: 40 phút (Không kể thời gian giao đề) - Họ tên thí sinh: Số báo danh: Mã Đề: 030 Câu Tìm tập xác định hàm số A ? C Đáp án đúng: A Câu B D Tìm m để phương trình A có nghiệm x1, x2 cho x1 x2 = 27 B m = 25 C m = Đáp án đúng: C D Câu Tính đạo hàm hàm số A C Đáp án đúng: A Giải thích chi tiết: Tính đạo hàm hàm số B C D Câu B A D Tích phân A B C Đáp án đúng: C D Giải thích chi tiết: Tích phân A B C D Câu Mệnh đề với số thực ? A B C Đáp án đúng: D Câu Khối lập phương thuộc loại khối đa diện nào? D A B C Đáp án đúng: A Câu Trong mặt phẳng phức Oxy, điểm M hình vẽ bên biểu diễn cho số phức sau đây? A D B C Đáp án đúng: D Câu D Cho số phức , Nếu có biểu diễn hình học điểm A Đáp án đúng: C B Giải thích chi tiết: Ta có , A D B C Đáp án đúng: B Câu 10 D mặt phẳng tọa độ Do đó, Họ nguyên hàm hàm số , C Câu Tập xác định hàm số A là? B C Đáp án đúng: D Câu 11 Cho D tứ diện có cạnh A Đáp án đúng: C B Tính bán kính mặt cầu ngoại tiếp tứ diện C D Giải thích chi tiết: Cách 1: Gọi trọng tâm , ta có Gọi trung điểm Trong Do mặt cầu ngoại tiếp tứ diện Ta có đồng dạng nên: , Khi , nên trục , gọi đường thẳng qua có tâm bán kính vng góc với , cắt Cách 2: Áp dụng công thức giải nhanh: Câu 12 Trong không gian , cho hai mặt cầu , có phương trình , thuộc trị điểm tùy ý khơng gian Đặt , hai điểm Tính giá A 98 Đáp án đúng: A Giải Gọi , Gọi B 90 C 88 thích D 100 chi trung điểm tiết: Mặt cầu có tâm Mặt cầu có tâm Ta có , bán kính , bán kính Suy Vậy giá trị nhỏ Dấu xảy Câu 13 Cho hàm số có đạo hàm khoảng Khẳng định sau đúng? A Hàm số đồng biến khoảng B Hàm số đồng biến khoảng C Hàm số đồng biến khoảng D Hàm số Đáp án đúng: D đồng biến khoảng Câu 14 Cho hàm số liên tục điểm cực đại? A Chỉ có điểm cực đại C Khơng có cực đại Đáp án đúng: A Câu 15 , có đạo hàm Hàm số cho có B Có ba điểm cực đại D Có hai điểm cực đại : Giải phương trình: A x = 18 Đáp án đúng: C B Câu 16 Cho hàm số A C x = Khẳng định đúng? C Đáp án đúng: B D x = B D Giải thích chi tiết: Ta có: Câu 17 Trong khơng gian với hệ trục tọa độ A 11 Đáp án đúng: C cho Tính tổng B , trực tâm tam giác trình Câu 18 Tính tổng cắt tia Biết mặt phẳng có phương trình C Giải thích chi tiết: Trong khơng gian với hệ trục tọa độ tia mặt phẳng qua điểm cho , D 14 mặt phẳng qua điểm trực tâm tam giác Biết mặt phẳng cắt có phương Trong khơng gian , vectơ pháp tuyến mặt phẳng A B C Đáp án đúng: D D Giải thích chi tiết: Phương trình Một vectơ pháp tuyến mặt phẳng Câu 19 Tìm hai số thực A ; thỏa mãn với C ; Đáp án đúng: B B Giải thích chi tiết: ; D đơn vị ảo ; (THPTQG 2018-MĐ103-Câu 23) Tìm hai số thực với A ; Lời giải B thỏa mãn đơn vị ảo ; C ; D ; Câu 20 Tất giá trị tham số A Đáp án đúng: A để hàm số B C Giải thích chi tiết: [2] Tất giá trị