Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20 A yCD = 4 B yCD = −[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = −2 C yCD = 52 D yCD = 36 Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; 1; 2) C I(1; 1; 2) D I(0; −1; 2) √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I √ trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ a a 15 a B C D a 15 A 3 Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 C [ ; 2] [22; +∞) D [22; +∞) A ( ; 2] [22; +∞) B ( ; +∞) 4 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 2; 0) B A(0; 0; 3) C A(0; 2; 3) D A(1; 0; 3) Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang khơng có tiệm cận đứng B Khơng có tiệm cận ngang có tiệm cận đứng C Khơng có tiệm cận D Có tiệm cận ngang tiệm cận đứng Câu Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 3 B a C a D a A 2a 3 Câu 10 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D Câu 11 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (7; 6) C (−6; 7) D (6; 7) Câu 12 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 A B C D Trang 1/5 Mã đề 001 Câu 13 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 14 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 15 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 x2 + C B f (x) = sinx + + C A f (x) = −sinx + 2 R R C f (x) = sinx + x2 + C D f (x) = −sinx + x2 + C Câu 16 Tập nghiệm bất phương trình x+1 < A (−∞; 1) B [1; +∞) C (1; +∞) D (−∞; 1] 4(−3 + i) (3 − i) + Mô-đun số phức w = z − iz + Câu 17 Cho số phức z thỏa mãn z = −i √ − 2i √ √ √ A |w| = 85 B |w| = C |w| = D |w| = 48 z2 Câu 18 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B 13 C 11 D Câu 19 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực là−3 phần ảo −2i C Phần thực −3 phần ảo là−2 D Phần thực phần ảo 2i Câu 20 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D 2017 (1 + i) Câu 21 Số phức z = có phần thực phần ảo đơn vị? 21008 i A 21008 B C D 25 1 Câu 22 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −17 B 17 C 31 D −31 Câu 23 Với số phức z, ta có |z + 1|2 A z · z + z + z + B z + z + C z2 + 2z + Câu 24 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D |z|2 + 2|z| + D Câu 25 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = C A = 2ki D A = Câu 26 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x + B F(x) = e x C F(x) = e2x R2 Câu 27 Tính tích phân I = xe x dx A I = e B I = 3e2 − 2e C I = e2 D F(x) = e x+1 D I = −e2 Trang 2/5 Mã đề 001 Câu 28 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; 1; 4) B (−3; −1; −4) C (−3; −1; 4) D (3; −1; −4) Câu 29 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = 2 C (x + 2) + y + z = D (x − 2)2 + y2 + z2 = R2 Câu 30 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A 2024 B 2025 C −2024 D R Câu 31 Tìm nguyên hàm I = xcosxdx x x B I = x2 sin + C A I = x2 cos + C 2 C I = xsinx − cosx + C D I = xsinx + cosx + C Câu 32 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 0; 2) B C(−1; −4; 4) C C(1; 4; 4) D C(−1; 0; −2) Câu 33 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = −2023cos(2023x) B f (x) = 2023cos(2023x) cos(2023x) D f (x) = cos(2023x) C f (x) = − 2023 z+1 Câu 34 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = Câu 35 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? B C D A 2 √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 37 Cho số√phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| B P = 2016 C P = D P = −2016 A max T = z Câu 38 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 A B C D Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ C A B √ D 2 √ Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Trang 3/5 Mã đề 001 Biết điểm biểu diễn số phức ω = số phức ω A điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm P C điểm N D điểm Q = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 1 9 B 0; C ; D ; +∞ A ; 4 4 Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 r 3x + Câu 43 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) B D = (1; +∞) C D = (−∞; 0) D D = (−∞; −1] ∪ (1; +∞) Câu 44 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 45 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a B C D A 3 2 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 14; 15) A 2→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Câu 47 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B ln C D − ln x2 + mx + đạt cực tiểu điểm x = x+1 C m = −1 D m = Câu 48 Tìm tất giá trị tham số m để hàm số y = A m = B Không có m Câu 49 Trong khơng gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = − 2t x = −1 + 2t x = + 2t y = −2 − 3t y = −2 + 3t y = + 3t y = −2 + 3t C D A B z = + 5t z = −4 − 5t z = − 5t z = − 5t Câu 50 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m > m < −1 C m < −2 D m > m < − Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001