1. Trang chủ
  2. » Tất cả

Đề ôn tập thpt qg môn toán (947)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 125,13 KB

Nội dung

Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Tìm tất cả các giá trị của tham số m để đường thẳng y = x[.]

Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? C −4 < m < A ∀m ∈ R B m < Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+2 m+2 2m + A I = ln( ) B I = ln( ) C I = ln( ) m+1 2m + m+2 Câu 3.√ Bất đẳng thức √ πsau đúng? e A ( √3 − 1) < ( √3 − 1) π e C ( + 1) > ( + 1) + 2x x+1 D < m , D I = ln( m+1 ) m+2 B 3−e > 2−e D 3π < 2π đúng? x B Hàm số nghịch biến R D Hàm số đồng biến R Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến (0; +∞) C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B ln x > ln y C log x > log y a D log x > log y a Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = tan x B y = x3 − 2x2 + 3x + 3x + C y = D y = sin x x−1 Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A B 43 C D 23 Câu Có số nguyên x thỏa mãn log3 A 92 B 186 x2 −16 343 < log7 C 184 x2 −16 ? 27 D 193 Câu R9 Cho hàm số f (x) = cos x + x Khẳng định đúng? R x2 A R f (x)dx = − sin x + + C B R f (x)dx = sin x + x2 + C C f (x)dx = − sin x + x2 + C D f (x)dx = sin x + x2 + C Câu 10 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (3; 4) B (4; 5) C (6; 7) D (2; 3) Câu 11 Phần ảo số phức z = − 3i A −3 B −2 C D Câu 12 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Trang 1/5 Mã đề 001 Câu 13 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A 3π 6π ln + D ln + x + mx + Câu 14 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A Khơng có m B m = C m = −1 D m = r 3x + Câu 15 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (−1; 4) C D = (1; +∞) D D = (−∞; 0) B 6π ln + 5 π cos x F(− ) = π Khi giá trị sin x + cos x C Câu 16 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 3a3 C 9a3 D 6a3 A 4a3 Câu 17 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có   véc tơ phương u       x = −1 + 2t      x = + 2t  x = + 2t  x = − 2t      y = −2 − 3t y = −2 + 3t y = −2 + 3t y = + 3t A  B C D             z = − 5t  z = − 5t  z = + 5t  z = −4 − 5t Câu 18 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + B log2 2250 = A log2 2250 = n n 2mn + n + 2mn + 2n + D log2 2250 = C log2 2250 = m n Câu 19 Tập hợp điểm biểu diễn số phức w = (1 + i)z + với z số phức thỏa mãn |z − 1| ≤ hình trịn có diện tích A 3π B 2π C π D 4π Câu 20 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 22 C r = 20 D r = z−z =2? Câu 21 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một Elip C Một đường tròn D Một Parabol −2 − 3i Câu 22 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ D max |z| = A max |z| = B max |z| = C max |z| = Câu 23 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w = √ x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = + 27i hoặcw = − 27i B w = + 27 hoặcw = − 27 √ √ √ √ C w = − 27 − i hoặcw = − 27 + i D w = 27 − i hoặcw = 27 + i Câu 24 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x − y + = D x + y − = √ Câu 25 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = √ Câu 26 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 3 B < |z| < C |z| > D |z| < A ≤ |z| ≤ 2 2 Trang 2/5 Mã đề 001 Câu 27 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x − y + = C x + y − = D x − y + = Câu 28 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = 1+i z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 15 25 B S = C S = D S = A S = 2 Câu 29 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π B 25π C D 5π A Câu 30 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 22 C r = 20 D r = Câu 31 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = C P = B P = D P = 2 Câu 32 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A π B 4π C 3π D 2π Câu 33 Cho a > a , Giá trị alog A B √ a bằng? √ C D Câu 34 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A Không tồn m B < m < C m < D m < 3 Câu 35 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 36 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − m2 − 12 4m2 − m2 − 12 A B C D m 2m 2m 2m Câu 37 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [ ; 2] [22; +∞) B [22; +∞) C ( ; +∞) D ( ; 2] [22; +∞) 4 Câu 38 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) 1 B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = Câu 39 Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vng cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = 3a3 B V = 12a3 C V = a3 D V = 6a3 Trang 3/5 Mã đề 001 Câu 40 Điểm cực đại đồ thị hàm số y = x4 − 2x2 + A x = B (0; 3) C x = D (1; 2) Câu 41 Đồ thị hàm số y = −x3 + 3x2 − 3x + có điểm cực trị? A B C D Câu 42 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (−1; +∞) B (−1; 0) C (−∞; 0) D (0; +∞) Câu 43 Cho hàm số y = f (x) có bảng biến thiên sau: x −∞ y′ +∞ −2 − − +∞ −2 y −∞ −2 Đồ thị hàm số y = f (x) có đường tiệm cận đứng tiệm cận ngang? A B C D Câu 44 Cho hàm số y = A −1 x+1 Tìm giá trị lớn hàm số đoạn [−1; 2] 3−x B C D đúng? x B Hàm số nghịch biến (0; +∞) D Hàm số nghịch biến R Câu 45 Kết luận sau tính đơn điệu hàm số y = A Hàm số đồng biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu 46 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu 47 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = −x4 + 3x2 − C y = x3 D y = x2 − 2x + Câu 48 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m > C m ≤ D m ≥ Câu 49 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B πR3 C 4πR3 D 2πR3 Câu 50 Hàm số sau đồng biến R? A y = x4 + 3x2 + C y = tan x √ √ B y = x2 + x + − x2 − x + D y = x2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 05/04/2023, 10:27

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w