tham số A B Lời giải Ta có C D có hai điểm cực trị D để hàm số có hai điểm cực trị Hàm số cho có hai điểm cực trị phương trình Phương trình có nghiệm phân biệt có nghiệm phân biệt Câu 21 Một người gửi triệu đồng vào ngân hàng với lãi suất năm Biết không rút khỏi ngân hàng sau năm số tiền lãi nhập vào gốc để tính lãi cho năm Hỏi sau năm người nhận tiền gốc lẫn lãi? Giả định suốt thời gian gửi, lãi suất không thay đổi người khơng rút tiền A triệu đồng B triệu đồng C triệu đồng Đáp án đúng: C D Câu 22 Cho hàm số A Đáp án đúng: B có đạo hàm , B Số điểm cực trị hàm số cho C Giải thích chi tiết: Cho hàm số hàm số cho Câu 23 Gọi triệu đồng D có đạo hàm , tập hợp tất giá trị nguyên tham số có hai điểm cực trị Số phần tử A B Đáp án đúng: A Giải thích chi tiết: Tập xác định: Ta có: C Số điểm cực trị đoạn để hàm số ? D Để hàm số có hai điểm cực trị có hai nghiệm phân biệt có hai nghiệm phân biệt Theo đề Vậy nên có giá trị cần tìm Câu 24 Tìm giá trị nhỏ hàm số A Đáp án đúng: B Câu 25 Cho hàm số Biết B có đồ thị khoảng đoạn C D đường cong (C) hình vẽ bên tính diện tích S miền gạch chéo? A B C D Đáp án đúng: D Câu 26 Giá trị tham số cho hàm số đạt cực đại A Đáp án đúng: C Giải thích chi B tiết: C [2D1-2.3-1] Giá trị đạt cực đại A B Lời giải C D D tham số cho hàm số Ta có ; ; Với hàm số bậc ba để hàm số đạt cực đại Thử lại Với nên hàm số đạt cực tiểu điểm Với Vậy Câu 27 nên hàm số đạt cực đại điểm Cho hàm số Hàm số A Đáp án đúng: A có bảng biến thiên hình vẽ đạt cực tiểu điểm sau đây? B Giải thích chi tiết: Lập bảng biến thiên C ta hàm số D đạt cực tiểu Câu 28 Cho biểu thức A Đáp án đúng: B , với B , Mệnh đề sau đúng? C D Câu 29 Có giá trị nguyên tham số m để hàm số nằm bên trái trục tung? A Vô số Đáp án đúng: D Câu 30 B Cho hàm số có hai điểm cực trị C D có bảng biến thiên sau: Hàm số nghịch biến khoảng nào? A B C Đáp án đúng: D D Câu 31 Tính diện tích S hình phẳng giới hạn đường A B C Đáp án đúng: C Giải thích chi tiết: Xét phương trình hoành đợ giao điểm: , trục hồnh đường thẳng D (Điều kiện: ) Vì nên Ta có: Đặt Câu 32 Cho khối lăng trụ tam giác có , góc đường thẳng mặt phẳng Thể tích khối lăng trụ A B C D Đáp án đúng: B Câu 33 Cho hàm số y=f(x) có đồ thị hình Số giá trị nguyên tham số m để phương trình: có nhiều nghiệm là: A 12 Đáp án đúng: B B 11 Câu 34 Cho hàm số C liên tục đoạn D 13 thỏa mãn Tính A Đáp án đúng: C B Giải thích chi tiết: Cho hàm số C liên tục đoạn thỏa mãn D Tính A B Lời giải C D 10 Đặt ta có Do đó: Câu 35 Trong mặt phẳng phức, gọi , , Gọi thích chi , , điểm biểu diễn số phức diện tích tứ giác A Đáp án đúng: B Giải , B tiết: Ta Tính C có D , , , véc tơ pháp , tuyến , , phương trình : Khoảng cách từ đến là: Khoảng cách từ đến là: Vậy HẾT - 11